Can We Transport CO₂ Safely? # Amine Carry over and Impurity-Induced Corrosion in CCS Pipelines Davies Oluwadabobomi Grace, Randi Neerup, Philip Loldrup Fosbøl ### Background Carbon Capture and Storage (CCS) reduces industrial CO_2 emissions, but impurities like **amines**, H_2O , NO_x , SO_x , and H_2S in CO_2 streams can cause serious corrosion challenges during transport. CO₂ capture Advanced pressurized Oxy fuel combustion Transported Supercritical impurities($H_2O_1O_2 \& SO_2$) CO₂ (P up to 15.3 MPa) with ### **Expected Methodology** Confocal Microscopy # Objectives Evaluate the effect of amine carryover on steel corrosion # CCS Challenges in Transportation SO₂ - Induced health/safety concern Corrosion Weight Loss Measurement **Corroded Steels** # **Expected Results** Figure 1: The illustration of expected corrosion behavior under impurity-enhanced scCO₂ conditions(Sun et al. (2019) Figure 2: Schematic Representation of the Amine Capture Process #### Conclusions Even trace levels of impurities can initiate corrosion under Sc-CO₂ conditions chemicals & fuels Catalysts 🥿 Energy @ Mitigating impurity-induced corrosion is crucial for safe CCS deployment Future work includes experimental testing, impurity limit definition, and standardization # References Scan the QR code # Acknowledgements The authors would like to acknowledge funding provided via the European Commission's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement ID: 101118369, Material Science Innovation for Accelerated, Sustainable and Safe Implementation of Carbon Capture and Storage (MISSION-CCS).