Can We Transport CO₂ Safely?

Amine Carry over and Impurity-Induced Corrosion in CCS Pipelines

Davies Oluwadabobomi Grace, Randi Neerup, Philip Loldrup Fosbøl

Background

Carbon Capture and Storage (CCS) reduces industrial CO_2 emissions, but impurities like **amines**, H_2O , NO_x , SO_x , and H_2S in CO_2 streams can cause serious corrosion challenges during transport.

CO₂ capture

Advanced pressurized

Oxy fuel combustion

Transported Supercritical

impurities($H_2O_1O_2 \& SO_2$)

CO₂ (P up to 15.3 MPa) with

Expected Methodology

Confocal

Microscopy

Objectives

Evaluate the effect of amine carryover on steel corrosion

CCS Challenges in Transportation

SO₂ - Induced

health/safety

concern Corrosion

Weight Loss Measurement

Corroded Steels

Expected Results

Figure 1: The illustration of expected corrosion behavior under impurity-enhanced scCO₂ conditions(Sun et al. (2019)

Figure 2: Schematic Representation of the Amine Capture Process

Conclusions

Even trace levels of impurities can initiate corrosion under Sc-CO₂ conditions

chemicals & fuels

Catalysts 🥿

Energy @

Mitigating impurity-induced corrosion is crucial for safe CCS deployment

Future work includes experimental testing, impurity limit definition, and standardization

References

Scan the QR code

Acknowledgements

The authors would like to acknowledge funding provided via the European Commission's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement ID: 101118369, Material Science Innovation for Accelerated, Sustainable and Safe Implementation of Carbon Capture and Storage (MISSION-CCS).

