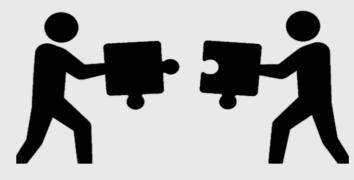

Minimising corrosion impacts in future CCS systems: Developing techno-economic and lifecycle based systems analysis approaches (DCR10)

Benedetta Martellotti, Timothy Cockerill, Bernard Normand Benoit Ter-Ovanessian, Sabrina Marcelin, François Ropital


Objective

What level of impurity removal is needed to achieve the best environmental and economic € trade-off?

Part of CCS (Carbon Capture and Storage) process

Need to assess impact of key engineering uncertainties on **TEA (Techno-Economic** Analysis) and LCA (Life Cycle Assessment)

Step [B]

Mitigation

strategy

selection

List of **possible**

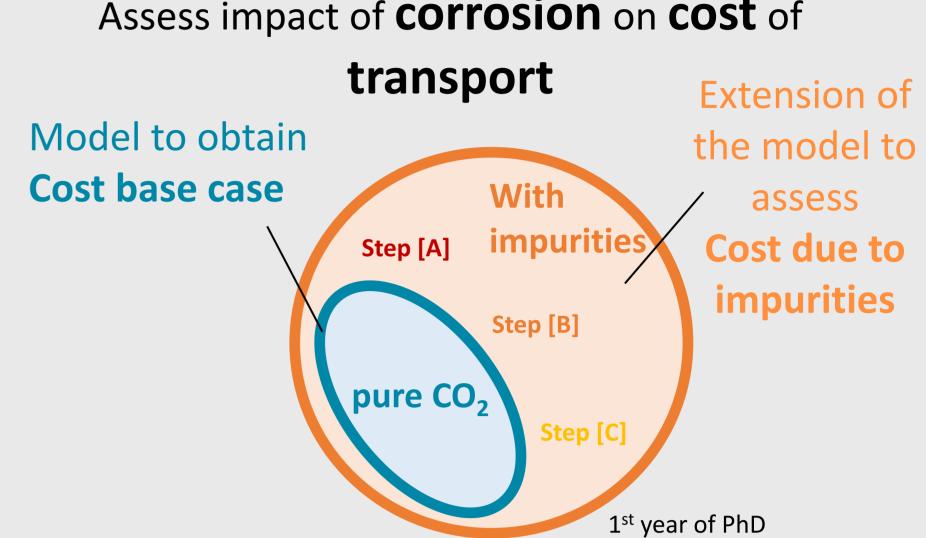
corrosion severity

strategies to control the

Step [C]

Definition of

impact on


design and

costs

Highlight

Starting point:

Assess impact of **corrosion** on **cost** of

Methodology

Step [A] Step [B] Corrosion prediction from Machine learning (ML) Corrosion mitigation strategy selection Fixed parameters Dataset Mitigation strategies Variable Test • S-CO₂ rich phase From literature (at Coatings Dataset* (P, T, For each of them present) [4] • API 5L X-series CRAs impurities type From **DCR4** (in the we consider pipelines Corrosion inhibitors (DCR6) and quantity) upcoming stages) **Corrosion Rate INPUTS:** Variable Training Training Dataset* Step [A] Pressure Dataset* (P, T, Cost of the strategy CR after the usage (mm/year) Temperature impurities type of the strategy Corrosion Impurities type and quantity) CR_{mit} (Corrosion rate prediction and quantity Supervised after prevention Operative Capital ML model -Max. Fluid Flow Rate Corrosion strategy) costs costs -Fluid Inlet Temperature severity (mm/year) (OM_{mit}) (I_{mit}) -Pipeline Length CR_{ML} (Predicted -CO₂ Inlet Pressure

From McCoy

and Rubin [1]

(2008)

-Material

-Corrosion

allowance (CA)

Capital Costs (*I*_{pipe})

Maintenance Costs

Operation and

 (OM_{pipe})

Corrosion rate from machine learning model) (mm/year) **Setting the** reference

allowance $CA_{ML} = CR_{ML}$ · lifetime $CA_{safety} = 3 mm$ From AMPP guideline [3]

corrosion

The **CA**_{ref} will be selected as $max(CA_{ML}; CA_{safety})$

framework

 (CA_{ref})

Cost comparison

The cost of corrosion is computed as: Reference cost: using only the predicted CA without mitigation

Mitigated cost: based on the selected strategy, updated CA (CA_{mit}), and direct cost of the mitigation (I_{mit} , OM_{mit})

Secondments/Collaborations

-CO₂ Outlet pressure

-Material Roughness

PIPELINE

COST MODEL

-Discount rate

-Deflation rate

-Length of pipeline

-Number of years in the lifetime

PIPELINE PERFORMANCE MODEL

Pipe Diameter

From Knoope

et al. [2]

(2014)

Acknowledgements

The authors would like to acknowledge funding provided via the European Commission's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement ID: 101118369, Material Science Innovation for Accelerated, Sustainable and Safe Implementation of Carbon Capture and Storage (MISSION-CCS).

$I_{pipe} \propto C_{material} \propto t \propto CA \propto CR$

Where: • $C_{material} = \text{material costs for the pipeline } (\mathbf{E})$ • $CRF = Capital \ recovery \ factor$

• t = thickness (m)

quantity of impurities

• $m = mass flow \left(\frac{ton}{h}\right)$ • $H = annual operation time \left(\frac{n}{vear}\right)$

Step [C]

Impact on design and costs

Identify the corrosion mitigation strategy that

minimizes the levelized cost of CO₂ transport

 $LC_T = \frac{CRF \cdot (I_{pipe} + I_{mit}) + OM_{pipe} + OM_{mit}}{m \cdot H \cdot 3.6}$ Adapted from [2]

 (LC_T) , based on key input variables such as

pressure, temperature, and the type and

Next steps

Short Term

 LC_T

- Finalizing the **ML model** for corrosion prediction
- Expanding the database of mitigation strategies and their costs/efficiencies
- Applying the framework to selected case studies
- Performing sensitivity analysis and uncertainty quantification

Long Term

- Extend the analysis to include **Life** Cycle Assessment (LCA) of each mitigation strategy
- Compare the cost of removing impurities to specified input levels with the cost of pipeline protection

References

[1] McCoy, Sean T. "The economics of CO₂ transport by pipeline and storage in saline aquifers and oil reservoirs." (2008) [2] Knoope, M. M. J., et al. "Improved cost models for optimizing CO₂ pipeline configuration for point-to-point pipelines and simple networks." International Journal of Greenhouse Gas Control 22 (2014): 25-46.

[3] SC 20-Internal Corrosion Management. "Guideline for Materials Selection and Corrosion Control for CO₂ Transport and Injection." (2023). [4] Sun, Haofei, et al. "Corrosion challenges in supercritical CO₂ transportation, storage, and utilization—a review." Renewable and Sustainable Energy Reviews 179 (2023): 113292.