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Carbon capture and storage (CCS) relies on the long-term stability of wellbore 
materials like cement and steel casing, which can degrade upon exposure to 
supercritical CO₂ (ScCO₂). We primarily use X-ray micro-computed tomography (µ-
CT) to investigate microstructural changes in steel infused cement sample after 
ScCO₂ exposure for interfacial studies.

Fig (i): Schematic diagram of µ-CT.

PARAMETERS DETAILS
Objective Degradation and reaction front 

studies

Sample Type Steel-infused cement (steel balls : 

27–30 µm)

Cement Type Class G Portland cement

Curing Conditions 3 days at 60 °C

CO₂ Exposure 

Environment

Temperature: 66 °C, Pressure: 

110 bar

Exposure time Up to 100 days

Table1: CO2 exposure conditions.

Reaction front in a steel (27-30 µm) infused cement sample of diameter 1mm after 
exposure to CO2 up to 100days. Yellow circles indicate regions of degraded/carbonated 
cement phases resulting from interaction with ScCO2  

Exposure 

Time/Days

Cement (%) Aggregates (%) Steel balls (%)

0 47 49 4

10 46 50 4

30 38 58 4

100 33 63 4

The above graph illustrates the  X-ray diffraction peaks of unexposed Portland 
cement powder and CO2 exposed steel infused cement sample. 

Cross-sectional Images

Scanning Electron Microscopy

The scanning electron microscopy images reveals that 
C-S-H phases in (v) unexposed Portland cement powder 
and, (vi) CO2 exposed steel infused cement dehydrated 
under high temperatures, forming a flocculent 
structure.
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Fig (iii): Vertical and horizontal cross-sectional segmented 
images of the sample, (iv): Tabulated volumetric analysis of 
the different phases present within the sample.

(iii)

(iv)

Fig (ii) Reaction chamber

A   = Allite (Ca₃SiO₅)
A = Aragonite (CaCO3)
C   = Calcite (CaCO3)

C     = Cuspidine (Ca₈(Si₂O₇)₂F₄)
CH  = Calcium hydroxide (Ca(OH)2)
B     = Brownmillerite (Ca₂(Al,Fe)₂O₅)

❖ µCT analysis of the steel-infused cement revealed progressive phase 
degradation and carbonation from CO₂ exposure, with SEM and XRD providing 
complementary insights into morphological changes and hydration 
compounds.

❖ As part of future work, an electrochemical cell will be developed to evaluate 
corrosion rates. Fig (vii), gives the rough sketch of the cell, which will be 
connected to a Potentiostat and integrated with the CT system for in-situ 
analysis. (The design might be modified based on the requirements)

Fig (Viii): shows the home laboratory 
core flooding setup for precipitation 
studies.

Fig (Vii): Electrochemical cell with three 
electrodes, CO2 inlets/outlets and 
temperature/pressure control systems.

λCu = 1.54Å
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