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• Long-term wellbore integrity with low risk of carbon dioxide (CO2) leakage is the 

key to safe and effective CO2 storage

• CO2 leakage through steel-cement (S-C) system is reported to occur much 

more rapidly than geological leakage through formation rock in a CO2 storage 

reservoir [1]

• Exposure of cement to sCO2 or CO2-bearing brines may lead to carbonation of 

cement, potentially causing cement degradation and corrosion of steel

Degradation Mechanism

Acknowledgements References

• Over extended exposure, due to calcium leaching and C-S-H dissolution, 

porosity increases, and strength reduces

• Initially calcium carbonate precipitation may lead to pore refinement and 

improved mechanical strength 

• Thermodynamic end state of carbonated cement slurry is an assemblage of 

calcium carbonate, gypsum and oxide/ hydroxides of silica, alumina and iron

Research Gaps

• Limited understanding of the effect of high 

temperature (HT) & high pressure (HP) 

curing for longer duration on hydration and 

carbonation kinetics of well cements 

• Contradictory findings on the use of composite 

cements to improve long-term durability [3,4,5]. No 

clear agreement on the practical dosage of mineral 

additives

• No clarity on the effect of carbonation-induced changes on 

permeability and strength of cement

• Lack of representative test methodology to characterise durability 

performance and its relationship to long-term durability

Aim & Objectives

Experimental Plan

Effect of water-saturated sCO2 & sCO2-

saturated brine on integrity of cement and

 S-C interface at simulated wellbore conditions

Preliminary Results

• Evolution of hydration 

products at different 

curing ages (XRD, TGA)

• Hydration kinetics at 

different HT (Isothermal 

calorimetry)

• Carbonation reaction 

products

Hydration & phase 

assemblage 

• Compressive 

strength at 

different curing 

ages and after 

carbonation

• Strength 

retrogression at 

HT (120°C)

Mechanical 

properties
Transport & durability 

properties

• Porosity – before & 

after carbonation (SEM)

• Water Sorptivity

• Bulk resistivity

• Carbonation depth

Corrosion 

performance

• Electrochemical 

sensing technology 

using autoclaves

• Electrochemical 

Impedance 

Spectroscopy (EIS)

• Linear Polarisation 

resistance (LPR)
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• Long-term wellbore integrity with low risk of carbon dioxide (CO2) leakage is 

the key to safe and effective CO2 storage

• CO2 leakage through steel-cement (S-C) system is reported to occur much 

more rapidly than geological leakage through formation rock in a CO2 storage 

reservoir [1]

• Exposure of cement to sCO2 or CO2-bearing brines may lead to carbonation of 

cement, potentially causing cement degradation and corrosion of steel

Degradation Mechanism
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• Over extended exposure, due to calcium leaching 

and C-S-H dissolution, porosity increases, and 

strength reduces

• At early stage, calcium 

carbonate precipitation 

leads to pore refinement 

and improved mechanical 

strength 

• Thermodynamic end state of carbonated cement is 

an assemblage of calcium carbonate and oxide/ 

hydroxides of silica, alumina and iron

Research Gaps

• Studies on effect of high temperature (HT) 

& high pressure (HP) curing on hydration 

and carbonation kinetics of well cements 

are contradictory

• Limited understanding on use of 

composite cements to improve long-term 

durability. No clear agreement on practical 

dosage of mineral additives.

• Contradictory conclusion on the effect of carbonation on 

permeability and strength of cement

• Lack of representative test methodology to characterise durability 

performance
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Test 
conditions

Test 
Temperature:

38°C, 60°C, 80°C 
& 120°C

Curing Pressure: 
Atm. Pressure

Exposure 
Pressure: 80 bar

Environment:

Water-
saturated CO2 & 
CO2-saturated 

brine

Salinity:

3 % NaCl

Mineral 
Additives:

Quartz, silica 
fume, fly ash

Curing 
Duration:

8h, 1d, 7d, 28d

Exposure 
Duration:

28d

Critical Curing conditions1
• Degree of hydration and hydration kinetics

• Phase assemblage

• Mechanical strength

Cement-Environment interaction2
• Physico-chemical changes

• Mechanical strength

• Durability properties

Integrity of S-C interface3
• Corrosion performance in simulated conditions

• Physical and chemical characteristics at the S-C interface

• Bond strength at interface after 6 months of steel corrosion
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