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Background

Degradation Mechanism

Initially calcium carbonate precipitation may lead to pore refinement and

Improved mechanical strength
* Over extended exposure, due to calcium leaching and C-S-H dissolution,

porosity increases, and strength reduces
 Thermodynamic end state of carbonated cement slurry is an assemblage of
calcium carbonate, gypsum and oxide/ hydroxides of silica, alumina and iron

* Long-term wellbore integrity with low risk of carbon dioxide (CO,) leakage is the
key to safe and effective CO, storage

+ CO, leakage through steel-cement (S-C) system is reported to occur much
more rapidly than geological leakage through formation rock in a CO, storage
reservoir [1]

CO,-bearing aqueous solution

* Exposure of cement to sCO, or CO,-bearing brines may lead to carbonation of
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Stes C o | - 1 Critical Curing conditions

» Degree of hydration and hydration kinetics

» Phase assemblage
* Mechanical strength

Cement-Environment interaction

» Physico-chemical changes
* Mechanical strength
» Durability properties

Integrity of S-C interface

« Corrosion performance in simulated conditions
» Physical and chemical characteristics at the S-C interface
» Bond strength at interface after 6 months of steel corrosion

Research Gaps

Limited understanding of the effect of high
temperature (HT) & high pressure (HP)

curing for longer duration on hydration and
carbonation kinetics of well cements

Contradictory findings on the use of composite
cements to improve long-term durability [3,4,5]. No
clear agreement on the practical dosage of mineral
additives

Test
Temperature:

38°C, 60°C, 80°C
i & 120°C
Duration: Curing Pressure:

8h, 1d, 7d, 28d Atm. Pressure

Exposure Exposure
Duration: Pressure: 80 bar

28d

No clarity on the effect of carbonation-induced changes on
nermeability and strength of cement

* Lack of representative test methodology to characterise durability
performance and its relationship to long-term durability

Test
conditions

. Environment:
Mineral

Additives: WEIEES
saturated CO, &

%l;sgtzf,l SI:;(S:E CO, saturated
1Y brine

Salinity:
3 % NacCl

Preliminary Results

Autoclave for tests in
simulated well conditions
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Background Degradation Mechanism
CO,-bearing aqueous solution
arbonic acid formation H,C03aq)
* Long-term wellbore integrity with low risk of carbon dioxide (CO,) leakage is Cb:f* = - Hfozw o,
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strength

* Exposure of cement to sCO, or CO,-bearing brines may lead to carbonation of
cement, potentially causing cement degradation and corrosion of steel

* QOver extended exposure, due to calcium leaching
and C-S-H dissolution, porosity increases, and
strength reduces
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Critical Curing conditions

» Degree of hydration and hydration kinetics
» Phase assemblage
* Mechanical strength

|

Cement-Environment interaction

» Physico-chemical changes
» Mechanical strength
 Durability properties

I

Research Gaps

« Studies on effect of high temperature (HT)
& high pressure (HP) curing on hydration
and carbonation kinetics of well cements
are contradictory

3 Integrity of S-C interface

» Corrosion performance in simulated conditions
» Physical and chemical characteristics at the S-C interface
» Bond strength at interface after 6 months of steel corrosion

« Limited understanding on use of

composite cements to improve long-term . D EXperimental Plan

durability. No clear agreement on practical
dosage of mineral additives.

Test
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38°C, 60°C, 80°C
« Contradictory conclusion on the effect of carbonation on & 120°C

Duration: Curing Pressure:

nermeability and strength of cement gh, 1d, 7d, 28d Atm. Pressure

Exposure Exposure
Duration: Pressure: 80 bar

28d

« Lack of representative test methodology to characterise durability
performance

Test
conditions

. Environment:
Mineral
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saturated CO, &

CO,-saturated
brine

Quartz, silica
fume, fly ash

Preliminary Results

Salinity:
3 % NaCl
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FIGURE 3. Schematic showing the dissolution and calcium migration
and formation of distinct zones in the cement. Equation numbers
refer to chemical reactions that occur at each front as detailed in
the text. Note: in the cement structure, local pH is buffered by
Camgm and CBIOH)HS].

Critical Curing conditions

* Degree of hydration and hydration kinetics
* Phase assemblage
* Mechanical strength

Cement-Environment interaction

* Physico-chemical changes
* Mechanical strength
* Durabillity properties

Integrity of S-C interface

» Corrosion performance in simulated conditions
* Physical and chemical characteristics at the S-C interface
* Bond strength at interface after 6 months of steel corrosion
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Duration:

28d
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