

Reducing the impact of chemicals and solvents for efficient future CCS systems

Md Sakib Hossain*, Richard Barker, Harvey Thompson, Timothy Cockerill

School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK

*Email: M.Hossain@leeds.ac.uk

Date of Commencement: 01.02.2025

UNIVERSITY OF LEEDS

1. Project Introduction and Scope

- Carbon Capture and Storage (CCS) is vital for reducing CO_2 emissions in hard to abate industries, e.g., power sector
- Solvents and chemicals used in the CCS systems possess significant environmental burdens, i.e., needs holistic optimization
- A novel framework combining Life Cycle Assessment (LCA) and Techno-Economic Analysis (TEA) with multi-objective optimization enables the reduction of CCS environmental impacts without significantly affecting cost or performance

2. Aims and Objectives

Project Aim: Minimizing the environmental impacts of chemicals in amine-based post-combustion CCS (PC-CCS) systems while ensuring cost-effectiveness, efficiency, and sustainability across the process chain.

Project Objectives:

Storage/Distribution Source of Flue Gas CO₂ capture plant **Transportation** CO₂ storage/conversion e.g., Fossil-fired Long distance via Capture and to useful chemicals/fuel shipping/pipeline power plant compression Flue gas **Levelized Capture Cost Levelized Supply Cost** LCA Impacts at Capture LCA Impacts at Supply

3. Placement of the Project in the MISSION-CCS Network

4. Progress to Date: A TEA and CO₂ Emissions-Driven Optimization Model of Monoethanolamine (MEA)-Based CCS Absorber

4.1. Novelty

- Integrates design with sustainability by combining absorber sizing, cost, and global warming potential (GWP) analysis into a single early-stage decision tool
- Enhances realism using packing-specific mass transfer and material-related CO₂ emissions
- Enables trade-off analysis through multiobjective optimization across cost, emissions, energy, and capture performance

4.2. Methodology

4.3. NSGA - II Optimizer Set-up

Set-up using the Pymoo library in Python

Optimizer Section	Parameter	Range/Comments	Unit
Input Variable	Lean CO ₂ loading	0.15 - 0.25	mol/mol
	MEA concentration	20 - 40	%
	Capture efficiency	85 - 99	%
	Absorber temp.	40 - 60	°C
Optimization Objectives	Absorber cost (PEC)	USD (2023)	MUSD
	CO ₂ emissions	-	ktons _{CO2}
	Reboiler energy	-	MJ/kmol
	Capture efficiency	-	%
Constraint	Rich CO ₂ loading	<=0.45	mol/mol

5. Sample Results with Mellapak 250.Y Packing

- Results for 1,000 tons/h flue gas flow with 4.22% CO₂ (mol) from a natural gas power plant
- Higher capture efficiency (>95%) increases absorber size, costs and emissions significantly
- Min reboiler energy scenario has significant potential of cost savings via reduced utilities demand

6. Conclusion and Outlook

- Absorber model captures trade-offs in cost, energy, efficiency, and emissions using packing-specific parameters
- Holistic CCS model under development including capture, compression and drying, transportation and storage
- Hourly and part-load simulations planned to reflect realworld operation dynamics
- Solvent degradation and emissions from additional chemicals to be included in extended LCA modelling
- Future work targets dynamic prospective TEA and LCA for system-level trade-off analysis under several scenarios

Acknowledgements

The authors would like to acknowledge funding provided via the European Commission's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement ID: 101118369, Material Science Innovation for Accelerated, Sustainable and Safe Implementation of Carbon Capture and Storage (MISSION-CCS).

References

[1] Y. Wang, X. Xu, R. Idem, and P. Tontiwachwuthikul, "Investigation of CO₂ Absorption in a Packed Column Reactor Using Aqueous MEA: Model Development and Validation," Ind. Eng. Chem. Res., vol. 45, no. 8, pp. 2465–2474, 2006, doi: 10.1021/ie050998p.

[2] D. Flagiello, A. Parisi, A. Lancia, and F. Di Natale, "A Review on Gas-Liquid Mass Transfer Coefficients in Packed-Bed Columns," ChemEngineering, vol. 5, no. 3, Art. no. 43, Aug. 2021, doi: 10.3390/chemengineering5030043.

[3] R. H. Weiland, J. C. Dingman, D. B. Cronin, and G. J. Browning, "Density and Viscosity of Some Partially Carbonated Aqueous

[3] R. H. Weiland, J. C. Dingman, D. B. Cronin, and G. J. Browning, "Density and Viscosity of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends," J. Chem. Eng. Data, vol. 43, no. 3, pp. 378–382, 1998, doi: 10.1021/je970204m