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ABSTRACT 

Fluid conveying pipelines form a fundamental part of modern industry. Pipework 

comprises a large part of many safety critical infrastructure.  Flow induced vibrations, 

cause up to 15% of all piping failures and are responsible for over 20% of offshore oil 

and gas spillages. Consequently, vibration induced piping failures have resulted in 

large economic losses and have also had a significant environmental impact.  

This project set out to develop a means of analysing flow induced vibrations in piping 

systems and to investigate how the vibrations can be mitigated . Firstly a critical review 

of the literature was done to identify the fundamental mechanisms and to review the 

methods that have been used to investigate the problem. The literature review showed 

that computational modelling is the most efficient way of investigating flow induced 

vibrations. It was also found that in previous studies there had been no attempt to use 

the finite difference method to develop a model for the computation the natural 

frequencies and the critical velocity.   

Based on literature findings a suitable mathematical model was established. The finite 

difference method was then used to create model flow induced vibrations for straight 

pipe, clamped at both ends , with internal steady fluid flow. Using this modelling 

approach the critical velocities, natural frequencies and amplitude of vibration were 

obtained. Parametric studies were also carried out to investigate the influence of pipe 

and fluid physical characteristics on the stability of the system and the vibration 

behaviour.  

The findings revealed that the finite difference method predicted the critical velocity 

accurately with a magnitude of error less than 1%. Thus confirming that the novel 

approach used is valid and reliable. The project also concluded that the susceptibility 

of the pipe system to vibration induced failure can be reduced by increasing the pipe 

flexural rigidity, reducing the ratio of fluid mass to pipe mass, reducing the support 

spacing and maintaining a margin from the critical flow velocity.   
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1 Introduction 

1.1 Introduction  

Pipelines conveying fluids constitute a significant part of modern industry. Fluid flow is 

fundamental to chemical processing, power generation and transportation of essential 

commodities such as oil and gas. These industrial processes are safety critical 

because system failures can lead to the spillage of fluids which are detrimental to 

human health and the environment [1]. Furthermore, the failure of pipelines during 

operation results in economic loss [2] due to permanent loss of valuable fluid, cost of 

repair and lost production time. The foregoing clearly indicates the need to identify and 

address the root causes of failure in piping systems. 

The vibration induced fatigue failure has been identified as one of the most common 

causes of failure in piping systems, accounting for over 15% of all piping failures in 

Western Europe [1,3]. The UK Government Health and Safety Executive [3] has 

reported that piping fatigue failure caused by vibrations has led to over 20% of oil and 

gas leakages in offshore operations. Consequently, the vibration of piping has become 

a major area of focus for pipeline designers and operators.  

In many commercial applications of fluid flow the system output is directly proportional 

to the fluid flow rates that can be achieved. This means that operators aim to operate 

at the highest possible fluid flow velocities to maximise production and profits. On the 

other hand, high fluid velocities are associated with more severe vibrations [4,5] and 

consequently higher pipe failure rates. Hence it is paramount to be able to identify the 

safe and optimal operating ranges for a piping system. 

Studies [4,5]  have shown that flow induced vibrations can occur under a wide variety 

of flow regimes even when there is steady fluid flow without any turbulent flow or 

multiphase fluid flow. Vibration of pipelines conveying fluids comes about as a result 

of the interaction between a fluid and structural component [6]. As a result, flow induced 

vibrations in piping systems are influenced by the physical and structural properties of 

both the fluid and the pipe. This interaction brings about complex behaviour which has 

called for the development specialised methods and tools for the   analysis of flow 

induced vibrations.   

It has been reported [3] that one of the main design issues leading to the failure of 

piping is failure to have sufficient support for the pipeline leading to severe vibrations 

which then induced fatigue failure. This clearly shows that flow induced vibration of 

pipelines needs to be considered during design of piping systems as engineers need 
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to demonstrate that the piping systems they intend to build and operate can be 

operated safely.  

It is evident that flow induced vibrations continue to be a cause for concern and that 

the mitigation of this flow induced vibrations in piping systems will lead to significant 

reduction in piping failure rates. The ability to predict and hence mitigate vibrations in 

pipelines reduces downtime, saves costs, improves safety and protects the 

environment.  

1.2 Aim  

The aim of the project was to model and analyse flow induced vibrations for a straight 

pipe line with fixed supports internal fluid flow using computational methods and 

investigate how the stability is influenced by the pipe and fluid parameters. 

1.3 Objectives 

To achieve this aim the following objectives were set for the project 

1. Conduct a critical literature review on flow induced vibrations in piping systems 

2. Develop and validate a computational model for the modelling and analysis  

flow induced vibrations in piping with fixed supports  

3. Predict the natural frequencies of the pipe with internal fluid flow 

4. Predict the critical velocity for pipe instability due to flow induced vibration 

5. Predict the amplitude of vibrations  

6. Conduct parametric studies to establish how the vibration characteristics and 

the critical velocity are influenced by pipe supports, rigidity of the pipe, pipe and 

fluid densities and fluid flow velocity 

1.4 Report Layout 

Chapter 2 presents a review of the literature which was carried out to gain an 

understanding of the physics of flow induced vibrations, methods that have been used 

to analyse the vibrations and to identify research gaps whose closure may lead to 

better management of the problem. Following the identification of the mechanisms and 

the mathematical models of flow induced vibrations, in Chapter 3 the development and 

verification of a finite differences based computational model for the flow induced 

vibrations is outlined. Chapter 4 then presents the validation of the models and the 

parametric studies carried out to investigate the influence of various pipe and fluid 

parameters on the stability of the system and the vibration characteristics. Finally, 

Chapter 5 presents the a summary of the main findings and the conclusions that were 

drawn from the project results.  
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2 Literature Review 

2.1 Introduction 

This chapter provides the fundamentals concepts of flow induced vibrations by 

presenting the mechanisms of flow induced vibrations and how unstable vibrations 

develop. The mathematical representation of the problem is also discussed. An 

analysis of the different approaches that have been used to investigate flow induced 

vibrations. Finally a brief discussion is made on some of the key findings that had  

relevant implications to this project.   

2.2 Fluid Structure Interaction 

Flow induced vibrations in piping systems come about as a result of a phenomenon 

called fluid-structure interaction (FSI). FSI occurs when a fluid flows inside deformable 

structure causing geometric changes or vibrations and then these deformations or 

vibrations then in turn influence the fluid flow characteristics [5,6]. As a result there is 

an interplay between the fluid forces and structural forces. This means that flow 

induced vibrations in piping are influenced by the physical parameters of both the pipe 

and the fluid.   

Vibrations caused by fluid structure interaction are classified according to the type of 

fluid flow and the nature of interaction between the fluid and the structure. Figure 2.1 

shows the classes of vibration mechanisms according to fluid phase type, steadiness 

of flow and nature of flow field.   

 

Figure 2.1 :Classification of Fluid Structure Interaction Problems [5] 

It can be observed from Figure 2.1 that flow induced vibrations can occur under any 

type of flow even in steady flow. This means that flow induced vibrations cannot be out 

ruled on the basis of the type of flow since the vibrations can occur irrespective of the 
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type of flow.  However the driving forces for the vibrations will depend on the specific 

mechanism of vibration [5]. In their comprehensive meta-analysis of flow induced 

vibrations Kaneko et al [5] pointed out that more than one mechanism of vibration may 

be involved in a particular case. Therefore when modelling flow induced vibrations the 

mechanisms of vibration have to be identified correctly so that the appropriate physical 

parameters can be considered in the model, otherwise the model will not be a true 

representation of the case under investigation. 

2.3 Vibration of Pipes  

Flow induced vibrations in piping conveying steady fluid flow takes the form of lateral 

vibrations [6] such that the vibration motion is perpendicular to the direction of the flow 

of fluid. In many respects, the vibration of fluid conveying piping is similar to the 

vibration of structural beams. The main difference is that for a fluid conveying pipe the 

vibrations are also affected by the stiffness of the fluid in addition to the structural 

stiffness. The fluid introduces a negative stiffness [4], which increases with the fluid 

flow velocity and affects the stability of the piping system even without an external 

exciting force [5] .This is the main source of complexity in the problem because it 

results in the vibration characteristics that change with the fluid flow velocity.   

2.4 Mathematical Model of Flow Induced Vibrations 

2.4.1 The equation of motion 

The general equation of motion for the lateral vibrations of a pipe carrying a fluid has 

been derived by various researchers using two approaches namely the Hamiltonian 

approach and the Newtonian approach. In the Hamiltonian approach [6–9] the 

equations of motion are obtained by considering the kinetic energy and potential 

energy of the system. In the Newtonian approach [6,10] the equation of motion is 

derived by considering the forces and resultant motions. Both derivation approaches 

yield the same basic equation of motion. Given that the equation has been derived by 

different researchers and using two distinct methods, it can be concluded that it has 

been established as the standard basic model equation for flow induced lateral 

vibrations in straight pipelines with internal fluid flow.  

 

Figure 2.2 :Straight pipe system with supported ends 
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The equation of motion for a pipe or section of pipe held by some support systems as 

shown in Figure 2.2 is 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4 + 𝑚𝑓𝑉
2 𝜕2𝑦

𝜕𝑥2 + 2𝑚𝑓𝑉
𝜕2𝑦

𝜕𝑥𝜕𝑡
+ (𝑚𝑓 + 𝑚𝑝)

𝜕2𝑦

𝜕𝑡2 = 0   (2.1) 

Where 𝑦 is the lateral displacement of the pipe, 𝐸 is the elastic modulus of the pipe 

material, 𝐼 is the moment of inertia of the pipe , 𝑚𝑝 is the mass of the pipe per unit 

length, 𝑚𝑓 is the mass of the fluid per unit length,  𝑉 is the mean velocity of the fluid 

flowing inside the pipe.  

The first term in the equation,𝐸𝐼
𝜕4𝑦

𝜕𝑥4, represents the flexural restoring force. The second 

term,  𝑚𝑓𝑉
2 𝜕2𝑦

𝜕𝑥2 , represents the centrifugal force due fluid flow in the curved pipe. The 

third term, 2𝑚𝑓𝑉
𝜕2𝑦

𝜕𝑥𝜕𝑡
 , represents the Coriolis forces which come about as a result of 

the relative motion of the pipe and the fluid. The last term, (𝑚𝑓 + 𝑚𝑝)
𝜕2𝑦

𝜕𝑡2 , represents 

the  inertial force of the pipe and fluid system. 

2.4.2 Modelling Assumptions 

In the derivation of the mathematical model the assumptions  used are  i) the pipe 

behaves like a purely elastic beam [11] meaning that the Young’s Modulus is constant 

ii) the pipe is slender [6] which implies that the amplitude of vibration is small compared 

to the length, iii) the fluid flow is fully developed [6] and iv) the fluid is incompressible[6]. 

These assumptions help to identify the limitations of the model because once an 

assumption is violated the model may no longer be valid.   

Although the fluid is not idealised as inviscid, the equation does not have any term with 

a viscosity coefficient. Païdoussis [4] has shown that the friction forces on the pipe-

fluid interface ,which are caused by fluid viscosity, and the pressure loss due to the 

internal fluid friction, also caused by the viscosity of the fluid, cancel out each other. As 

a result, the viscosity dependent frictional effects do not have an influence on the 

vibration dynamics of the pipe. Hence there are no terms with the fluid viscosity in the 

equation of motion.   

2.4.3 The Coriolis force term 

In order to further simplify the mathematical model some researchers [10,12] have 

neglected the Coriolis force term totally from the equation of motion. Uduetok [10] 

derived the equation of motion without the Coriolis force term and used it to obtain the 

natural frequencies for simply supported and clamped pipes. The results obtained had 

a good agreement with experimental data. Yi min et al [12] also investigated the effect 
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of neglecting the Coriolis force in the solution of flow induced vibrations in piping 

systems. Figures 2.3 show the percentage error in the predicted first and second 

natural frequency generated by neglecting the Coriolis force term. It can be observed 

that for a fluid flow velocity range of 0-90 m/s the error was less than 3%. However, 

there was no attempt to investigate the resultant error in the predictions of critical flow 

velocity such a model where the Coriolis force has been neglected.   

 

Figure 2.3 : Error magnitude in natural frequencies from model without Coriolis force term [12] 

The Coriolis forces, while they have an influence on the dynamics of the pipe, do not 

do any actual work in the system [6]. This offers a plausible explanation for why the 

Coriolis forces may be neglected and only a small error is generated in the predicted 

natural frequency.  This is significant because for many engineering applications a 

small magnitude of error is acceptable since safety factors are normally applied. The 

major advantage of a simplified model, especially in this case where the simplification 

involves neglecting a mixed derivative term, is that it reduces the computational effort. 

2.5 Influence of pipe support type and configuration 

The dynamics of the flow induced vibrations are also influenced by the type of pipe 

support configuration [5]. The piping support configurations fall into following major 

classifications: 1) both ends fixed (clamped-clamped support), 2) both ends simply 

supported (pinned-pinned support) ,3) one end simply supported with the other fixed 

(pinned-clamped), 4) one end fixed with the other free (cantilevered) [4,13] 

The supports mark the boundary of the pipe domain with unique vibration 

characteristics and therefore the boundary conditions are determined by the support 

type. Since the system is modelled by a partial differential equation who solution is 

determined by the boundary conditions it follows that the vibration characteristics of 
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the pipe will be different for each type support configuration. Studies [11,13] have 

proven that pipe systems with the same fluid flow, pipe material, pipe span length, pipe 

thickness and diameter but different support types have different natural frequencies 

and critical velocities.  

 

Figure 2.4 : Effect of pipe support configuration on the frequency of vibration [13] 

Figure 2.4 shows that for piping systems with the same pipe and fluid parameters but 

different pipe end support configurations, have different frequencies of vibration at the 

same fluid flow velocity. Therefore demonstrating the significance of the support 

configuration in analysis of the flow induced vibrations.   

2.6 Vibration instabilities in pipelines 

The stability of a system is determined by the behaviour of the vibration amplitude. 

When the magnitude of vibration is constant a system is said to be undergoing stable 

vibrations whereas when the magnitude of vibration is growing with time the system 

will be undergoing unstable vibrations [14]. This implies that, while any vibration is 

generally undesirable for any structure, unstable vibrations are the most undesirable 

because they lead to large deformations and eventually failure.   

The stability of piping systems with internal fluid flow has been a major point of study. 

Research has shown that flow induced vibrations in piping systems are stable within a 

finite range of flow velocity [4,5]. The fluid flow velocity where the pipe becomes 

unstable is known as the critical flow velocity. Two types of instabilities have been 

observed in flow induced vibrations namely divergence and flutter [6]. Divergence 

which is an instability whereby the vibration amplitude increases without oscillations as 

shown in Figure 2.5. On the other hand, in flutter instability the amplitude increases 

with oscillations as shown in Figure 2.5  
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Figure 2.5 :Divergence and Flutter Instabilities [14] 

A pipe with clamped ends first loses stability by divergence and then with sufficient  

increase in fluid flow velocity it will then transition to flutter[6]. Figure 2.6 showing the 

map of the instabilities plotted against a dimensionless fluid velocity parameter, 𝑢 and 

the ratio of mass of fluid to total system mass, 𝛽, demonstrates the foregoing. The 

natural frequencies of the pipe system are used to determine its state of stability. the 

pipe first becomes unstable when the first mode natural frequency becomes zero [5]. 

It has also been observed that after this point the natural frequency becomes complex 

[6]. Therefore the fluid flow velocity which results in the first natural frequency 

becoming zero is the critical velocity at which the pipe becomes unstable. 

 

Figure 2.6 : Map of Instabilities for clamped pipes [6] 

In a theoretical analysis of the physical interpretation of instabilities in flow induced 

vibrations, Païdoussis [6] concluded that the stability depends on the relative 

magnitude of the centrifugal forces and the flexural restoring forces. The centrifugal 

forces increase with fluid velocity. When the centrifugal forces become large enough 

to overcome the flexural restoring force divergence instability then take place[6]. This 

is significant because it provides a physical interpretation of the mechanism by which 

the transition from stable state to unstable state occurs. 
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2.7 Analysis of flow induced vibrations in piping 

Various aspects of flow induced vibrations in piping systems have been studied and 

analysed using four classes of methods. These classes are experimental methods, 

analytical methods, modelling using multipurpose software packages and modelling 

using custom numerical methods. This section provides a summary of how these 

approaches been implemented and some of the key findings made.  

2.7.1 Experimental approach 

Experimental investigations were used in the early days of flow induced vibrations 

research to validate the findings which had been reached from theoretical analysis. 

Experimental work by Long [15] and Dodds [16] established that pipes do transition 

from a stable state to divergent vibration at some critical velocity and that severe 

vibrations can lead to permanent deformation of the pipe.  In recent years experimental 

analysis of flow induced vibrations has typically been employed when the underlying 

mechanism of vibration cannot be established or when there is no access to numerical 

modelling tools [5] .When the underlying mechanisms are not known it is not possible 

to develop a mathematical model. Hence physical experimentation becomes the 

default option. An example of an experimental setup is shown in Figure 2.7 from a 

study by Khot et al [17] where the vibration data was collected using an accelerometer 

and the frequency response obtained using a Fast Fourier Transfer Analyser.     

 

Figure 2.7 :Experimental setup for flow induced vibrations [17] 

There are two particularly significant challenges with experimental analysis of flow 

induced vibrations. The first is that it the vibrations can become violent [6] such that 

beyond certain fluid velocities the error in measurements can be very large. Secondly, 

it has been reported that material and geometric imperfections of the particular test 
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pipe sections can cause the premature instability [6]  which may lead to misleading 

conclusions about the general vibration behaviour of a whole class of pipe systems. 

2.7.2 Analytical approximation approach  

In one of the earliest studies on flow induced vibrations, Housner [7] adopted an 

analytical approach where the equation of motion for flow induced vibrations was 

compared with that of a vibrating beam, to derive an expression for the natural 

frequency of a pipe with fluid flow from the already known natural frequency of a 

vibrating beam. In a recent study, the analytical approach was used by Udeotok [10] 

to find the natural frequencies and the amplitude of vibration for simply supported and 

clamped pipe systems. The approach involved making simplifying assumptions to 

obtain simpler mathematical equations for the flow induced vibrations. These simpler 

equations were then solved analytically. An evident limitation of the analytical approach 

from these studies [7,10] is that only the first mode natural frequency could be found, 

whereas in practical applications a knowledge of the other higher modes may be 

required especially when the pipe system is connected to high-speed rotating 

equipment whose frequencies may excite the higher modes of vibration.  

2.7.3 Commercial multipurpose packages  

One of the approaches used in flow induced vibration studies[17,18] is the use of 

commercial multipurpose software packages. In this approach the fluid domain is 

solved by a fluid dynamics solver and the structural domain is solved by a structural 

mechanics solver [5]. In an investigation of the frequency and amplitude of vibration 

for a simply supported pipe, Khot et al [17] utilised ANSYS©  to first solve the fluid 

domain and obtain the dynamic pressure. The pressure filed results obtained were 

then used as an input in the structural analysis of the pipe. In contrast, to the manual 

transfer of data between fluid and structural solver as done in the study by Khot et al 

[17], some commercial multipurpose packages have an inbuilt coupling between the 

fluid and structure solvers [5] as shown in Table 2.1 

Table 2.1 : Examples of software packages used for fluid structure interaction problems [5] 
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The major disadvantage with the use of the commercial multipurpose packages for 

flow induced vibrations in piping is that the fluid solvers perform a calculation for the 

whole fluid domain whereas for this problem only the fluid forces acting on the structure 

at the interface of the pipe with the fluid are needed [6]. The calculation of forces 

throughout the fluid domain may be necessary and worth the cost when complex 

structural geometries are involved, however pipelines have simple geometries. Hence 

the high computational cost may not be worth the simplicity of the domain.  

2.7.4 Custom numerical methods 

Unlike the multipurpose solvers, the custom numerical solvers are developed 

specifically for the problem of flow induced vibrations. This is the approach whereby 

the flow induced vibrations are modelled using differential equations and then solved 

using numerical techniques. The literature shows this to be the most commonly used 

approach.  

The finite element method (FEM) had been used in many studies [11,13,19–22] to 

investigate flow induced vibrations. A study by Mohammed et al [19] used the method 

to investigate the effect of having an additional spring support within the span of a 

simply supported pipe. in the study it was observed that the natural frequency 

increases nonlinearly the spring constant and that for the same spring constant the 

frequency varies with the location of the location of the spring along the span of the 

pipe. These nonlinear behaviours were also observed by Sugiyama et al [23] in their 

experimental study of the effect of spring supports on cantilevered pipes. This shows 

the finite element methods ability to deal with nonlinearities and could be one of the 

reasons why it has been used more widely.  

Grant [20] also implemented the finite element analysis to find the vibration frequencies 

and subsequently the critical velocity for a uniform thickness pipe and a tapered pipe 

with reducing thickness. The dimensions of the tapered pipe were chosen such that 

the two cases had equal mass of pipe material. Interestingly, the results showed that 

the tapered pipe had a higher critical velocity, hence better stability, than the pipe with 

uniform thickness. This finding may be particularly useful for shape optimisation in 

some piping applications.  

In a study by Lee and Park [8] the spectral element method (SEM) was used to model 

flow induced vibrations in piping caused by unsteady fluid flow. Another study by Lee 

and Oh [24] also used the spectral element method to investigate vibrations caused by 

steady fluid flow. In both studies [8,24] it was noted that one of the major differences 

between the spectral element method and the finite element method is that in the in 
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finite element method the pipe must be discretised into many elements whereas with 

the spectral element method there is no need to discretise the pipe no matter its length 

.This may mean that  SEM has less computational cost. The forementioned difference 

in the discretisation requirements is not conclusive evidence that SEM has less 

computational requirements because the SEM also depends on the number of spectral 

elements used. In both the Lee and Park [8] and the Lee and Oh [24]  studies, there 

was no investigation on the effect of the number of spectral elements on the resolution 

and computational cost.   

The SEM was also used in study by Lee et al [25] to investigate the effect of nonlinear 

behaviour of the pipe material. The vibration behaviour of viscoelastic material, a 

viscosity coefficient, η = 250 kg/m*s, was compared to that of purely elastic material, 

that is with no viscous effects, η =0 kg/m*s. Figure 2.8 shows the time response of the 

vibration amplitude obtained from this study.  

 

Figure 2.8 : Vibration response comparison of purely elastic and viscoelastic pipe [25] 

The results presented in Figure 2.8 show that the viscoelasticity had an effect of 

damping the amplitude of vibration as time progressed, whereas there was negligible 

difference in the frequency of vibration between the two material models. 

Consequently, the critical flow velocity was also the same. This suggests that the 

damping effects of the viscoelasticity do not play a significant role on the limits of 

stability of a pipe with internal fluid flow since the stability is determined by the 

frequency.  

The Galerkin method was used by Yi min et al [12] to investigate the effect of the 

boundary conditions on the natural frequency. The expressions for the first natural 

frequency derived in this study, show the order in which the natural frequency 

decreases. The natural frequency is highest when both ends are fixed, followed by 
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when one end is fixed and the other simply supported, then by the case when both end 

are simply supported and lastly, it is lowest for the cantilevered pipe. This ordering is 

consistent with the results obtained from another study [13] where the finite element 

method was used to calculate the natural frequencies for the same set of boundary 

conditions. 

The finite differences method was used in a study by Gorman et al [26] to find the 

amplitude of vibration, hydrodynamic pressure, and flow velocities for a simply 

supported pipe with pulsating fluid flow. The study did not outline how the natural 

frequencies and critical velocities can be found using the finite difference method. The 

use of the finite difference method to find the natural frequencies and critical velocities 

was not found in the currently available literature. 

2.8 Discussion and conclusion  

The fundamental physics and mathematical representations of flow induced vibrations 

have been reviewed. The unstable vibration of pipes occurs when a specific critical 

velocity is exceed. This critical velocity is mutually influenced by various physical and 

geometric properties of the pipe and the fluid. It is therefore important to consider how 

these properties can be modelled when investigating flow induced vibrations. 

Although the mathematical model for flow induced vibrations has mainly been used in 

its full form, there is evidence to suggest that the mathematical model can be simplified 

by neglecting the Coriolis force term without a significant compromise on the accuracy 

of the model. This is significant because, this eliminates the only mixed derivate terms 

and could mean that a wider range of methods can used to create computational 

models. At the same time it may be an efficient means of reducing computational cost 

for the commonly used methods  

Direct and customised numerical modelling is the most efficient way of investigating 

flow induced vibrations in piping systems with steady fluid flow. In the literature this 

approach is more common than the experimental approach , analytical approach and 

use of multipurpose software packages. Amongst the methods used for direct 

numerical modelling of flow induced vibrations, the finite element method has been  

the most widely used. Although various methods have been developed implementing 

different numerical techniques, little attention has been given to the finite differences 

method.   
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3 Finite Difference Modelling of Flow Induced Vibrations 

3.1 Introduction 

This chapter describes the computational modelling of flow induced vibrations of a 

straight pipe with internal steady fluid flow using the finite difference method. A  

mathematical model is selected based on findings from the literature review. The finite 

difference method is then used to model the system so as to obtain the natural 

frequencies of vibration, the critical velocity and the vibration amplitude. 

3.2 Mathematical Model  

The simplified mathematical model, with the Coriolis force term neglected was selected 

because the model has been used to produce solutions with an error of less than 3% 

as highlighted in the literature review (Chapter 2). The elimination of the mixed 

derivative, Coriolis force term also reduces the modelling and computational effort. The 

equation of motion for this model is given below 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4 + 𝑚𝑓𝑉
2 𝜕2𝑦

𝜕𝑥2 + (𝑚𝑓 + 𝑚𝑝)
𝜕2𝑦

𝜕𝑡2 = 0          (3.1) 

The boundary conditions are obtained from the nature of end supports. The case 

investigated was that of the pipe with fixed ends as shown in Figure 3.1. This means 

that at each pipe support the displacement of the pipe, 𝑦(𝑥, 𝑡) is always zero. This also 

implies that at this point the rate of change of vibration amplitude at this point is also 

zero.  

 

Figure 3.1 : Pipe with clamped ends showing the boundary conditions imposed by the clamps 

3.3 Discretisation and Solution Approach 

The finite difference method was used to represent the continuous pipe system as a 

discrete system.  The uniform discretisation approach was used for the time and spatial 

domains as shown in Figure 3.2. The discrete domains constituted of a finite number 

of equidistant nodes. The finite difference approximations were then applied at these 

discrete nodes.  
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Figure 3.2 : Uniform spatial discretisation of the pipe system using nodes 

The truncated Taylor series based second order centred finite difference 

approximations were utilized. The general expressions for the finite difference 

approximations to the second and fourth derivatives of a function, 𝑓(ℎ) with respect to 

a variable, ℎ , with a uniform discretisation in ℎ, are provided below  

𝑑2𝑓

𝑑ℎ2
=

𝑓𝑛−1−2𝑓𝑛+𝑓𝑛+1

∆ℎ2
        (3.2) 

𝑑4𝑓

𝑑ℎ4
=

𝑓𝑛−2−4𝑓𝑛−1+6𝑓𝑛−4𝑓𝑛+1+𝑓𝑛+2

∆ℎ4
    (3.3) 

Where 𝑓𝑛 is the approximate value of  function 𝑓 at node 𝑛 and ∆ℎ is the node spacing. 

3.4 Computation of Natural Frequency 

Since the equation of motion varies in both space and time, the method of separation 

of variables was used, to obtain an equation in space from which the natural frequency 

was then computed using the finite difference method. This approach has been used 

successfully in the vibration analysis of other continuous systems such as solid 

beams[14]. 

Using the standard approach to separate the variables, the solution 𝑦(𝑥, 𝑡), was 

assumed to be a product of two functions, one function dependent only on spatial 

position, x and the other dependent only on the time, t such that 

𝑦(𝑥, 𝑡) = 𝑌(𝑥)𝑇(𝑡)            (3.4) 

The second and fourth derivatives in space and the second derivative in time were 

then obtained as 

𝜕2𝑦

𝜕𝑥2 = 
𝑑2𝑌

𝑑𝑥2 𝑇 (3.5)         
𝜕4𝑦

𝜕𝑥4 = 
𝑑4𝑌

𝑑𝑥4 𝑇 (3.6)        
𝜕2𝑦

𝜕𝑡2 = 
𝑑2𝑇

𝑑𝑡2 𝑌  (3.7) 

The derivative expressions, 3.5, 3.6 and 3.7 were substituted into equation 3.1 and the 

resulting equation further simplified as follows  

𝐸𝐼
𝑑4𝑌

𝑑𝑥4 𝑇 + 𝑚𝑓𝑉
2 𝑑2𝑌

𝑑𝑥2 𝑇 + (𝑚𝑓 + 𝑚𝑝)
𝑑2𝑇

𝑑𝑡2 𝑌 = 0  

𝑇 (𝐸𝐼
𝑑4𝑌

𝑑𝑥4 + 𝑚𝑓𝑉
2 𝑑2𝑌

𝑑𝑥2) = −(𝑚𝑓 + 𝑚𝑝)𝑌
𝑑2𝑇

𝑑𝑡2   
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1

(𝑚𝑓+𝑚𝑝)𝑌
(𝐸𝐼

𝑑4𝑌

𝑑𝑥4 + 𝑚𝑓𝑉
2 𝑑2𝑌

𝑑𝑥2) = −
1

𝑇

𝑑2𝑇

𝑑𝑡2              (3.8) 

The left hand side of equation 3.3 depends only on 𝑥 and the right hand side depends 

only on 𝑡, therefore, their common value can only be a constant.  

1

(𝑚𝑓+𝑚𝑝)𝑌
(𝐸𝐼

𝑑4𝑌

𝑑𝑥4
+ 𝑚𝑓𝑉

2 𝑑2𝑌

𝑑𝑥2
) = −

1

𝑇

𝜕2𝑇

𝜕𝑡2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝜆  (3.9) 

Two separate ordinary differential equations were then obtained from Equation 3.9, 

one involving 𝑥 and 𝑌(𝑥) and the other 𝑡 and 𝑇(𝑡). The two equations obtained are  

1

(𝑚𝑓+𝑚𝑝)𝑌
(𝐸𝐼

𝑑4𝑌

𝑑𝑥4 + 𝑚𝑓𝑉
2 𝑑2𝑌

𝑑𝑥2) = 𝜆           (3.10) 

−
1

𝑇

𝑑2𝑇

𝑑𝑡2 = 𝜆       (3.11) 

A rearrangement of Equation 3.4 gives the following equation  

(
𝐸𝐼

𝑚𝑡𝑜𝑡
)

𝑑4𝑌

𝑑𝑥4 + (
𝑚𝑓𝑉2

𝑚𝑡𝑜𝑡
)

𝑑2𝑌

𝑑𝑥2 − 𝜆𝑌 = 0     (3.12) 

Where  𝑚𝑡𝑜𝑡 = 𝑚𝑓 + 𝑚𝑝 

A uniform discretisation of the spatial domain was then applied. The finite difference 

approximations of the derivatives at the N node points of the discretised system were 

then applied  to Equation 3.12 to obtain the following 

(
𝐸𝐼

𝑚𝑡𝑜𝑡
)

𝑌𝑖−2−4𝑌𝑖−1+6𝑌𝑖−4𝑌𝑖+1+𝑌𝑖+2

∆𝑥4 + (
𝑚𝑓𝑉2

𝑚𝑡𝑜𝑡
)

𝑌𝑖−1−2𝑌𝑖+𝑌𝑖+1

∆𝑥2 − 𝜆𝑌𝑖 = 0    (3.13) 

Let 𝑎 =
𝐸𝐼

𝑚𝑡𝑜𝑡∆𝑥4 and 𝑏 =
𝑚𝑓𝑉2

𝑚𝑡𝑜𝑡∆𝑥2 and simplifying the equation yields  

𝑎𝑌𝑖−2 − 4𝑎𝑌𝑖−1 + 6𝑎𝑌𝑖 − 4𝑎𝑌𝑖+1 + 𝑎𝑌𝑖+2 + 𝑏𝑌𝑖−1 − 2𝑏𝑌𝑖 + 𝑏𝑌𝑖+1 − λ𝑌𝑖 = 0 

𝑎𝑌𝑖−2 + (𝑏 − 4𝑎)𝑌𝑖−1 + (6𝑎 − 2𝑏 − 𝜆)𝑌𝑖 − (𝑏 − 4𝑎)𝑌𝑖+1 + 𝑎𝑌𝑖+2 = 0  (3.14) 

Letting  𝐶1 = 𝑎, 𝐶2 = b − 4a, 𝐶3 = 6a − 2b, 𝐶4 = b − 4a and 𝐶5 = 𝑎. Equation 3.14 can 

then be written as  

𝐶1𝑌𝑖−2 + 𝐶2𝑌𝑖−1 + (𝐶3 − 𝜆)𝑌𝑖 + 𝐶4𝑌𝑖+1 + 𝐶5𝑌𝑖+2 = 0   (3.15) 

Equation 3.15 was applied to the node points i=2 to i=N-1 to obtain a set of linear 

equations  

i=2  C1𝑌0 + C2𝑌1 + (C3 − λ)𝑌2 + C4𝑌3 + C5𝑌4 = 0 

i=3  C1𝑌1 + C2𝑌2 + (C3 − λ)𝑌3 + C4𝑌4 + C5𝑌5 = 0 

i=4  C1𝑌2 + C2𝑌3 + (C3 − λ)𝑌4 + C4𝑌5 + C5𝑌6 = 0 
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⋮   ⋮   ⋮  ⋮ 

i=N-3   C1𝑌𝑁−5 + C2𝑌𝑁−4 + (C3 − λ)𝑌𝑁−3 + C4𝑌𝑁−2 + C5𝑌𝑁−1 = 0 

i=N-2  C1𝑌𝑁−4 + C2𝑌𝑁−3 + (C3 − λ)𝑌𝑁−2 + C4𝑌𝑁−1 + C5𝑌𝑁     = 0 

i=N-1  C1𝑌𝑁−3 + C2𝑌𝑁−2 + (C3 − λ)𝑌𝑁−1 + C4𝑌𝑁 + C5𝑌𝑁+1     = 0 

The boundary conditions for the clamped-clamped pipe were then applied. The 

boundary conditions are as follows 

𝑌1 = 𝑌𝑁 = 0     (3.16) 

𝑑𝑌1

𝑑𝑥
= 0    →      

𝑌2−𝑌0

2∆𝑥
= 0    →   𝑌0 = 𝑌2    (3.17) 

𝑑𝑌𝑁

𝑑𝑥
= 0    →      

𝑌𝑁+1−𝑌𝑁−1

2∆𝑥
= 0    →   𝑌𝑁+1 = 𝑌𝑁−1    (3.18) 

Equations 3.16, 3.17 and 3.18 ,obtained from the boundary conditions, were used to 

substitute for 𝑌0, 𝑌1, 𝑌𝑁+1 and 𝑌𝑁  such that the set of linear equations became 

i=2  (C1 + C3 − λ)𝑌2 + C4𝑌3 + C5𝑌4                                                   = 0 

i=3     C2𝑌2 + (C3 − λ)𝑌3 + C4𝑌4 + C5𝑌5                             = 0 

i=4      C1𝑌2 + C2𝑌3 + (C3 − λ)𝑌4 + 𝑌5 + C5𝑌6                    = 0 

⋮   ⋮   ⋮  ⋮  ⋮ 

i=N-3   C1𝑌𝑁−5 + C2𝑌𝑁−4 + (C3 − λ)𝑌𝑁−3 + C4𝑌𝑁−2 + C5𝑌𝑁−1        = 0 

i=N-2       C1𝑌𝑁−4 + C2𝑌𝑁−3 + (C3 − λ)𝑌𝑁−2 + C4𝑌𝑁−1         = 0 

i=N-1           C1𝑌𝑁−3 + C2𝑌𝑁−2 + (C3 + C5 − λ)𝑌𝑁−1 = 0 

The foregoing set of equations were then expressed compactly in matrix vector form 

to give the following expression 

[
 
 
 
 
 
 
 
 
𝐶1 + 𝐶3 − 𝜆 𝐶4 𝐶5 0 ⋯ ⋯ 0

𝐶2 𝐶3 − 𝜆 𝐶4 𝐶5 0 ⋯ ⋮
𝐶1 𝐶2 𝐶3 − 𝜆 𝐶4 𝐶5 0 ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋯ 0
⋮ 0 𝐶1 𝐶2 𝐶3 − 𝜆 𝐶4 𝐶5

⋮ ⋯ 0 𝐶1 𝐶2 𝐶3 − 𝜆 𝐶4

0 ⋯ ⋯ 0 𝐶1 𝐶2 𝐶3 + 𝐶5 − 𝜆]
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 

𝑌2

𝑌3

𝑌3

⋮
⋮
⋮

𝑌𝑁−3

𝑌𝑁−2

𝑌𝑁−1]
 
 
 
 
 
 
 
 

= 0 

The matrix on the above equation is a sparse pentadiagonal square matrix of size (𝑁 −

2) × (𝑁 − 2) which can be expressed in the form 𝑴 − λ𝐈  where 𝐈 is the identity 

matrix and 𝑴 is an (𝑁 − 2) × (𝑁 − 2) matrix given by  
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𝑴 =

[
 
 
 
 
 
 
 
 
C1 + C3 C4 C5 0 ⋯ ⋯ ⋯ 0

C2 C3 C4 C5 0 ⋯ ⋯ ⋮
C1 C2 C3 C4 C5 0 ⋯ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋯ 0 C1 C2 C3 C4 C5

⋮ ⋯ ⋯ 0 C1 C2 C3 C4

0 ⋯ ⋯ ⋯ 0 C1 C2 C3 + C5]
 
 
 
 
 
 
 
 

 

From this it can be observed that the constant λ is the eigenvalue which is equal to 𝜔2, 

where 𝜔 is the natural frequency. The natural frequencies were found by solving the 

eigen value problem, |𝑴 − λ𝐈| = 0.  

𝜔𝑖 = √𝜆𝑖                   (3.19) 

Where 𝜔𝑖 is the 𝑖𝑡ℎ mode natural frequency. 

A MATLAB program was developed to build the matrix M , solve for its eigen values 

and calculate the 1st and 2nd natural frequencies. The MATLAB program is provided in 

Appendix A. 

3.5 Computation of the Critical Velocity 

As outline in Chapter 2, the critical velocity is the fluid flow velocity at which the pipe 

loses stability. This point is marked by the 1st mode real natural frequency disappearing 

and a development of complex natural frequencies. The critical flow velocity was 

computed by finding the fluid flow velocity for which the first natural frequency is zero 

and without any complex parts.  

To optimise the search a 3 stage step reducing search algorithm was used. Starting at 

fluid velocity of zero the natural frequency is calculated, then the natural velocity is 

calculated at steps of 10m/s until a non real natural frequency was obtained. The fluid 

velocity where the last real natural frequency was obtained was used as the starting 

point for the second stage of the search. In the second stage of the search, similarly,  

the natural frequency was calculated at steps of 1m/s until a complex natural frequency 

was obtained. The velocity where the last real natural frequency was obtained was 

passed on to the final stage of the search. The final stage search was similar to the 

first two but with a step size of 0.01m/s. The last fluid flow velocity to give a real natural 

frequency was taken as the critical velocity. Since the last stage search was performed 

using steps of 0.01m/s, the critical velocity was calculated to a precision of 0.01m/s.  
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The search algorithm was implemented using MATLAB. The MATLAB program has 

been provided in Appendix B. 

3.6 Computation of Pipe Displacement and Amplitude of Vibration 

In the formulation, the uniform discretisation approach was used for the time and 

spatial domains. The time response of the displacement of the pipe from equilibrium 

position was obtained by applying the centred finite difference approximations in time 

and space to Equation 3.1 and setting up a time stepping algorithm as outlined below. 

Firstly, Equation 3.1 was rearranged and the finite difference approximations applied 

as shown below 

𝜕2𝑦

𝜕𝑡2 = −
𝐸𝐼

𝑚𝑡𝑜𝑡
(
𝜕4𝑦

𝜕𝑥4) −
𝑚𝑓𝑉2

𝑚𝑡𝑜𝑡
(
𝜕2𝑦

𝜕𝑥2)     (3.20) 

𝑦𝑖
𝑗+1

−2𝑦𝑖
𝑗
+𝑦𝑖

𝑗−1

∆𝑡2 = − 
𝐸𝐼

𝑚𝑡𝑜𝑡
(
𝑦𝑖+2

𝑗
−4𝑦𝑖+1

𝑗
+6𝑦𝑖

𝑗
−4𝑦𝑖−1

𝑗
+𝑦𝑖−2

𝑗

∆𝑥4
) −

𝑚𝑓𝑉
2

𝑚𝑡𝑜𝑡
(
𝑦𝑖+1

𝑗
−2𝑦𝑖

𝑗
+𝑦𝑖−1

𝑗

∆𝑥2
)  (3.21) 

Where 𝑦𝑖
𝑗
 is the finite difference approximation of the displacement of pipe at spatial 

node i and time grid node j.  The equation was further simplified to obtain the time 

stepping equation for the solution as follows 

𝑦𝑖
𝑗+1

− 2𝑦𝑖
𝑗
+ 𝑦𝑖

𝑗−1
= −𝐴(𝑦𝑖+2

𝑗
− 4𝑦𝑖+1

𝑗
+ 6𝑦𝑖

𝑗
− 4𝑦𝑖−1

𝑗
+ 𝑦𝑖−2

𝑗
) − 𝐵(𝑦𝑖+1

𝑗
− 2𝑦𝑖

𝑗
+ 𝑦𝑖−1

𝑗
) 

𝑦𝑖
𝑗+1

= −𝐴𝑦𝑖−2
𝑗

+ (4𝐴 − 𝐵)𝑦𝑖−1
𝑗

+ (2𝐵 − 6𝐴 + 2)𝑦𝑖
𝑗
+(4𝐴 − 𝐵)𝑦𝑖+1

𝑗
− 𝐴𝑦𝑖+2

𝑗
− 𝑦𝑖

𝑗−1
 (3.22) 

Where   𝐴 = 
𝐸𝐼∆𝑡2

𝑚𝑡𝑜𝑡∆𝑥4  and 𝐵 =
𝑚𝑓𝑉

2∆𝑡2

𝑚𝑡𝑜𝑡∆𝑥2  .  

The time stepping algorithmic equation 3.22 requires initial values to start the 

computations. In order to initialise the computation, approximations of the 

displacement at the first two spatial nodes at the start of the computation (j=1),   𝑦1
2 and 

𝑦2
2 were calculated 

𝑦𝑖
2 = −𝐴𝑦𝑖−2

1 + (4𝐴 − 𝐵)𝑦𝑖−1
1 + (2𝐵 − 6𝐴 + 2)𝑦𝑖

1+(4𝐴 − 𝐵)𝑦𝑖+1
1 − 𝐴𝑦𝑖+2

1 − 𝑦𝑖
0    (3.23) 

 
𝑑𝑦(𝑥,0)

𝑑𝑡
= 

𝑦𝑖
2−𝑦𝑖

0

2∆𝑡
  →   𝑦𝑖

0 = 𝑦𝑖
2 − 2∆𝑡

𝑑𝑦(𝑥,0)

𝑑𝑡
 →  𝑦𝑖

0 = 𝑦𝑖
2 − 2∆𝑡𝑔(𝑥𝑖)   (3.24) 

Where 𝑔(𝑥𝑖) =
𝑑𝑦(𝑥,0)

𝑑𝑡
 . Substituting 3.24 into equation 3.23 

𝑦𝑖
2 = −𝐴𝑦𝑖−2

1 + (4𝐴 − 𝐵)𝑦𝑖−1
1 + (2𝐵 − 6𝐴 + 2)𝑦𝑖

1+(4𝐴 − 𝐵)𝑦𝑖+1
1 − 𝐴𝑦𝑖+2

1 − 𝑦𝑖
2 + 2∆𝑡𝑔(𝑥𝑖) 

𝑦𝑖
2 =

1

2
{−𝐴𝑦𝑖−2

1 + (4𝐴 − 𝐵)𝑦𝑖−1
1 + (2𝐵 − 6𝐴 + 2)𝑦𝑖

1+(4𝐴 − 𝐵)𝑦𝑖+1
1 − 𝐴𝑦𝑖+2

1 } + ∆𝑡𝑔(𝑥𝑖) 

(3.25) 

The first spatial node, i = 1 is at clamped support, therefore the boundary conditions apply 
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𝑦1
2 = 0 

Equation 3.25 was then applied at the second node, i = 2 to obtain 

𝑦2
2 =

1

2
{−𝐴𝑦0

1 + (4𝐴 − 𝐵)𝑦1
1 + (2𝐵 − 6𝐴 + 2)𝑦2

1+(4𝐴 − 𝐵)𝑦3
1 − 𝐴𝑦4

1} + ∆𝑡𝑔(𝑥𝑖) (3.26) 

The boundary conditions were then used to evaluate 𝑦0
1 

𝑑𝑦1
1

𝑑𝑥
= 0 →   

𝑦0
1−𝑦2

1

2∆𝑥
= 0 →  𝑦0

1 = 𝑦2
1

    (3.27) 

By substituting Equation 3.27 into Equation 3.26 the approximation for 𝑦2
2 was then 

obtained as  

𝑦2
2 =

1

2
{−𝐴𝑦2

1 + (4𝐴 − 𝐵)𝑦1
1 + (2𝐵 − 6𝐴 + 2)𝑦2

1+(4𝐴 − 𝐵)𝑦3
1 − 𝐴𝑦4

1} + ∆𝑡𝑔(𝑥𝑖) 

𝑦2
2 =

1

2
{(4𝐴 − 𝐵)𝑦1

1 + (2𝐵 − 7𝐴 + 2)𝑦2
1+(4𝐴 − 𝐵)𝑦3

1 − 𝐴𝑦4
1} + ∆𝑡𝑔(𝑥𝑖)  (3.28) 

Assuming first mode vibration which is symmetric about the centre of the pipe and 

using a similar analysis, an expression for the approximate solution at second from last 

node, 𝑦𝑁−1
2  was also obtained 

𝑦𝑁𝑥−1
2 =

1

2
{−𝐴𝑦𝑁𝑥−3

1 + (4𝐴 − 𝐵)𝑦𝑁𝑥−2
1 + (2𝐵 − 7𝐴 + 2)𝑦𝑁𝑥−1

1 + (4𝐴 − 𝐵)𝑦𝑁𝑥

1 − 𝐴𝑦4
1} +

                       ∆𝑡𝑔(𝑥𝑁𝑥−1)                (3.29) 

The expression for 𝑔(𝑥𝑖) was derived from an analytical approximation of the 

displacement derived by Udoetok [10] . The first derivative of the expression with 

respect to time gave the expression.  

𝑑𝑦(𝑥,0)

𝑑𝑡
= 𝜔 ×

16 𝑢𝑚𝑎𝑥(𝑥2𝐿2−2𝑥3𝐿+𝑥4)

𝐿4√(
384𝐸𝐼

𝑚𝑡𝑜𝑡𝐿
4−

8𝑚𝑓𝑉2

𝑚𝑡𝑜𝑡𝐿
2)

    (3.30) 

Where 𝑢𝑚𝑎𝑥 is the maximum vibration velocity along the span of the pipe and 𝜔 is the 

frequency. The vibration frequency was computed using the FDM method described in 

Section 3.4.  

Having obtained the initial values, time stepping through the rest of the domain could 

then be done to obtain the full solution. The computational algorithm was implemented 

in MATLAB. The MATLAB program is provided as Appendix C. 

3.6.1 Stability of the displacement solution 

The stability of the time stepping displacement computation program was investigated 

by empirical analysis.  This was done by varying the combinations time step size and 

grid spacing and observing the stability of the solution. The variables which were 
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monitored in the analysis where the coefficients of the time stepping equation 3.22. 

The stability criteria was established from these experiments. It was found the solution 

became unstable when the coefficient of the 𝑦𝑖−1
𝑗

 and 𝑦𝑖+1
𝑗

 was less than 1. Therefore 

it was concluded that in order to obtain a stable solution of the pipe displacement the 

time step must be small enough to satisfy the following condition  

(∆𝑡)2 (
4𝐸𝐼

𝑚𝑡𝑜𝑡𝑎𝑙(∆𝑥)4
−

𝑚𝑓𝑉2

(∆𝑥)2
) < 1    (3.31) 

This condition was then implemented in the MATLAB program for computing the 

displacement as an algorithm for determining the step size such that for any given 

uniform spatial discretization, the minimum number of time steps required to ensure 

stability of the solution is determined and used for the computation. Hence the stability 

of solution was assured in all computations of the displacement and amplitude.   

3.7 Verification of finite difference model  

To verify that the finite difference model was implemented correctly, a grid convergence 

test and order of accuracy analysis were performed.  

3.7.1 Grid Convergence  

The grid convergence test was done by computing the natural frequency for a system 

with the following parameters taken from a study by Dangal and Ghimire [13]: Span 

length, L= 3.048; Young’s Modulus, E= 207GPa; Moment of Inertia, I = 8.73E-09; total 

mass per metre, mtot = 1.386 kg/m; mass of fluid per metre mf = 0.38kg/m; V = 50m/s. 

The results of the test are shown in Figure 3.3 

 

Figure 3.3 : Spatial Grid Convergence Study 
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The results show that as the number of nodes along the pipe section is increased, that 

is the node spacing is decreased, the solution converges without any observable 

oscillations or divergence. As shown in Figure 3.3 , the solution started to converge 

with 50 nodes. Further refinement of the discretisation resulted in very marginal 

changes. 

3.7.2 Order of Accuracy  

The order of accuracy was calculated by considering a sets of three node spacings 

defined as fine, medium and course meshes.  A node spacing reduction ratio of 2 was 

used. For each of the three meshes, the natural frequency was calculated and the 

order of accuracy calculated using the following formular 

𝑝 =
𝑙𝑛(

𝜔𝑓𝑖𝑛𝑒−𝜔𝑚𝑒𝑑𝑖𝑢𝑚

𝜔𝑚𝑒𝑑𝑖𝑢𝑚−𝜔𝑐𝑜𝑢𝑟𝑠𝑒
)

𝑙𝑛 𝑟
     (3.32) 

Where  

 

 

Table 3.1 : Results of the order of accuracy study 

No of Nodes 
Course-Medium-Fine 

𝝎𝒄𝒐𝒖𝒓𝒔𝒆 𝝎𝒎𝒆𝒅𝒊𝒖𝒎 𝝎𝒄𝒐𝒖𝒓𝒔𝒆 p 

10-20-40 77.484 80.604 81.328 2.109 

20-40-80 80.604 81.328 81.500 2.071 

40-80-160 81.328 81.500 81.542 2.039 

80-160-320 81.500 81.542 81.552 2.024 

Table 3.1 shows the results of the analysis. It was observed that the order of accuracy 

converges to a value of 2. This is the theoretical order of accuracy for second order 

finite difference approximations. 

3.8 Conclusion  

The finite difference method has been implemented to develop computational models 

for the flow induced vibrations in straight piping with clamped ends. The model 

verification results from the grid convergence test confirmed that the model satisfies 

the convergence criteria and the calculated order of accuracy converges to the 

theoretical value. This evidence that the computational algorithms and their 

implementation in the MATLAB programs are correct. Therefore it can be concluded 

that the finite difference model developed was successfully verified.  

𝜔𝑓𝑖𝑛𝑒        = fine mesh solution 𝑝 = order of accuracy 

𝜔𝑚𝑒𝑑𝑖𝑢𝑚 = medium mesh solution 𝑟 = node spacing reduction ratio 

𝜔𝑐𝑜𝑢𝑟𝑠𝑒    = course mesh solution  
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4 Validation of the Finite Difference Model and Parametric 

Studies 

4.1 Introduction 

In this chapter the validation process performed to check the accuracy and reliability 

of the finite difference model developed in Chapter 3 is presented and discussed. The 

validation of a computational model is performed to gain confidence that the model is 

a valid representation of the physics of the problem such that it can be then used to 

make predictions [27].  The chapter also presents the parametric studies carried out 

using the validated model, so as to establish the relationships between the pipe-fluid 

system parameter  and the vibration characteristics.    

4.2 Finite Difference Model Validation 

The solution of the critical velocity and by extension the natural frequency of the finite 

difference model was validated using two methods. Firstly the results from the FDM 

model were compared with results from finite element analysis (FEA) studies done by 

Dangal and Ghimire [13]. Secondly, the dimensionless velocity parameter was 

calculated from the FDM model and compared with the theoretical values of the  

dimensionless parameters.  

4.2.1 System Parameters 

Three cases with different pipe materials were considered in the validation study. To 

enable comparison the same  pipe and fluid parameters were used as in the study by 

Dangal and Ghimire [13]. The three materials considered were steel, aluminium and 

Chlorinated polyvinyl chloride (CPVC). Table 4.1 shows the system parameters. 

Table 4.1 : Parameters of steel, aluminium and CPVC pipe systems conveying water 

 Case 1 Case 2 Case 3 

Pipe Material Steel Aluminium CPVC 

Support span length 3.048m 3.048m 3.048m 

Young’s Modulus 207 GPa 68.9 GPa 2.9 GPa 

Pipe Material Density 8000 kg/m3  2699 kg/m3 1550 kg/m3 

Pipe Outer Diameter 25.40 mm 25.40 mm 25.40 mm 

Pipe thickness 1.65 mm 1.65 mm 1.65 mm 

Fluid Density 1000 kg/m3 1000 kg/m3 1000 kg/m3 

Mass of fluid per unit length 0.38 kg/m 0.38 kg/m 0.38 kg/m 

Total mass per unit length 1.386 kg/m  0.715 kg/m 0.574 kg/m 
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4.2.2 Validation of Natural Frequency and Critical Velocity 

The critical velocities for the above pipe-fluid systems cases were computed using the 

FDM model. Table 4.2 shows the results of these computations. The results were 

compared with the results from the Dangal and Ghimire study where the finite element 

method was used.  

Table 4.2 : Critical Velocities of the Steel, Aluminium and CPVC pipe systems 

Case  
Critical Velocity (m/s) 

Error 
FEA [13] FDM 

Steel Pipe 141.43 142.05 0.76 % 

Aluminium Pipe 81.60 81.95 0.43 % 

CPVC Pipe 16.74 16.81 0.42 % 

The table shows that the FDM model results differ from the FEA results by less than 

1%. This shows that the FDM model has an acceptable accuracy in predicting the 

natural frequency and critical velocity since the results are very close to those obtained 

using the finite element method which has been the most widely used method for this 

problem.  

The dimensionless critical velocity, 𝑢𝑐 allows the comparison of results obtained from 

the analysis of cases with different pipe and fluid parameters. The dimensionless 

critical velocity is given by   

𝑢𝑐 = √(
𝑚𝑓

𝐸𝐼
) × 𝐿 × 𝑉𝑐𝑟𝑖𝑡     (4.1) 

where   

 

 

The theoretical dimensionless critical velocity which marks the limit of stability for pipes 

with clamped ends is 𝑢𝑐 = 2𝜋 [6]. The dimensionless critical velocity was calculated 

for each of the three cases using the critical velocities obtained from the FDM model 

and the results were compared with the theoretical value. The results of this analysis 

are shown in Table 4.3 

𝑚𝑓 = mass of fluid/metre 𝐿 = support span length 

𝐸 = Young’s Modulus 𝑉𝑐𝑟𝑖𝑡 = critical velocity 

𝐼 = Moment of inertia of pipe  
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Table 4.3 : Dimensionless critical velocities of the steel, aluminium and CPVC pipes 

Case 
Dimensionless critical velocity, 𝒖𝒄 

Error 
Theoretical 𝒖𝒄 FDM 𝒖𝒄 

Steel Pipe 6.2831 6.2800 - 0.05% 

Aluminium Pipe 6.2831 6.2798 - 0.05% 

CPVC Pipe 6.2831 6.2788 - 0.07% 

Average 6.2831 6.2795 - 0.06% 

 

The results presented in Table 4.3 show that the FDM model underestimates the  

dimensionless critical velocity by 0.06%. In most practical applications this is a 

insignificant magnitude of error and shows that the FDM model has high accuracy in 

predicting the critical flow velocity. The result is also comparable to the performance of 

the transfer matrix method [28] where a result of 𝑢𝑐 = 6.283 was obtained.  

4.2.3 Validation of displacement and amplitude solution 

The finite difference solution for the peak displacements was compared to the 

analytical approximation derived by Udoetok [10]. Case 1 (Steel Pipe Case) from Table 

4.1 was used and a fluid velocity of 70m/s was used. The results for the peak 

displacement along the pipe section are shown in Figure 4.1 

 

Figure 4.1 :Comparison of the FDM Model Peak Displacement Solution with the Analytical 
Approximation 

The results show that the finite difference solution has very good agreement with the 

analytical approximation. The greatest difference was observed at the midspan point 

of the pipe where the finite difference solution gave an midspan vibration amplitude 

that was 4.6% greater than that of the analytical solution as shown in Figure 4.1.  
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4.2.4 Validation conclusion 

It has been demonstrated that the FDM Model produced very accurate results for the 

critical velocity with errors less than 1 % for three different pipe materials covering a 

wide range of Young’s Modulus values (2.9 GPa to 207GPa) when compared with the 

theoretical dimensionless parameters and widely validated finite element method 

results. Therefore it can be concluded that the FDM model for predicting the critical 

velocity and the natural frequencies was successfully validated. 

The FDM solution of the pipe displacements and amplitude of vibration was also shown 

to be accurate, with high degree of agreement  an analytical approximation model. The 

variance at the mid span point x/L=0.5, which is the point where the highest stresses 

are expected to occur under first mode vibration, was 4.6%. It was therefore concluded 

that the FDM model prediction of the amplitude of vibration is valid. 

4.3 Parametric Studies 

4.3.1 Effect of Fluid Velocity on Peak Vibration Amplitude 

The effects of the fluid flow velocity on the peak vibration amplitude and the natural 

frequency of the system were studied by computing the natural frequencies and peak 

vibration amplitude over a range of fluid velocities. Figure 4.2 shows the results of the 

study. The first observation from the study is that as the fluid velocity is increased the 

natural frequency decreases with an increasing rate of decay, eventually reaching 

zero. This finding was expected because the fluid introduces are a negative stiffness 

that increases with the flow velocity and this is expected to decrease the stability 

decrease the stability, which is manifested by a decline in the natural frequency.  

 

Figure 4.2 : Variation of Peak vibration amplitude and natural frequencies (normalised against 
the natural frequency when V=10m/s) with fluid flow velocity 
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Figure 4.2 also shows that there was no significant change, less than 0.2mm, in the 

amplitude of vibration between fluid flow of 10m/s and 135m/s. However, as the critical 

fluid flow velocity of 142.1 m/s was approached there was a sudden amplification in 

the peak vibration amplitude such that between 135 m/s and 141.9m/s the amplitude 

increased by a factor of 26 from 0.6mm to 10.7mm. This means severe vibrations are 

not only experienced when the critical velocity is exceeded but even when the fluid 

velocity is close to the critical velocity. These severe vibrations increase the likelihood 

of pipeline failure.   

4.3.2 Effect of Flexural Rigidity on Critical Velocity 

The flexural rigidity, EI,  was varied by changing the Young’s modulus while maintaining 

the dimensions of the pipe. Effectively this was simulating the change of rigidity by 

changing the material of the pipe. Simulations were performed with different values of 

EI ranging from 90 Nm2 to 1800 Nm2.The results obtained are shown in Figure  4.3 

 

Figure 4.3 :Effect of Flexural rigidity variation on the critical velocity 

Figure 4.3 shows that the critical velocity of the pipe system increases with the rigidity 

of the pipe. The rate of increase in critical velocity caused by increasing the flexural 

rigidity by 1% ranged from 0.41% to 0.50%. As outline in Chapter 2 that the pipe 

becomes unstable when the fluid velocity dependent centrifugal forces become large 

enough to overcome the flexural restoring forces. The results of the simulation have 

shown that as the flexural rigidity is increased, thus increasing the flexural restoring 

forces, higher fluid velocity is required to make the pipe unstable. Therefore the results 

are in agreement with theory.  
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4.3.3 Effect of Mass Ratio on Critical Velocity 

 The mass ration was varied by changing the mass of the fluid per unit length while 

maintaining the mass of the pipe per unit length. This was simulating the change in 

fluid to pipe mass ratio by changing the density of the fluid. Simulations were performed 

with different values of mass ration ranging from 0.05 to 0.5. A mass ratio of 0.05 

means that the fluid is only 5% of the total mass of the system and similarly a mass 

ratio of 0.5 means that the fluid mass is 50% of the total mass of the system. Figure 

4.4 shows the results obtained from this study. 

 

Figure 4.4 : Effect of varying the Mass Ratio (Fluid Mass: Total Mass) on the Critical Velocity 

The results show that the critical velocity of decreases as the mass ratio increases. 

This means that as the mass of the fluid approaches the mass of the pipe, the pipe 

becomes less stable. This shows that the mass of the fluid has a destabilizing effect 

on the pipe.  

4.3.4 Metamodel for the critical velocity, flexural rigidity and mass ratio 

A surrogate model was developed to provide a representation of the effect of both the 

Flexural rigidity and the mass ratio on the critical velocity. Design of experiments was 

used to generate 40 sets  of flexural rigidity and mass ratio values to effectively sample 

the flexural rigidity design range of 100 to 2000 Pa m4 and mass ratio design range of 

0.05 to 0.50. The critical velocities for these sets of design points were then computed. 

The results of the simulation were then used to generate a metamodel using a MATLAB 

program provided by the project supervisor, Prof Harvey Thompson. Figure 4.5 shows 

the response surface. The simulation results used to generate the metamodel are 

provided in Appendix E.    
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Figure 4.5 : Surrogate Model Representing the critical velocity response in the flexural rigidity 
and mass ratio (mass of fluid/total system mass) design space 

The model shows that the critical velocity is lowest and pipe is least stable when the 

mass ratio is large and the flexural rigidity is small. A large mass ratio means the 

relative mass of the fluid is large hence the destabilising centrifugal forces are also 

relatively high, thereby resulting in a low critical velocity. The model gives a good 

representation of how the two design variables simultaneously affect the critical 

velocity. 

4.3.5 Effect of pipe clamp spacing on Critical Velocity  

The effect of the pipe clamp spacing on the critical velocity was studied for two different 

pipe materials, steel and aluminium, with two different fluids, water and oil. Four cases 

were studied 1) Steel pipe with water 2) Steel Pipe with Oil 3) Aluminium Pipe with 

water and 4) Aluminium pipe with oil. The pipe material and fluid properties are given 

in Table 4.4. 

Table 4.4 : Pipe and Fluid Parameters for the pipe clamp spacing study 

Steel Young’s Modulus 207 GPA 

Density  8000 kg/m3 

Aluminium Young’s Modulus 68.9 GPA 

Density 2700 kg/m3 

Water Density 1000 kg/m3 

Oil Density 800 kg/m3 
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The critical velocity was computed for different pipe clamp spacing length starting from 

1metre to 6metres, which corresponded to 39 times and 236 times the outer diameter 

of the pipe respectively. The results for this analysis are shown in Figure 4.6 

 

Figure 4.6 : Effect of clamp (support) spacing on the critical velocity for four different pipe 
material and fluid type combinations 

Figure 4.6 shows that the critical velocity value decreases with an increase in the 

support spacing. This was expected because reducing the pipe spacing means adding 

more supports to the system, hence it is expected that with more supports the pipes 

becomes more stable and thus have a higher critical velocity. This finding agrees with 

the results of the study by Ugochukwu et al[21].  

Figure 4.6 also shows that at each supporting spacing the highest critical velocity is 

obtained with steel-oil pipe system, followed by the steel-water system, then the 

aluminium-oil system and lastly the aluminium water system. It can be observed that 

for both materials the denser fluid gave a lower critical velocity.  By considering the 

mathematical model, it can be observed that the fluid density is directly proportional to 

the centrifugal force term, 𝑚𝑓𝑉
2 𝜕2𝑦

𝜕𝑥2
. As a result, with a larger fluid density the 

centrifugal forces become large enough to overcome the flexural restoring forces at a 
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lower fluid velocity than with a smaller fluid density. Therefore, the results are 

consistent with theory.    

The results also show that as the support span length increases the difference in the 

critical velocity for the four cases becomes less marked. At a span length of 1m the 

difference between the highest and lowest critical velocities of the 4 cases is 233m/s 

whereas at a span length of 6m the difference is 39m/s. This implies that as the span 

length increases the pipe material density, pipe material Young’s modulus and fluid 

density become less significant to the stability of the system. Therefore, in a piping 

system with relatively large support span length, it may not be an effective approach 

to attempt to improve the stability limit by changing the pipe material. The solution will 

depend on a case-by-case basis as there are other factors to be considered such as 

the pipe and support material costs.  

4.3.6 Conclusion  

This project set out to investigate the relationship between the physical properties of 

the system and the critical velocity and vibration characteristics.  

It has been established that the fluid flow velocity does not have a large influence on 

the vibration amplitude when it is not close to the critical point. An inflection of this 

behaviour occurs close to the critical flow velocity where small increases in the flow 

velocity start to have a large impact on the amplitude of vibration. The investigation 

also confirmed that as fluid flow velocity increases the fundamental frequency of the 

system decreases until it vanishes.  

The findings have also clearly indicated that the ratio of fluid mass to total system mass 

has an inverse influence on the critical velocity. On the other hand the flexural rigidity 

has a direct relationship with the critical velocity.  

The investigations have also shown that the pipe support spacing has an inverse 

relationship with the critical velocity. An interesting observation from the study of the 

influence of pipe supports on two different metals, was that for the same fluid, the 

lighter metal (aluminium) requires smaller supports spacing and hence more supports 

than the heavier metal (steel). On the other hand if the system weight is used as criteria 

for determining the number of supports the opposite conclusion will be reached as the 

heavier metal will need more supports. This shows that in the design of piping systems 

a wholistic approach needs to be taken which also takes into account the systems 

susceptibility to flow induced vibrations.  
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5 Conclusion 

This chapter outlines the achievements realised from the project. A discussion of some 

of the key findings is also done, including the limitations. Finally a conclusion on the 

project is made and recommendations for future work provided. 

5.1 Achievements  

• A research methodology gap was identified from the literature review 

• An accurate computational model was developed using the finite difference 

approach, for the computation of the natural frequency and subsequently the 

critical velocity of a straight pipe conveying steady fluid flow. This is a novel 

approach to the problem which has not been reported in the available literature.  

• The model for calculation of the vibration amplitude was also developed using 

the finite different approach 

• The relationship between the fluid flow velocity and the natural frequencies and 

amplitude of vibration was established through parametric studies  

• The effects of the flexural rigidity, ratio of fluid mass and to total mass and 

spacing of clamped supports on the critical velocities were also established. A 

surrogate model was developed for determining the critical velocities for a 

flexural rigidity and mass ratio design space 

5.2 Discussion 

The implementation of the finite difference method in this project was made possible 

by adopting a mathematical model for the flow induced vibrations where the mixed 

derivative Coriolis force term was neglected. This allowed the separation of variables 

to be performed and consequently the finite difference method to be used to calculate 

the natural frequency and the critical velocity. In most of the studies reported in 

literature, the equation with the mixed derivative Coriolis force term is used. This could 

explain why the finite differences method, although simpler to implement,  had not been 

used to find the natural frequencies and critical velocity. Surprisingly, the results 

obtained in this project have shown that when the Coriolis force term is neglected and 

the finite difference method the critical velocity to a negligible magnitude of error.  

One of the key findings was that as the flow velocity approaches the critical point there 

is a substantial increase in the amplitude of vibration. This implies that that there is a 

proportionate increase in the cyclic stresses experienced by the pipe. From theory of 

fatigue life, the effect of this would be to reduce the number of cycles that the pipe can 

endure before it undergoes fatigue failure. Therefore, during the operation of a pipeline 
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an appropriate margin from the actual critical velocity needs to be chosen to mitigate 

fatigue failure and maximise the life of the pipe.  

One of the limitations of the finite difference model is that it likely to produce inaccurate 

results for piping systems with a short support span length, because as the span is 

reduced the slenderness of the system may be decreased to an extent that the 

slenderness condition is violated and the mathematical model becomes invalid. The 

model also assumes that the pipe will only behave in a purely elastic manner. However 

for weaker material such as plastics, large vibrations which cause plastic deformation 

can occur as shown in experimental studies reported in the literature. Therefore, the 

results need to be applied to plastic materials with due consideration.    

In the design spaces explored the critical velocities in some cases were found to very 

high exceeding 300m/s. This was the case when the fluid to total mass ratio is very 

small. One of the conditions which can cause low mass ratio is when the fluid conveyed 

is a gas. Now when gases travel at such high velocities they become compressible. 

This then violates the assumption made in the derivations of the equations of motion 

that the fluid is incompressible. Therefore, care must be taken to confirm the 

compressibility of the fluid at the computed critical velocity before it is accepted as 

valid. This can be done by calculating the Mach number for the specific fluid and 

ensuring that it is incompressibility limit is not exceeded.  

5.3 Conclusions 

The finite difference method is applicable to modelling and analysis of flow induced 

vibration problems. Although its application is only possible in the absence of the mixed 

derivative Coriolis force term, it still yields accurate results which are comparable to 

established methods and are consistent with theory.  

To reduce vibration induced failures in clamped piping systems, the stability of a fluid 

conveying pipe system can be improved by any of the following system modifications 

1) maintaining a margin of safety from the critical velocity 2) increasing the flexural 

rigidity, which can be achieved by using a pipe with a higher Young’s Modulus, 3) 

decreasing the fluid mass to pipe mass ratio which can be achieved by using a denser 

pipe or lighter fluid and 4) decreasing the spacing between clamps. 

5.4 Future work 

Further investigation into the inclusion of non linear material models such as 

viscoelastic models the with the finite difference model which has been developed is 

needed so as to broaden the scope of problems on which it can be applied.  
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APPENDIX A : MATLAB program Computing Natural 

Frequencies 

 

% Program for finding the 1st and 2nd natural frequencies for flow  
% induced vibrations in piping using finite difference method for  
% the pipe with fixed ends i.e. (clamped-clamped).  
 
clear all; 
 
%% Problem parameters 
 
E=207E9;        % Young's Modulus of Pipe [Pa] 
L=3.048;        % Pipe clamp spacing [m] 
I = 8.73E-09;   % Moment of Inertia of Pipe [m^4] 
mtot = 1.386;   % Total mass of pipe and fluid per unit length [kg/m] 
mf = 0.38;      % Mass of fluid per unit length [kg/m] 
V = 50;         % Fluid Velocity [m/s] 
 
%% Discretisation of the pipe 
Nx=60;          % Number of spatial grid points (i=1 at x=0; i=Nx at x=L) 
deltax=L/(Nx-1);% Spatial grid spacing 
 
%% Defining the constants for the set of linear finite difference equations  
 
a = (E*I)/(mtot*deltax^4);  
b = (mf*V^2)/(mtot*deltax^2); 
 
C1 = a; 
C2 = b-4*a; 
C3 = 6*a-2*b; 
C4 = b-4*a; 
C5 = a; 
 
%% Creation of FDM Matrix M 
n = Nx-2;       %Defines size of matrix 
M = zeros(n); 
 
M(1,1)= C1+C3; 
M(1,2)= C4; 
M(1,3)= C5; 
 
M(2,1)= C2; 
M(2,2)= C3; 
M(2,3)= C4; 
M(2,4)= C5; 
 
for k =3:n-2 
    M(k,k-2)=C1; 
    M(k,k-1)=C2; 
    M(k,k)=C3; 
    M(k,k+1)=C4; 
    M(k,k+2)=C5; 
end 
 
M(n-1,n-3)= C1; 
M(n-1,n-2)= C2; 
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M(n-1,n-1)= C3; 
M(n-1,n)= C4; 
 
M(n,n-2)= C1; 
M(n,n-1)= C2; 
M(n,n)= C3+C5; 
 
%% Calculating the set of natural frequencies from the eigen values of M  
W = sqrt(eig(M));   %Computes the vector of natural frequencies from the                      
                    %vector of eigen values  
W_real = real(W);   %Takes the real parts of the natural frequency 
 
w_natural1 = W_real(1) %Extracts the 1st Natural Frequency 
w_natural2 = W_real(2) %Extracts the 2nd Natural Frequency 
 
%Displaying Results in Command Window 
X1 = ['1st Natural Frequency = ',num2str(w_natural1),' rad/s.']; 
disp(X1) 
X2 = ['2st Natural Frequency = ',num2str(w_natural2),' rad/s.']; 
disp(X2) 
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APPENDIX B : MATLAB program Computing Critical Velocity 

 

% Program for finding the Critical Velocity for flow  
% induced vibrations in piping using finite difference method for  
% the pipe with fixed ends i.e. (clamped-clamped). 
 
% Program utilises a 3 stage search step reducing root finding algorithm  
% to efficiently find the fluid velocity where the natural frequency where 
% the natural frequency becomes zero and without complex parts. 
 
clear all; 
 
%% Problem parameters 
 
E=207E9;        % Young's Modulus of Pipe [Pa] 
L=3.048;        % Pipe clamp spacing [m] 
I = 8.73E-09;   % Moment of Inertia of Pipe [m^4] 
mtot = 1.386;   % Total mass of pipe and fluid per unit length [kg/m] 
mf = 0.38;      % Mass of fluid per unit length [kg/m] 
 
 
%% Discretisation of the pipe 
Nx=60;          % Number of spatial grid points (i=1 at x=0; i=Nx at x=L) 
deltax=L/(Nx-1);% Spatial grid spacing 
 
%% 1ST STAGE SEARCH  
% Calculates the Natural Frequency at Fluid Velocity Intervals of 10m/s 
% At every step checks whether the natural frequencies are still real  
% Search stops when the vector of natural frequencies has a complex 
% component and the last velocity with a real natural frequency is computed 
% used in the next stage of search  
 
V = 1; 
W(1) = 1; 
 
while  W == real(W) 
 
% Defining the constants for the finite difference equations  
 
a = (E*I)/(mtot*deltax^4);  
b = (mf*V^2)/(mtot*deltax^2); 
 
C1 = a; 
C2 = b-4*a; 
C3 = 6*a-2*b; 
C4 = b-4*a; 
C5 = a; 
 
% Creation of FDM Matrix M 
n = Nx-2; 
M = zeros(n); 
 
M(1,1)= C1+C3; 
M(1,2)= C4; 
M(1,3)= C5; 
 
M(2,1)= C2; 



39 
 

M(2,2)= C3; 
M(2,3)= C4; 
M(2,4)= C5; 
 
for k =3:n-2 
    M(k,k-2)=C1; 
    M(k,k-1)=C2; 
    M(k,k)=C3; 
    M(k,k+1)=C4; 
    M(k,k+2)=C5; 
end 
 
M(n-1,n-3)= C1; 
M(n-1,n-2)= C2; 
M(n-1,n-1)= C3; 
M(n-1,n)= C4; 
 
M(n,n-2)= C1; 
M(n,n-1)= C2; 
M(n,n)= C3+C5; 
 
% Calculating the set of natural frequencies from the eigen values of M  
W = sqrt(eig(M)); 
V = V + 10; 
end 
 
V = V - 20; % stores the velocity where the last real natural  
            %  frequency was obtained 
W(1) = 1;   %Reinitialises the 1st natural frequency for the next  
            % stage of search 
 
%% 2ND STAGE SEARCH 
% Similar to stage 1 search but search steps reduced to 1m/s 
 
while  W == real(W) 
 
% Defining the constants for the finite difference equations  
 
a = (E*I)/(mtot*deltax^4);  
b = (mf*V^2)/(mtot*deltax^2); 
C1 = a; 
C2 = b-4*a; 
C3 = 6*a-2*b; 
C4 = b-4*a; 
C5 = a; 
 
% Creation of FDM Matrix M 
n = Nx-2; 
M = zeros(n); 
M(1,1)= C1+C3; 
M(1,2)= C4; 
M(1,3)= C5; 
 
M(2,1)= C2; 
M(2,2)= C3; 
M(2,3)= C4; 
M(2,4)= C5; 
 
for k =3:n-2 



40 
 

    M(k,k-2)=C1; 
    M(k,k-1)=C2; 
    M(k,k)=C3; 
    M(k,k+1)=C4; 
    M(k,k+2)=C5; 
end 
 
M(n-1,n-3)= C1; 
M(n-1,n-2)= C2; 
M(n-1,n-1)= C3; 
M(n-1,n)= C4; 
M(n,n-2)= C1; 
M(n,n-1)= C2; 
M(n,n)= C3+C5; 
 
% Calculating the set of natural frequencies from the eigen values of M  
W = sqrt(eig(M)); 
V = V + 1; 
end 
 
V = V - 2; % stores the velocity where the last real natural  
            %  frequency was obtained 
W(1) = 1;   %Reinitialises the 1st natural frequency for the next  
            % stage of search 
 
%% 3RD STAGE SEARCH 
% Similar to stage 2 search but search steps reduced to 0.01m/s 
 
while  W == real(W) 
 
% Defining the constants for the finite difference equations  
a = (E*I)/(mtot*deltax^4);  
b = (mf*V^2)/(mtot*deltax^2); 
C1 = a; 
C2 = b-4*a; 
C3 = 6*a-2*b; 
C4 = b-4*a; 
C5 = a; 
 
%% Creation of FDM Matrix M 
n = Nx-2; 
M = zeros(n); 
 
M(1,1)= C1+C3; 
M(1,2)= C4; 
M(1,3)= C5; 
M(2,1)= C2; 
M(2,2)= C3; 
M(2,3)= C4; 
M(2,4)= C5; 
 
for k =3:n-2 
    M(k,k-2)=C1; 
    M(k,k-1)=C2; 
    M(k,k)=C3; 
    M(k,k+1)=C4; 
    M(k,k+2)=C5; 
end 
 



41 
 

M(n-1,n-3)= C1; 
M(n-1,n-2)= C2; 
M(n-1,n-1)= C3; 
M(n-1,n)= C4; 
M(n,n-2)= C1; 
M(n,n-1)= C2; 
M(n,n)= C3+C5; 
 
% Calculating the set of natural frequencies from the eigen values of M  
W = sqrt(eig(M)); 
V = V + 0.01; 
end 
 
V_crit = V - 0.02; %Computes the final Critical Velocity  
 
%Displaying Results in Command Window 
X = ['Critical Velocity = ',num2str(V_crit),' m/s.']; 
disp(X) 
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APPENDIX C : MATLAB program Computing Displacements 

and Amplitude 

 

% Program for solving the Flow Induced Vibrations equation for the  
% peak displacement along the pipe using finite difference method for  
% the pipe with fixed ends i.e. (clamped-clamped). 
 
% Solves d^2y/dt^2 = -(EI/mtot)d^4y/dx^4 - (mf*V^2)d^4y/dx^4 for  
% 0 <= x <=L, subject to boundary conditions for the clamped-clamped  
% Case which are y(0,t)=y(L,t)=0; dy/dx(0,t)=dy/dx(L,t)=0;  
% and also subject to the initial condition dy/dt(x,0)=f(x) 
 
clear all; 
 
%% Problem parameters 
 
E=207E9;        % Young's Modulus of Pipe [Pa] 
L=3.048;        % Pipe clamp spacing [m] 
I = 8.73E-09;   % Moment of Inertia of Pipe [m^4] 
mtot = 1.386;   % Total mass of pipe and fluid per unit length [kg/m] 
mf = 0.38;      % Mass of fluid per unit length [kg/m] 
V = 50;         % Fluid Velocity [m/s] 
 
u = 0.012;      % Peak vibration velocity [m/s] NB: When analysing a  
                % pipeline in operation the value must be measured with  
                % vibrometer  
 
%% Discretisation of the pipe 
Nx=60;      % Number of spatial grid points (i=1 at x=0; i=Nx at x=L) 
deltax=L/(Nx-1); % Spatial grid spacing 
 
%% Computation of free vibration frequency 
 
% Defining the constants for the set of linear FD equations  
a = (E*I)/(mtot*deltax^4);  
b = (mf*V^2)/(mtot*deltax^2); 
 
C1 = a; 
C2 = b-4*a; 
C3 = 6*a-2*b; 
C4 = b-4*a; 
C5 = a; 
 
% Creation of FDM Matrix M 
n = Nx-2; 
M = zeros(n); 
 
M(1,1)= C1+C3; 
M(1,2)= C4; 
M(1,3)= C5; 
M(2,1)= C2; 
M(2,2)= C3; 
M(2,3)= C4; 
M(2,4)= C5; 
 
for k =3:n-2 
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    M(k,k-2)=C1; 
    M(k,k-1)=C2; 
    M(k,k)=C3; 
    M(k,k+1)=C4; 
    M(k,k+2)=C5; 
end 
 
M(n-1,n-3)= C1; 
M(n-1,n-2)= C2; 
M(n-1,n-1)= C3; 
M(n-1,n)= C4; 
M(n,n-2)= C1; 
M(n,n-1)= C2; 
M(n,n)= C3+C5; 
 
% Calculating the natural frequency from the eigen values of M  
W = sqrt(eig(M)); 
W_real = real(W); 
w = W_real(1); 
 
%% Calculating the simulation time 
% Peak displacement occurs at T/4 where T is the period of vibration 
end_time = 0.25*2*pi/w;  
 
%% Calculate no. of time steps required to meet the stability criteria 
Nt=round((Nx*end_time*sqrt(6*E*I*Nx^2-2*mf*V^2*L^2))/... 
    (L^2*sqrt(1.5*mtot))+0.5); 
 
deltat=end_time/(Nt-1); 
 
% Defining the constants to be used for time stepping algorithm  
% that computes the displacements 
a = (E*I/mtot)*(deltat^2/deltax^4);  
b = ((mf*V^2)/mtot)*(deltat^2/deltax^2); 
 
y=zeros(Nx,Nt); % Creates Storage of the solution 
 
% Creating the grid for the initial conditions 
x=zeros(Nx,1); 
t=zeros(Nt,1); 
f=zeros(Nx,1);    % Initial condition y(x,0) 
g=zeros(Nx,1);  
 
%% Computation of Displacements using FD algorithms  
 
for i=1:Nx 
    x(i)=(L*(i-1))/(Nx-1); 
    f(i) = 0; 
    y(i,1) = f(i); 
 
    %Implementing equation for the initial conditions  
    A = ((384*E*I)/(mtot*L^4))-((8*mf*V^2)/(mtot*L^2)); 
    g(i) = ((16*u)/(L^4*sqrt(A)))*(x(i)^2*L^2-2*x(i)^3*L+x(i)^4)*w; 
end 
 
% Assigning values at the boundary nodes where y=0 for all t 
time=0.0; 
for j=1:Nt 
    t(j)=time; 
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    y(1,j)=0; 
    y(Nx,j)=0;  
    time=time+deltat; 
end 
 
% Approximating y at the end of the first time step (j=2)  
% for i=2, From boundary conditions y(0,j) = y(2,j) 
i=2; 
bracket = (4*a-b)*y(i-1,1)+(2-6*a+2*b)*y(i,1)... 
           +(4*a-b)*y(i+1,1)-a*y(i+2,1); 
y(i,2)=0.5*bracket+deltat*g(i); 
 
%Computing y for the nodes i=3 to Nx-2 
for i=3:Nx-2 
    bracket = -a*y(i-2,1)+(4*a-b)*y(i-1,1)+... 
        (2-6*a+2*b)*y(i,1)+(4*a-b)*y(i+1,1)-a*y(i+2,1); 
    y(i,2)=0.5*bracket+deltat*g(i);  
end 
 
% Approximating y at node i=Nx-1,  
% Similarly from boundary condition y(Nx+1,j) = y(Nx-1,j) 
i=Nx-1; 
bracket = -a*y(i-2,1)+(4*a-b)*y(i-1,1)+(2-7*a+2*b)*y(i,1)... 
          +(4*a-b)*y(i+1,1); 
y(i,2)=0.5*bracket+deltat*g(i); 
 
 
% Integrating in time using explicit FD time stepping formula 
% j=1 corresponds to the initial conditions at t=0 where y =0  
for j=2:Nt-1 
     
    % Computing y at i=2, i=Nx-1 based on boundary conditions 
    y(2,j+1) = (4*a-b)*y(1,j)+(2-6*a+2*b)*y(2,j)... 
               +(4*a-b)*y(3,j)-a*y(4,j)-y(2,j-1); 
    y(Nx-1,j+1) = -a*y(Nx-3,j)+(4*a-b)*y(Nx-2,j)+... 
              (2-6*a+2*b)*y(Nx-1,j)+(4*a-b)*y(Nx,j)-y(Nx-1,j-1); 
           
    for i=3:Nx-2 
        bracket = -a*y(i-2,j)+(4*a-b)*y(i-1,j)+... 
        (2-6*a+2*b)*y(i,j)+(4*a-b)*y(i+1,j)-a*y(i+2,j); 
        y(i,j+1) = bracket - y(i,j-1); 
    end 
end 
 
%% Results 
%Plotting of results  
for n=Nt 
plot(x/L, 1000*y(:,n), 'b', LineWidth=1.2); hold on; 
legend('Finite Difference Solution'); 
xlim([x(1)/L, x(end)/L]); 
xlabel('x/L','FontWeight','bold'); 
ylabel('Peak Displacement (mm)','FontWeight','bold'); 
grid on; 
drawnow; 
end 
 
%Calculating the amplitude of vibration. Highest peak displacement 
% is the amplitude of vibration.Occurs at the midspan of the pipe 
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y_max = 1000*max(max(y)); 
 
%Displaying Amplitude and Frequency in Command Window 
X1 = ['Vibration Peak Amplitude = ',num2str(y_max),' mm.']; 
disp(X1) 
X2 = ['Natural Frequency = ',num2str(w),' rad/s.']; 
disp(X2) 
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APPENDIX D : Stability analysis of the Finite Difference model 

 

The table below shows the results of the empirical investigation of the stability criterion 

No of Spatial 
Nodes 

No of Time 
Steps 

Value of 𝒚𝒊+𝟏
𝒋

 coefficient Model Stability 

50 9 1.6939 Unstable 

90 30 1.4858 Unstable 

50 10 1.3384 Unstable 

100 40 1.2637 Unstable 

90 35 1.0810 Unstable 

100 44 1.0395 Unstable 

101 45 1.0339 Unstable 

150 100 1.0172 Unstable 

200 179 1.0049 Unstable 

200 180 0.9937 Stable 

101 46 0.9885 Stable 

90 37 0.9642 Stable 

90 40 0.8216 Stable 

80 36 0.6291 Stable 

90 50 0.5204 Stable 

70 36 0.3626 Stable 

50 20 0.3003 Stable 

90 100 0.1275 Stable 

50 30 0.1289 Stable 

 

Coefficient of 𝑦𝑖+1
𝑗

=
4𝐸𝐼(∆𝑡)

2

𝑚𝑡𝑜𝑡𝑎𝑙(∆𝑥)
4 −

𝑚𝑓𝑉
2(∆𝑡)

2

(∆𝑥)
2   

The model was stable only when the coefficient was less than one. Therefore it was 

concluded that the stability condition must be  

4𝐸𝐼(∆𝑡)2

𝑚𝑡𝑜𝑡𝑎𝑙(∆𝑥)4
−

𝑚𝑓𝑉2(∆𝑡)2

(∆𝑥)2
< 1  
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APPENDIX E : Simulation Results used to create surrogate 

model 
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x1 and x2 are the Design of Experiment factors to ensure effective exploration of the 

design space 

x1 x2 I E mp mf mtot EI
mf

/mtot
Vcrit

0.872 0.000 8.73E-09 2.01E+11 0.985 0.052 1.037 1756.40 0.050 379.34

0.154 0.590 8.73E-09 4.50E+10 0.985 0.454 1.439 392.32 0.315 60.60

0.231 0.641 8.73E-09 6.17E+10 0.985 0.504 1.489 538.46 0.338 67.37

0.615 0.359 8.73E-09 1.45E+11 0.985 0.264 1.250 1269.22 0.212 142.83

0.795 0.615 8.73E-09 1.85E+11 0.985 0.479 1.464 1610.25 0.327 119.56

0.487 0.077 8.73E-09 1.18E+11 0.985 0.091 1.076 1025.64 0.085 218.74

0.462 0.282 8.73E-09 1.12E+11 0.985 0.212 1.197 976.93 0.177 139.99

0.103 0.744 8.73E-09 3.38E+10 0.985 0.616 1.601 294.86 0.385 45.10

0.256 0.949 8.73E-09 6.73E+10 0.985 0.898 1.884 587.18 0.477 52.70

0.641 0.769 8.73E-09 1.51E+11 0.985 0.646 1.632 1317.96 0.396 93.07

0.564 0.179 8.73E-09 1.34E+11 0.985 0.148 1.134 1171.79 0.131 183.26

0.846 0.718 8.73E-09 1.96E+11 0.985 0.586 1.572 1707.69 0.373 111.24

0.667 0.256 8.73E-09 1.57E+11 0.985 0.195 1.181 1366.67 0.165 172.45

0.282 0.333 8.73E-09 7.29E+10 0.985 0.246 1.232 635.90 0.200 104.73

0.897 0.231 8.73E-09 2.07E+11 0.985 0.179 1.164 1805.14 0.154 206.91

0.821 0.923 8.73E-09 1.90E+11 0.985 0.858 1.843 1658.97 0.465 90.65

0.333 0.846 8.73E-09 8.40E+10 0.985 0.746 1.731 733.33 0.431 64.64

0.205 0.513 8.73E-09 5.61E+10 0.985 0.385 1.370 489.75 0.281 73.55

0.308 0.154 8.73E-09 7.85E+10 0.985 0.133 1.119 684.61 0.119 147.67

0.692 0.487 8.73E-09 1.62E+11 0.985 0.363 1.348 1415.39 0.269 128.71

0.513 0.872 8.73E-09 1.23E+11 0.985 0.781 1.767 1074.36 0.442 76.43

0.744 0.821 8.73E-09 1.73E+11 0.985 0.711 1.697 1512.82 0.419 95.06

0.974 0.436 8.73E-09 2.24E+11 0.985 0.322 1.307 1951.28 0.246 160.52

0.410 0.974 8.73E-09 1.01E+11 0.985 0.941 1.926 879.49 0.488 63.02

0.179 0.128 8.73E-09 5.05E+10 0.985 0.119 1.104 441.03 0.108 125.53

0.026 0.051 8.73E-09 1.70E+10 0.985 0.078 1.063 148.72 0.073 90.19

0.359 0.538 8.73E-09 8.96E+10 0.985 0.407 1.392 782.04 0.292 90.36

1.000 0.795 8.73E-09 2.29E+11 0.985 0.678 1.663 2000.00 0.408 111.93

0.385 0.410 8.73E-09 9.52E+10 0.985 0.302 1.287 830.78 0.235 108.10

0.128 0.385 8.73E-09 3.94E+10 0.985 0.283 1.268 343.60 0.223 71.83

0.000 0.564 8.73E-09 1.15E+10 0.985 0.430 1.415 100.00 0.304 31.43

0.436 0.692 8.73E-09 1.06E+11 0.985 0.558 1.543 928.21 0.362 84.07

0.923 0.667 8.73E-09 2.12E+11 0.985 0.531 1.516 1853.85 0.350 121.84

0.590 0.026 8.73E-09 1.40E+11 0.985 0.065 1.050 1220.51 0.062 283.30

0.538 0.462 8.73E-09 1.29E+11 0.985 0.342 1.327 1123.07 0.258 118.11

0.769 0.308 8.73E-09 1.79E+11 0.985 0.229 1.214 1561.54 0.188 170.28

0.051 1.000 8.73E-09 2.26E+10 0.985 0.985 1.971 197.43 0.500 29.18

0.077 0.205 8.73E-09 2.82E+10 0.985 0.163 1.149 246.15 0.142 79.98

0.949 0.897 8.73E-09 2.18E+11 0.985 0.819 1.804 1902.57 0.454 99.36

0.718 0.103 8.73E-09 1.68E+11 0.985 0.105 1.090 1464.11 0.096 243.61
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I – moment of inertia (m4) 

E – Young’s Modulus (Pa)  

mp – mass of pipe /metre (kg/m) 

mf – mass of fluid /metre (kg/m) 

mtot – mass of pipe and fluid /metre (kg/m) 

EI – Flexural rigidity (Pa m4) 

Vcrit – Critical Velocity (m/s) 

 

 

 


