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Chapter 1 

 

Introduction to Design Optimization 

 
 
1.0 Introduction  

 

The process of design and manufacture has developed over the centuries. Complex systems 

such as: buildings, bridges, cars, aircraft, space vehicles, are an excellent demonstration of 

the design process. However, the evolution of these systems has been slow. 

 

The entire process is time-consuming and costly, requiring substantial human and material 

resources. Therefore, the procedure has been to design, manufacture and use a system, 

regardless of whether it is the best one. Improvements to these systems have been made only 

after a substantial investment has been recovered. The thing to appreciate is that several 

systems can usually accomplish the same task, and that some systems are better than others. 

 

For example: The purpose of a bridge is to provide movement of people or vehicles from one 

side of a river or road to the other. Different types of bridges can serve this purpose. However, 

to analyse and design all possibilities can be time-consuming and costly. Usually one type is 

selected based on some preliminary analyses and then it is designed in detail.  

 

Figures 1.1 to 1.5 show different solutions to the task of designing a foot bridge. 

 
Figure 1.1: BP Pedestrian Bridge: concealed box girder footbridge Chicago, USA 
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Figure 1.2: Millennium bridge, on the river Thames, London. 

 
 

 
Figure 1.3: Gateshead Millennium Bridge on Newcastle upon Tyne 
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Figure 1.4: Arched Pedestrian Bridge, Hachaturyana street, Moscow 

 
 

 
Figure 1.5: Pedestrian footbridge based on Leonardo da Vinci’s single span bridge near 

the town of Ås in Norway 
 
 
In order to describe optimization concepts and methods, it is necessary to generate a 

mathematical statement for the optimum design problem. Such a mathematical model is 

defined as the minimization of a cost function while satisfying all equality and inequality 

constraints. This is the standard design optimization model used throughout this course. 
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1.1 Standard Design Optimization Model 

 

The standard design optimization model, requires determining the values of a vector of n 

design variables = (x1, x2, . . ., xn) in order to: 

 

Minimize:   

 the cost function:    nxxxfxf ,,, 21   (1.1) 

Subject to:   

m inequality constraints:     mtoixxxgxg nii 1;0,,, 21    (1.2) 

and p equality constraints:     ptojxxxhxh njj 1;0,,, 21    (1.3) 

 

Note that the limits on the design variables 0ix or iUiiL xxx  where xiL and xiU are the 

lower and higher limits for xi, are included as inequality constraints. So, in its simplest form, a 

standard optimization problem is given by (1.4). 

 

Minimize:    xf  

(1.4) 
Subject to:   mtoixg i 1;0   

   ptojxh j 1;0   

where: ntoixorxxx iiUiiL 1;0   

 

1.1.1 How to Treat Maximization Problems 
 

The general design model treats only minimization problems. This is not a problem, since 

the maximization of a function F(x) is the same as minimization of the transformed function 

f(x)=  –F(x). Considering the plot of Figure 1.6, of a function of 1 variable, with a maximum 

at x*, this is the same as the minimum of the negative of the function to maximise. 

 

  

(a) (b) 

Figure 1.6: Plot of function of 1 variable: a) normal function showing the maximum at x*, b) the negative 
of the same function showing now the minimum at x* 

Maximum = Minimum 

   f x F x 
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1.1.2 Greater Than ( ≥ ) Constraints 
 

The standard design optimization model only treats “Less Than ( ≤ )”  types of  inequality 

constraints. But it is equally as likely for an optimization problem to have “Greater Than ≥ ” 

type inequality constraints. It is relatively easy to convert from a “greater than” to “less than” 

type of inequality constraint. 

 

So, if (1.5) is a greater than type of inequality constraint, all that is required, is to multiply 

(1.5) by –1, to convert it to the less than inequality constraint of (2.6). 

 

  0xG j  (1.5) 

    0 xGxg jj  (1.6) 

 

1.1.3 Issues about the Standard Optimization Model    
 

The following 6 issues need to be understood about the standard optimization model: 

1. All functions f(x), hj(x), and gi(x) must depend on some or all of the design variables. 

Functions not depend on design variables can be ignored! 

2. The number of equality constraints must be less than, or at the most equal to, the 

number of design variables np  . If p > n, the system is overdetermined and some of 

the equality constraints are either redundant or inconsistent.  

a. If redundant: Constraints can be deleted until p < n, so that a solution is 

possible. 

b. If inconsistent: the design problem doesn’t have a solution and the problem 

formulation needs to be re-examined. This means that two or more equations 

require different values for the same design variables, for example: 

2

121

1
,

x
xandxx    

c. If p =  n, no optimization of the system is necessary because the roots of  the 

equality constraints are the only solution to the optimum design. 

3. No restriction on number of inequality constraints. At the optimum, the total number 

of active constraints must be less than or at the most equal to the number of design 

variables. 

4. Unconstrained problems: Some design problems may not have any constraints.  

5. Linear programming problems: If all of the functions f(x), hj(x), and gi(x) are linear 

with respect to the design variables x, then the problem is called a linear 

programming problem (LP). If any of these functions is nonlinear, the problem is 

called a nonlinear programming problem (NLP). 

6. Scaling of problem functions: The cost function can be scaled by multiplying it with a 

positive constant. This has no effect on the optimum design. However, the optimum 

cost function value will change. Constants can also be added to the cost function 

without affecting the optimum design. Similarly, the inequality constraints can be 

scaled by any positive constant and the equalities by any constant. 
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1.1.4 Discrete and Integer Design Variables    
 

Design variables xi can have any numerical value within the feasible region. However, 

sometimes, these values may need to be discrete or integer, depending on the problem. So 

both need to be defined: 

a) Discrete Design Variables: are those whose value must be selected from a given 

finite set of values. For example: A plate thickness must be one that is available 

commercially: 1/8”, 1/4", 3/8”, 1/2", 5/8”, 3/4", 1”, etc. 

b) Integer Design Variables: Must have an integer value. For example: the number of 

bolts used, the number of coils in a spring, the number of items to be shipped, the 

number of pistons in an engine, etc. Problems with these design variables are called 

discrete and integer programming problems. 

 

1.1.5 Types of Optimization Problems 
 

The standard design optimization model can represent many different problem types. It can 

be used to represent unconstrained, constrained, linear programming, and nonlinear 

programming optimization problems.  

 

It is also important to know other optimization problems encountered in practical 

applications. Many times, these problems can be transformed into the standard model and 

solved by the optimization methods presented. 

 

There are a couple more types of optimization problems that need to be considered: 

1. Continuous/Discrete-Variable Optimization Problems 

2. Smooth/Non-smooth Optimization Problems. 

 

1.1.5.1 Continuous/Discrete-Variable Optimization Problems 
 

When the design variables can have any numerical value within their allowable range, the 

problem is called a continuous-variable optimization problem. When the problem has only 

discrete/integer variables, it is called a discrete/integer-variable optimization problem. When 

the problem has both continuous and discrete variables, it is called a mixed variable 

optimization problem. 

 

1.1.5.2 Smooth/Non-smooth Optimization Problems 
 

When the functions are continuous and differentiable, the problem is referred to as smooth 

(differentiable). There are also many practical applications where the problem functions are 

not differentiable or even discontinuous. Such problems are called nonsmooth 

(nondifferentiable). Numerical methods to solve these two classes of problems can be 

different. Theory and numerical methods for smooth problems are well developed. 

Therefore, it is most desirable to formulate the problem with continuous and differentiable 

functions as far as possible. 
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1.2 Example of Structural Optimization Design Problem 

 
Consider the design of the cross-sectional dimensions of the rectangular beam of Figure 1.7 
in order to minimize the area. At the same time it is desired to minimize the maximum shear 
stress in the beam corresponding to a unit shear force. Based on some physical constraints, 
the two variables, w and h, which are the width and height of the cross-section are limited to 
be in the range 0.5 < w, h < 30 mm. 
 

 
Figure 1.7: Beam cross-section to be minimised 

 
The equation for the area and maximum shear stress are given by  
 

  hwhwf ,1  (1.7) 

 
hw

V
hwf




2

3
,2  (1.8) 

 

Assume for this problem that we have an applied load which produces a shear force of V = 

1000N. The contour lines for both objective functions are given by Figures 1.8 and 1.9. 

 

 
Figure 1.8: Design of beam cross-section for minimum area 

 

The individual minima for the two functions are at the opposite corners of the design space, 

with the following values, 
* *

1 1 0.5w h mm   for minimum area and 
* *

2 2 30w h mm   

for minimum shear stress with the associated function values of  * * * 2

1 1 1, 0.25f w h mm  and 

 * * *

2 2 2, 1.667f w h MPa respectively. 
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Figure 1.9: Design of beam cross-section for minimum shear stress 

 

One way to solve this problem is to use the weighted objective function approach with equal 

weights for both objective functions, which results in the minimization of function (1.9). 

 

 
hw

V
hwhwF




2

3
,  (1.9) 

 

Since design variables w and h appear everywhere in the form of a product, we can treat this 

product as a single variable (x1), changing this equation into (1.10). The contour line for the 

new objective function is given in Figure 1.10. 

 

 
1

11
2

3

x

V
xxF   (1.10) 

 

Differentiating (1.10) and solving for the minimum gives: 

 

 

2

3

2

3

0
2

3
1

2

3

1

2

1

2

1

1

1

1

11

V
x

V
x

x

V
xF

dx

d

x

V
xxF









  

 

For V = 1000N,  

 

2

1

1

11

73.381500
2

10003

2

3

2

3

mm
V

x

x

V
xxF








 

Which gives that * * 6.22w h mm  , with objective function values of 
* 2

1 38.78f mm  

and 
*

2 38.78f MPa  
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Figure 1.10: Design of beam cross-section for minimum equal weighted objective function 

 

Alternatively, it may be more desirable to minimize the Euclidean norm between the 

individual minima and the final value. Which means minimising function (1.11). 

 

2

2

667.1

667.1
2

3

25.0

25.0
,



























 
 wh

V
wh

hwF  (1.11) 

 

The product wh, can again be treated as a single value to give (1.12). The contour line for 

the new objective function zoomed into the minimum region is given in Figure 1.11. 

 

 

2

2

2

2
2

667.1

667.1
2

3

25.0

25.0



























 


x

V

x
xF  (1.12) 

 

 
Figure 1.11: Design of beam cross-section for minimum Euclidean norm between the 

individual minima 
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Graphically, the optimum is found at 
* 2

2 15x mm  which gives that * * 3.87w h mm  , 

with the objective function values of 
* 2

1 15f mm and 
*

2 100f MPa . 

 

Both of these designs are appropriate and optimal, but in different ways. Later on, when we 

look at Pareto Optimality, this will make more sense. Everything depends on how the 

optimization problem is formulated, which is what we are going to look at next. 

 

1.3 Formulation of the Optimum Design Problem 

 

To properly define and formulate an optimization problem, it takes approximately 50% of the 

total effort required to solve it. It is therefore necessary to follow a well-defined procedure for 

formulating the design optimization problems. Remember that the optimum solution will be 

only as good as the formulation. For example: 

a. If a critical constraint is not included, then it will most probably be violated. 

b. If there are too many constraints, or if they are inconsistent, then a solution may not 

be possible. 

 

However, once the problem is properly formulated, good software is usually available to deal 

with it. For most design optimization problems, the formulation procedure requires the 

following 6 steps: 

1. Project/problem description 

2. Data and information collection 

3. Definition of design variables 

4. Optimization criterion 

5. Formulation of constraints 

6. Formulate the optimization problem 

 

1.3.1 Project/Problem Description 
 

The formulation process begins by developing a descriptive statement for the project/ 

problem, usually by the project’s owner/sponsor. The statement describes the overall 

objectives of the project and the requirements to be met. This is also called the statement of 

work. 

 

1.3.2 Data and Information Collection 
 

To develop a mathematical formulation for the problem, it is necessary to obtain all available 

information on the: material properties, performance requirements, resource limits, cost of 

raw materials, etc. It is also necessary to determine how to analyse the designs. Therefore, 

the analysis procedures and tools must also be identified at this stage. For example: the 

finite-element analysis is commonly used for structural analysis, so the relevant software tool 

available needs to be identified. In many cases, the project statement is vague, and 

assumptions about modelling of the problem need to be made in order to formulate and 

solve it. 
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1.3.3 Definition of Design Variables 
 

Identify a set of variables that describe the system, called the design variables. These are 

the optimization variables and are free so that any value can be assigned to them. The 

number of independent design variables gives the design degrees of freedom for the 

problem. 

 
Design variables should be independent of each other as far as possible. If they are not, 

there must be some equality constraints between them. There must be a minimum number 

of design variables to properly formulate a design optimization problem. A numerical value 

should be given to each identified design variable to determine if a trial design of the system 

is specified. 

 

1.3.4 Optimization Criterion 
 

The optimization criterion is a scalar function which produces a numerical value once a 

design is specified; i.e. when the design variable vector x is substituted into it.  This criterion 

is called the objective function for the optimum design problem, and it needs to be 

maximized or minimized depending on the problem. The selection of a proper objective 

function is an important decision in the design process. Some objective functions are: Cost 

(minimized); Profit (maximized), Weight (minimized), Energy expenditure (minimized), 

Vehicle ride quality (maximized). 

 

1.3.5 Formulation of Constraints 
 

All restrictions on the design are called constraints. It is necessary to identify all constraints 

and develop expressions for them. Most realistic systems must be designed and 

manufactured with the given resources and must meet performance requirements.  For 

example:  

a. Structural members should not fail under normal operating loads. 

b. Structural vibration frequencies must be different from the operating frequency of the 

machine it supports; otherwise, resonance can occur and cause catastrophic failure. 

c. Members must fit into the available space. 

d. These constraints must depend on the design variables. 

e. A meaningful constraint must be a function of at least one design variable. 

 

1.3.6 Formulate the Optimization Problem 
 

This is where everything from steps 2, 3, 4 and 5 are put together to formulate the 

optimization problem in the form of (1.4).  

Minimize:    xf  

(1.4) Subject to:   mtoixg i 1;0   

   ptojxh j 1;0   
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Chapter 2 
 

Graphical Method of Optimization 

 
 
2.0 Introduction  

 

Optimization problems having only two design variables can be solved by observing how they 

are graphically represented. All constraint functions are plotted, and a set of feasible designs 

(the feasible set) for the problem is identified. Objective function contours are then drawn, and 

the optimum design is determined by visual inspection. In this section, the graphical solution 

process will be introduced as well as several concepts related to optimum design problems. 

The method will be introduced using a simple example of profit maximisation followed by a 

further example. 

 

 

2.1 Defining a Profit Maximization Example  

 

Step 1: Project Description  

A company manufactures two machines, A and B. Using available resources, either 28 A or 

14 B can be manufactured daily. The sales department can sell up to 14 A machines or 24 B 

machines. The shipping facility can handle no more than 16 machines per day. The company 

makes a profit of £400 on each A machine and £600 on each B machine. How many A and B 

machines should the company manufacture every day to maximize its profit? 

 

STEP 2: Data and information collection  

Is all the information available to solve the problem? Data and information are defined in the 

project statement. 

 

STEP 3: Definition of design variables  

The following two design variables are identified in the problem statement:  

   x1=Number of A machines made each day 

   x2=Number of B machines made each day 

 

STEP4: Optimization criterion:  

The objective is to maximize daily profit, which can be expressed in terms of design variables 

as (2.1) 

 

21 600400 xxP   (2.1) 
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STEP 5: Formulation of constraints  

Design constraints are placed on manufacturing capacity, on sales personnel and on shipping 

and handling facility. The constraint on the shipping and handling facility is quite 

straightforward and is given by (2.2). 

 

Shipping and Handling Constraints 

1621  xx  (2.2) 

 

Constraints on manufacturing and sales facilities are a bit tricky. First, consider the 

manufacturing limitation. It is assumed that if the company is manufacturing x1 A machines 

per day, then the remaining resources and equipment can be proportionately used to 

manufacture x2 B machines, and vice versa. Therefore, noting that x1/28 is the fraction of 

resources used to produce A and x2/14 is the fraction used to produce B, the constraint is 

expressed as (2.3). 

 

Manufacturing Constraint 

1
1428

21 
xx

 (2.3) 

 

Similarly, the constraint on sales department resources is given as (2.4). 

 

Sales limitation 

1
2414

21 
xx

 (2.4) 

 

Finally, the design variables must be non-negative, given in (2.5). 

0, 21 xx  (2.5) 

 

Note that for this problem, the formulation remains valid even when a design variable has zero 

value. The problem has two design variables and five inequality constraints. All functions of 

the problem are linear in variables x1 and x2. Therefore, it is a linear programming problem. 

Note also that for a meaningful solution, both design variables must have integer values at the 

optimum point. 

 

 

2.2 Step by Step Graphical Solution Procedure 

 

STEP 1: Coordinate system set-up  

The first step in the solution process is to set up an origin for the x-y coordinate system and 

scales along the x- and y-axes. By looking at the constraint functions, a coordinate system for 

the profit maximization problem can be set up using a range of 0 to 25 along both the x and y 

axes, Figure 2.1 In some cases, the scale may need to be adjusted after the problem has 

been graphed because the original scale may provide too small or too large a graph for the 

problem. 
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Figure 2.1: x-y coordinate system with the range of 0 to 25 along both the x and y axes. 

 

STEP 2: Inequality constraint boundary plot  

To illustrate the graphing of a constraint, let us consider the inequality 1621  xx  given 

in (2.2). To represent the constraint graphically, we first need to plot the constraint boundary; 

that is, the points that satisfy the constraint as an equality 1621  xx . This is a linear 

function of the variables x1 and x2. To plot such a function, we need two points that satisfy the 

equation 1621  xx . Let these points be calculated as (16, 0) and (0, 16). Locating them 

on the graph and joining them by a straight line produces the line F-J, as shown in Figure 2.2. 

Line F-J then represents the boundary of the feasible region for the inequality constraint 

1621  xx . Points on one side of this line violate the constraint, while those on the other 

side satisfy it. 

 
Figure 2.2: Constraint boundary for the inequality 1621  xx  in the profit 

maximization problem. 
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STEP 3: Identification of the feasible region for an inequality  

The next task is to determine which side of constraint boundary F-J is feasible for the constraint 

1621  xx . To accomplish this, we select a point on either side of F-J and evaluate the 

constraint function there. For example, at point (0,0), the left side of the constraint has a value 

of 0. Because the value is less than 16, the constraint is satisfied and the region below F-J is 

feasible. We can test the constraint at another point on the opposite side of F-J, say at point 

(10, 10). At this point the constraint is violated because the left side of the constraint function 

is 20, which is larger than 16. Therefore, the region above F-J is infeasible with respect to the 

constraint, as shown in Figure 2.3. The infeasible region is “shaded-out,” a convention that is 

used throughout this text. Note that if this were an equality constraint 1621  xx , the 

feasible region for it would only be the points on line F-J. Although there are infinite points on 

F-J, the feasible region for the equality constraint is much smaller than that for the same 

constraint written as an inequality. This shows the importance of properly formulating all the 

constraints of the problem. 

 

 
Figure 2.3: Feasible/infeasible side for the inequality 1621  xx  in the profit 

maximization problem. 

 

STEP 4: Identification of the feasible region By following the procedure that is described in 

step 3, all inequalities are plotted on the graph and the feasible side of each one is identified 

(if equality constraints were present, they would also be plotted at this stage). Note that the 

constraints 0, 21 xx  restrict the feasible region to the first quadrant of the coordinate 

system. The intersection of feasible regions for all constraints provides the feasible region for 

the profit maximization problem, indicated as ABCDE in Figure 2.4. Any point in this region or 

on its boundary provides a feasible solution to the problem. 

 

STEP 5: Plotting of objective function contour  

The next task is to plot the objective function on the graph and locate its optimum points. For 

the present problem, the objective is to maximize the profit 21 600400 xxP  , which 

involves three variables: P, x1, and x2. The function needs to be represented on the graph so 
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that the value of P can be compared for different feasible designs to locate the best design. 

However, because there are infinite feasible points, it is not possible to evaluate the objective 

function at every point. One way of overcoming this impasse is to plot the contours of the 

objective function.  

 

Figure 2.4: Feasible region for the profit maximization problem. 
 

A contour is a curve on the graph that connects all points having the same objective function 

value. A collection of points on a contour is also called the level set. If the objective function is 

to be minimized, the contours are also called isocost curves. To plot a contour through the 

feasible region, we need to assign it a value. To obtain this value, consider a point in the 

feasible region and evaluate the profit function there. For example, at point (6,4), P is 

480046006400 P . To plot the P=4800 contour, we plot the function 

4800600400 21  xx .This contour is a straight line, as shown in Figure 2.5. 

 

STEP 6: Identification of the optimum solution  

To locate an optimum point for the objective function, we need at least two contours that pass 

through the feasible region. We can then observe trends for the values of the objective function 

at different feasible points to locate the best solution point. Contours for P=2400, 4800, and 

7200 are plotted in Figure 2.6. We now observe the following trend: As the contours move up 

toward point D, feasible designs can be found with larger values for P. It is clear from 

observation that point D has the largest value for P in the feasible region. We now simply read 

the coordinates of point D (4, 12) to obtain the optimum design, having a maximum value for 

the profit function as P=8800. Thus, the best strategy for the company is to manufacture 4 A 

and 12 B machines to maximize its daily profit. The inequality constraints in (2.2) and (2.3) are 

active at the optimum; that is, they are satisfied at equality. These represent limitations on 

shipping and handling facilities, and on manufacturing. The company can think about relaxing 

these constraints to improve its profit. All other inequalities are strictly satisfied and therefore 

inactive. Note that in this example the design variables must have integer values. Note also 

that for this example all functions are linear in design variables. Therefore, all curves in Figures 

2.2 through 2.6 are straight lines. In general, the functions of a design problem may not be 
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linear, in which case curves must be plotted to identify the feasible region, and contours or 

isocost curves must be drawn to identify the optimum design. To plot a nonlinear function, a 

table of numerical values for xl and x2 must be generated. These points must be then plotted 

on a graph and connected by a smooth curve. 

 
Figure 2.5: Plot of P=4800 objective function contour for the profit maximization problem. 

 

 
Figure 2.6: Graphical solution to the profit maximization problem: optimum point D = (4, 

12); maximum profit, P = 8800. 
 

 

2.3 Design Problem with Multiple Solutions 

 

A situation can arise in which a constraint is parallel to the cost function. If the constraint is 

active at the optimum, there are multiple solutions to the problem. To illustrate this situation, 

consider the design problem of (2.6).  

 

Minimize:     21 5.0 xxxf   (2.6) 
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Subject to: 1232 21  xx  

 82 21  xx  

where: 21 0;0 xx   

 

In this problem, the second constraint is parallel to the cost function. Therefore, there is a 

possibility of multiple optimum designs. Figure 2.7 provides a graphical solution to the 

problem. It is seen that any point on the line B-C gives an optimum design, giving the 

problem infinite optimum solutions. 

 
Figure 2.7: Example problem with multiple solutions 

 

 

2.4 Design Problem with Unbounded Solutions 

 

Some design problems may not have a bounded solution. This situation can arise if we forget 

a constraint or incorrectly formulate the problem. To illustrate such a situation, consider the 

design problem of (2.7).  

Minimize:     21 2xxxf   

(2.7) 
Subject to: 02 21  xx  

 632 21  xx  

where: 21 0;0 xx   

 

The feasible set for the problem is shown in Figure 2.8 with several cost function contours. 

It is seen that the feasible set is unbounded. Therefore, there is no finite optimum solution, 

and we must re-examine the way the problem was formulated to correct the situation.  

Figure 2.8 shows that the problem is underconstrained. 
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Figure 2.8: Example problem with unbounded solutions 

 

 

2.5 Design Problem with Infeasible Solutions 

 

If we are not careful in formulating it, a design problem may not have a solution, which happens 

when there are conflicting requirements or inconsistent constraint equations. There may also 

be no solution when we put too many constraints on the system; that is, the constraints are so 

restrictive that no feasible solution is possible. These are called infeasible problems. To 

illustrate them, consider the design problem of (2.8). 

 

Minimize:     21 2xxxf   

(2.8) 
Subject to: 623 21  xx  

 1232 21  xx  

where: 0;0;5;5 2121  xxxx  

 

Constraints for the problem are plotted in Figure 2.9 and their infeasible side is shaded out. 

It is evident that there is no region within the design space that satisfies all constraints; that is, 

there is no feasible region for the problem. Thus, the problem is infeasible. Basically, the first 

two constraints impose conflicting requirements. The first requires the feasible design to be 

below the line A-G, whereas the second requires it to be above the line C-F. Since the two 

lines do not intersect in the first quadrant, the problem has no feasible region. 

 



Page 21 
Copyright © 2024 University of Leeds UK. All rights reserved. 

 
Figure 2.9: Example problem with infeasible solutions 

 

 

2.6 Summary of Steps to Solve an Optimization Problem Graphically  

 

The 6 steps outlined in section 2.2, related to solving the problem defined in section 2.1, 

which consisted of only inequality constraints. However, as optimization problems can have 

both equality and inequality constraints, the steps in solving a graphical optimization problem 

are best summarised as follow: 

1) Select a suitable coordinate system, and choose an appropriate range for the 

optimization variables. 

2) Plot a contour for each equality and inequality constraint function to define the 

boundaries of the design domain. If required, adjust the range of values to plot for the 

design variables. 

3) Identify the feasible region for each inequality constraint function plotted. 

4) Identify the feasible design domain region. 

5) Plot several contours of the objective function, for different decreasing (if 

minimization) or increasing (if maximization) values of the objective function.  

6) Identity the optimal solution. Read from the graph, or manipulate the constraint 

equations and the objective function to obtain the optimal solution. 

 

 

2.7 Example  

 

Solve the optimization problem of (2.9) graphically. 

 

Minimize:     2 2

1 2 1 1 2 24 5f x x x x x x    

(2.9) Subject to:   2

1 2 1 2, 2 0g x x x x     

  1 2 1 2, 6 0h x x x x     
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Following the 6 steps outlined in section 2.6, the solution to this problem is as follows: 

 

1) Select a suitable coordinate system.  

 

In looking at the objective function and constraints, all are a function of design variables x1 

and x2. Consequently in solving this graphically, it is customary to place the design variable x2 

on the vertical axis, and the variable x1 on the horizontal axis. 

 

Note that: There are no limits placed on the design variables. Therefore, they could both be 

either positive or negative and have any value from -∞ to +∞. However, let’s start by defining 

a plausible range for x1, then substitute into the constraint as if they were all equality 

constraints to define a range for x2.  

 

Let’s assume the range for x1 to be: 110 10x   . Now, rearrange the equality and inequality 

constraint equations, to calculate x2 from the range of x1.  

  2 2

1 2 1 2 1 2

2

2 1

, 2 0 2 0

2

g x x x x x x

x x

       

  
 

(a) 

 1 2 1 2

2 1

, 6 0

6

h x x x x

x x

   

  
 

(b) 

 

Now substitute the limits of x1, into (a) and (b) to solve for the limits of x2. 

 

At x1 = -10 

 

2

2 1

2

2

2;

10 2 102

x x

x

 

   
 

 

2 1

2

6 ;

6 10 16

x x

x

 

   
 

 

At x1 = 10 

 

2

2 1

2

2

2;

10 2 102

x x

x

 

  
 

 

2 1

2

6 ;

6 10 4

x x

x

 

   
 

 

Which then means that the range of values for x2 is: 24 102x    

 

And the design domain area is then that given by Figure 2.10, where these limits have been 

rounded to the nearest 10, so from -10 up to 110. 
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Figure 2.10: Coordinate system for problem (2.9). 

 

2) Plot a contour for each equality and inequality constraint function  

 

With the rearranged equations (a) and (b), now calculate values of x2 in the range for x1 of 

110 10x   . 

Table 2.1: Calculated values of x2 
from range of x1 

  g h 

x1 x2 (g) x2 (h) 

-10 102.0 16 

-9 83.0 15 

-8 66.0 14 

-7 51.0 13 

-6 38.0 12 

-5 27.0 11 

-4 18.0 10 

-3 11.0 9 

-2 6.0 8 

-1 3.0 7 

0 2.0 6 

1 3.0 5 

2 6.0 4 

3 11.0 3 

4 18.0 2 

5 27.0 1 

6 38.0 0 

7 51.0 -1 

8 66.0 -2 

9 83.0 -3 

10 102.0 -4 

 

The values from table 2.1 are then plotted in Figure 2.11 to show the contours of the equality 

and inequality constraint. In looking at this figure, since the solution to the optimization 
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problem must lie on the equality constraint, it is easy to see, that the range of values for both 

design variables needs to be changed.  

 
Figure 2.11: Coordinate system for problem (2.9). 

 

The range to plot is therefore now changed to be 13 2x   , and 20 10x  . 

 

 
Figure 2.12: Coordinate system for problem (2.9) with new range for the design variables. 

 

In looking at Figure 2.12, the plot of the constraint equations is not very smooth, so more 

points are required. Instead of the gap between each point set at 1, a new set of values was 

calculated with a gap between values of 0.1, to generate the smoother plot of Figure 2.13. 

 

 

3) Identify the feasible region for each inequality constraint. 

 

Now that the equality and inequality constraints have been plotted, we can identify the 

feasible region of the inequality constraint. To do this, we need to rearrange the inequality 

constraint to determine which values of x2 are in the feasible domain. 
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  2

1 2 1 2

2

1 2

2

2 1

, 2 0

2

2

g x x x x

x x

x x

   

  

  

 

(c) 

 

 
Figure 2.13: Coordinate system for problem (2.9) with smoother plot than Figure 2.12. 

 

 

From equation (c) we can see that all values of x2, greater than or equal to the boundary for 

the plot of x2 in Figure 2.13, corresponds with the feasible domain for this inequality 

constraint. This is now shown in Figure 2.14 with a shaded area for the infeasible domain. 

 

 
Figure 2.14: Plot of constraint equations showing the feasible region for the inequality 

constraint equation. 
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4) Identify the feasible design domain region. 

Since the feasible region is above the plot of equation (a), and since the problem has an 

equality constraint, then the feasible design domain is that part of the plot of equation (b) 

within the feasible region. Figure 2.15, shows the feasible resign region. 

 

 
Figure 2.15: Plot of constraint equations showing the feasible region for the inequality 

constraint equation. 
 

5) Plot several contours of the objective function 

 

In order to plot contours of the objective function, it needs to be manipulated so that we can 

calculate values of x2, as a function of values of x1. So, rearranging the objective function 

gives: 

 

   

2 2

1 2 1 1 2 2

2 2

1 1 2 2

2 2

2 1 2 1

2 2

2 1 2 1

4 5

4 5 0

5 4 0

5 4 0

f x x x x x x

x x x x f

x x x x f

x x x x f

  

   

   

    

 

 
 
 
 

(d) 

 

Equation (d) is in the form of a quadratic equation of the form of equation (e). 

 

2

2 2 0ax bx c    (e) 

where:  

2

1 11, 5 , 4a b x c x f      (f) 

 

and where the solution to equation (e) is found using equation (g) 

 

2

2

4

2

b b ac
x

a

  
  (g) 
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Now substituting (f) into (g) gives equation (h), which will allow for the calculation of x2, at 

different values of x1, for different objective function values of f. Thus allowing for the 

generation of contour plots for different values of f. 

 

     
2 2

2
1 1 1

2

2 2

1 1 1

2

2

1 1

2

5 5 4 1 44

2 2 1

5 25 4 16

2

5 9 4

2

x x x fb b ac
x

a

x x f x
x

x x f
x

         
 



  
 

 
 

 

(h) 
 

 

When equation (h) is plotted, for different values of f, the plot of Figure 2.17 is generated. To 

begin with, different values of f were tried until the plots of the contours started to appear 

within the feasible domain. Then only plots for values of f = 100, 50, 10, 0 and -5 were 

plotted. 

 
Figure 2.17: Contour plots of the objective function using equation (h). 

 

As can clearly be seen from Figure 2.17, the contour of the objective function decrease in 

value as they get closer to the intersection of both constraints on the right hand quadrant of 

plot. Such that the contour for f = –5 is the lowest value which is within the feasible line 

region. 

 

6) Identity the optimal solution 

 

From Figure 2.17, we can see that the optimum value is at the intersection of both 

constraints on the right hand quadrant of plot. If both constraint equations (a) and (b) are 

now solved, we can find the values of x1, x2 and f, which will be the optimum value for this 

problem. 
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As (a) and (b) are both equal to x2, both equations are therefore equal to each other, which 

gives:  

2

2 1 1

2

1 1

2

1 1

2 6

2 6 0

4 0

x x x

x x

x x

   

   

   

 

(i) 

 

Solving the quadratic equation (i) gives: 

 

2

1 1

2

1

1

4 0

1 1 4 1 4 1 1 16

2 1 2

1 17 1 4.1231
2.5616 1.5616

2 2

x x

x

x or

  

        
 



   
    

 

(i) 

 

And from Figure 2.17, since x1 has to be positive, then the value of x1 is 1.5616, substituting 

into (b), and then into the objective function gives that the optimal values for the design 

variables and the optimum value for the objective function are: 

 

1

2

1.5616

4.4384

5.20125

x

x

f





 

 

 

These are then plotted onto Figure 2.18 to show the optimal solution to this problem 

 

 
Figure 2.18: Contour plots of the objective function showing the optimal solution 
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Chapter 3 
 

Unconstrained Optimization Methods 

 
 
 
3.0 Introduction  

 

This chapter looks at some methods for solving unconstrained nonlinear optimization 

problems. 

 

3.1 The Bisector Method 

 

In the interval halving method, exactly one-half of the current interval of uncertainty is 

deleted in every stage. It requires three experiments in the first stage and two experiments in 

each subsequent stage. The procedure can be described by the following four steps: 

1. Divide the initial interval  ba, of uncertainty abL 0  into four equal parts 

  4abx   and label the middle point xax  20 and the quarter-interval points 

xax 1 and xax  32 . 

2. Evaluate the function f (x) at the three interior points to obtain  11 xff  ,  00 xff  , and 

 22 xff  . 

3. There are then 3 cases to consider corresponding with Figure 3.1, these are: 

a) If 102 fff   as shown in Figure 3.1(a), delete the interval (x0, b), label x1 and x0 as 

the new x0 and b, respectively, and go to step 4.  

b) If 102 fff   as shown in Figure 3.1(b), delete the interval (a, x0), label x2 and x0 as 

the new x0 and a, respectively, and go to step 4. 

c) If 01 ff  and 02 ff   as shown in Figure 3.1(c), delete both the intervals (a, x1) 

and (x2, b), label x1 and x2 as the new a and b, respectively, and go to step 4. 

4. Test whether the new interval of uncertainty, abL  , satisfies the convergence 

criterion L ≤ ε, where ε is a small quantity. If the convergence criterion is satisfied, stop 

the procedure. Otherwise, set the new LL 0 and go to step 1. 

Remarks: 

1. In this method, the function value at the middle point of the interval of uncertainty, 
0f , will 

be available in all the stages except the first stage.   

2. The interval of uncertainty remaining at the end of n experiments (n ≥ 3 and odd) is given 

by (3.1). 
 

0

2

1

2

1
LL

n

n 











 (3.1) 
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(a)  (b)  

(c)  
Figure 3.1: Possibilities in the interval halving method: (a) 

102 fff  ; (b) 
102 fff  ; (c) 

01 ff  and 
02 ff  . 

 
Bisector Example Problem 1: Problem 45 in Worked Examples 

Minimize 𝑓(𝑥) = 7𝑥2 − 20𝑥 + 22 for −2 ≤ 𝑥 ≤ 4 with Bisector Search Parameters: xmin=-2, 
xmax=4, convergence tolerance = 0.01. Calculations: 
iteration     1 of bisector search, domain length =    6.00000 
a=-2.000 f(a)=90.000 
x1=-0.500 f(x1)=33.750 
x0= 1.000 f(x0)= 9.000 
x2= 2.500 f(x2)=15.750 
b= 4.000 f(b)=54.000 
iteration     2 of bisector search, domain length =    3.00000 
a=-0.500 f(a)=33.750 
x1= 0.250 f(x1)=17.438 
x0= 1.000 f(x0)= 9.000 
x2= 1.750 f(x2)= 8.438 
b= 2.500 f(b)=15.750 
iteration     3 of bisector search, domain length =    1.50000 
a= 1.000 f(a)= 9.000 
x1= 1.375 f(x1)= 7.734 
x0= 1.750 f(x0)= 8.438 
x2= 2.125 f(x2)=11.109 
b= 2.500 f(b)=15.750 
iteration     4 of bisector search, domain length =    0.75000 
a= 1.000 f(a)= 9.000 
x1= 1.188 f(x1)= 8.121 
x0= 1.375 f(x0)= 7.734 
x2= 1.563 f(x2)= 7.840 
b= 1.750 f(b)= 8.438 
iteration     5 of bisector search, domain length =    0.37500 
a= 1.188 f(a)= 8.121 
x1= 1.281 f(x1)= 7.866 
x0= 1.375 f(x0)= 7.734 
x2= 1.469 f(x2)= 7.726 
b= 1.563 f(b)= 7.840 
iteration     6 of bisector search, domain length =    0.18750 
a= 1.375 f(a)= 7.734 
x1= 1.422 f(x1)= 7.715 
x0= 1.469 f(x0)= 7.726 
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x2= 1.516 f(x2)= 7.767 
b= 1.563 f(b)= 7.840 
iteration     7 of bisector search, domain length =    0.09375 
a= 1.375 f(a)= 7.734 
x1= 1.398 f(x1)= 7.721 
x0= 1.422 f(x0)= 7.715 
x2= 1.445 f(x2)= 7.716 
b= 1.469 f(b)= 7.726 
iteration     8 of bisector search, domain length =    0.04688 
a= 1.398 f(a)= 7.721 
x1= 1.410 f(x1)= 7.717 
x0= 1.422 f(x0)= 7.715 
x2= 1.434 f(x2)= 7.714 
b= 1.445 f(b)= 7.716 
iteration     9 of bisector search, domain length =    0.02344 
a= 1.422 f(a)= 7.715 
x1= 1.428 f(x1)= 7.714 
x0= 1.434 f(x0)= 7.714 
x2= 1.439 f(x2)= 7.715 
b= 1.445 f(b)= 7.716 
iteration    10 of bisector search, domain length =    0.01172 
a= 1.422 f(a)= 7.715 
x1= 1.425 f(x1)= 7.714 
x0= 1.428 f(x0)= 7.714 
x2= 1.431 f(x2)= 7.714 
b= 1.434 f(b)= 7.714 
search completed after    10 iterations xmin=   1.42773 fmin=   7.71429 

 
Bisector Example Problem 2: Problem 46 in Worked Examples 

Minimize 𝑓(𝑥) = 𝑥3 + 𝑥2 − 𝑥 − 2 for −1 ≤ 𝑥 ≤ 2 with Bisector Search Parameters: xmin=-1, 
xmax=2, convergence tolerance = 0.01. Calculations: 

iteration     1 of bisector search, domain length =    3.00000 
a=-1.000 f(a)=-1.000 
x1=-0.250 f(x1)=-1.703 
x0= 0.500 f(x0)=-2.125 
x2= 1.250 f(x2)= 0.266 
b= 2.000 f(b)= 8.000 
iteration     2 of bisector search, domain length =    1.50000 
a=-0.250 f(a)=-1.703 
x1= 0.125 f(x1)=-2.107 
x0= 0.500 f(x0)=-2.125 
x2= 0.875 f(x2)=-1.439 
b= 1.250 f(b)= 0.266 
iteration     3 of bisector search, domain length =    0.75000 
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a= 0.125 f(a)=-2.107 
x1= 0.313 f(x1)=-2.184 
x0= 0.500 f(x0)=-2.125 
x2= 0.688 f(x2)=-1.890 
b= 0.875 f(b)=-1.439 
iteration     4 of bisector search, domain length =    0.37500 
a= 0.125 f(a)=-2.107 
x1= 0.219 f(x1)=-2.160 
x0= 0.313 f(x0)=-2.184 
x2= 0.406 f(x2)=-2.174 
b= 0.500 f(b)=-2.125 
iteration     5 of bisector search, domain length =    0.18750 
a= 0.219 f(a)=-2.160 
x1= 0.266 f(x1)=-2.176 
x0= 0.313 f(x0)=-2.184 
x2= 0.359 f(x2)=-2.184 
b= 0.406 f(b)=-2.174 
iteration     6 of bisector search, domain length =    0.09375 
a= 0.266 f(a)=-2.176 
x1= 0.289 f(x1)=-2.181 
x0= 0.313 f(x0)=-2.184 
x2= 0.336 f(x2)=-2.185 
b= 0.359 f(b)=-2.184 
iteration     7 of bisector search, domain length =    0.04688 
a= 0.313 f(a)=-2.184 
x1= 0.324 f(x1)=-2.185 
x0= 0.336 f(x0)=-2.185 
x2= 0.348 f(x2)=-2.185 
b= 0.359 f(b)=-2.184 
iteration     8 of bisector search, domain length =    0.02344 
a= 0.324 f(a)=-2.185 
x1= 0.330 f(x1)=-2.185 
x0= 0.336 f(x0)=-2.185 
x2= 0.342 f(x2)=-2.185 
b= 0.348 f(b)=-2.185 
iteration     9 of bisector search, domain length =    0.01172 
a= 0.330 f(a)=-2.185 
x1= 0.333 f(x1)=-2.185 
x0= 0.336 f(x0)=-2.185 
x2= 0.339 f(x2)=-2.185 
b= 0.342 f(b)=-2.185 
search completed after     9 iterations xmin=   0.33301 fmin=  -2.18518 
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3.2 The Golden Section Method 

The Golden Section Method is one of the better methods in the class of interval-reducing 

methods. The basic idea of the method is as follows: Evaluate the function at predetermined 

points, compare them to find the minimum. Then converge on the minimum point by 

systematically reducing the interval of uncertainty. The method uses fewer function 

evaluations to reach the minimum point compared with other similar methods.  

 

The different steps of the Golden Search Algorithm used for the minimization of a single 
value function in the interval  ba, are as follow: 

1) If this is the first iteration define the search interval  00,ba to be the specified interval in 

which to search for the minimum, given by (3.2).  

 bbaa  00 ,  (3.2) 

 
2) Calculate two intermediate points  11,ba  in the interval  00,ba , using (5.3) and (5.4): 

 0001 abaa    (3.3) 

 0001 abbb    (3.4) 

38197.0
2

53
: 


where   

 

3) Evaluate the function at the two intermediate points  11,ba to obtain    11 bfandaf : 

4) Determine the new search limit by the following comparisons: 

a) If (3.5) is satisfied, the minimum point lies between a0 and b1, so the new search interval 

is then given by becomes (3.6). Go to step 5. 

   11 bfaf   (3.5) 

 1000 , bbaa   (3.6) 

 

b) If (3.7) is satisfied, the minimum point lies between a1 and b0, then the new search 

interval becomes (5.8). Go to step 5. 

   11 bfaf   (3.7) 

 0010 , bbaa   (3.8) 
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c) If (3.9) is satisfied, the minimum point lies between a1 and b1, then the new search 

interval becomes (3.10). Go to step 5 

   11 bfaf   (3.9) 

 1010 , bbaa   (3.10) 

 

5) Calculate the Interval of Uncertainty (I), using (3.11). 

00 abI   (3.11) 

 

6) Check limit to stop algorithm. If (I) is equal to, or smaller than the specified minimum 

range (3.12), using (3.13) calculate the optimal functional value and stop, else go to 

step 2. 

RangeI   (3.12) 

2
00 ba

xOptimum


  (3.13) 

 
Golden Search Example Problem 1: Problem 45 in Worked Examples 

Minimize 𝑓(𝑥) = 7𝑥2 − 20𝑥 + 22 for −2 ≤ 𝑥 ≤ 4 with Golden Search Parameters: xmin=-2, 
xmax=4, tol=0.01. Calculations: 

iteration     1 of golden section, domain length =    6.00000 
a0=-2.000 f(a0)=90.000 
a1= 0.292 f(a1)=16.760 
b1= 1.708 f(b1)= 8.262 
b0= 4.000 f(bo)=54.000 
iteration     2 of golden section, domain length =    3.70820 
a0= 0.292 f(a0)=16.760 
a1= 1.708 f(a1)= 8.262 
b1= 2.584 f(b1)=17.053 
b0= 4.000 f(bo)=54.000 
iteration     3 of golden section, domain length =    2.29180 
a0= 0.292 f(a0)=16.760 
a1= 1.167 f(a1)= 8.193 
b1= 1.708 f(b1)= 8.262 
b0= 2.584 f(bo)=17.053 
iteration     4 of golden section, domain length =    1.41641 
a0= 0.292 f(a0)=16.760 
a1= 0.833 f(a1)=10.199 
b1= 1.167 f(b1)= 8.193 
b0= 1.708 f(bo)= 8.262 
iteration     5 of golden section, domain length =    0.87539 
a0= 0.833 f(a0)=10.199 
a1= 1.167 f(a1)= 8.193 
b1= 1.374 f(b1)= 7.735 
b0= 1.708 f(bo)= 8.262 
iteration     6 of golden section, domain length =    0.54102 
a0= 1.167 f(a0)= 8.193 
a1= 1.374 f(a1)= 7.735 
b1= 1.502 f(b1)= 7.752 
b0= 1.708 f(bo)= 8.262 
iteration     7 of golden section, domain length =    0.33437 
a0= 1.167 f(a0)= 8.193 
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a1= 1.295 f(a1)= 7.839 
b1= 1.374 f(b1)= 7.735 
b0= 1.502 f(bo)= 7.752 
iteration     8 of golden section, domain length =    0.20665 
a0= 1.295 f(a0)= 7.839 
a1= 1.374 f(a1)= 7.735 
b1= 1.423 f(b1)= 7.715 
b0= 1.502 f(bo)= 7.752 
iteration     9 of golden section, domain length =    0.12772 
a0= 1.374 f(a0)= 7.735 
a1= 1.423 f(a1)= 7.715 
b1= 1.453 f(b1)= 7.718 
b0= 1.502 f(bo)= 7.752 
iteration    10 of golden section, domain length =    0.07893 
a0= 1.374 f(a0)= 7.735 
a1= 1.404 f(a1)= 7.719 
b1= 1.423 f(b1)= 7.715 
b0= 1.453 f(bo)= 7.718 
iteration    11 of golden section, domain length =    0.04878 
a0= 1.404 f(a0)= 7.719 
a1= 1.423 f(a1)= 7.715 
b1= 1.434 f(b1)= 7.715 
b0= 1.453 f(bo)= 7.718 
iteration    12 of golden section, domain length =    0.03015 
a0= 1.423 f(a0)= 7.715 
a1= 1.434 f(a1)= 7.715 
b1= 1.441 f(b1)= 7.715 
b0= 1.453 f(bo)= 7.718 
iteration    13 of golden section, domain length =    0.01863 
a0= 1.423 f(a0)= 7.715 
a1= 1.430 f(a1)= 7.714 
b1= 1.434 f(b1)= 7.715 
b0= 1.441 f(bo)= 7.715 
iteration    14 of golden section, domain length =    0.01152 
a0= 1.423 f(a0)= 7.715 
a1= 1.427 f(a1)= 7.714 
b1= 1.430 f(b1)= 7.714 
b0= 1.434 f(bo)= 7.715 
Golden section completed after    14 iterations xmin=   1.43058 fmin=   7.71431 
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Golden Search Example Problem 2: Problem 46 in Worked Examples 

Minimize 𝑓(𝑥) = 𝑥3 + 𝑥2 − 𝑥 − 2 for −1 ≤ 𝑥 ≤ 2 with Golden Search Parameters: xmin=-1, 
xmax=2, convergence tolerance = 0.01. Calculations: 

iteration     1 of golden section, domain length =    3.00000 
a0=-1.000 f(a0)=-1.000 
a1= 0.146 f(a1)=-2.122 
b1= 0.854 f(b1)=-1.502 
b0= 2.000 f(bo)= 8.000 
iteration     2 of golden section, domain length =    1.85410 
a0=-1.000 f(a0)=-1.000 
a1=-0.292 f(a1)=-1.648 
b1= 0.146 f(b1)=-2.122 
b0= 0.854 f(bo)=-1.502 
iteration     3 of golden section, domain length =    1.14590 
a0=-0.292 f(a0)=-1.648 
a1= 0.146 f(a1)=-2.122 
b1= 0.416 f(b1)=-2.171 
b0= 0.854 f(bo)=-1.502 
iteration     4 of golden section, domain length =    0.70820 
a0= 0.146 f(a0)=-2.122 
a1= 0.416 f(a1)=-2.171 
b1= 0.584 f(b1)=-2.044 
b0= 0.854 f(bo)=-1.502 
iteration     5 of golden section, domain length =    0.43769 
a0= 0.146 f(a0)=-2.122 
a1= 0.313 f(a1)=-2.184 
b1= 0.416 f(b1)=-2.171 
b0= 0.584 f(bo)=-2.044 
iteration     6 of golden section, domain length =    0.27051 
a0= 0.146 f(a0)=-2.122 
a1= 0.249 f(a1)=-2.172 
b1= 0.313 f(b1)=-2.184 
b0= 0.416 f(bo)=-2.171 
iteration     7 of golden section, domain length =    0.16718 
a0= 0.249 f(a0)=-2.172 
a1= 0.313 f(a1)=-2.184 
b1= 0.353 f(b1)=-2.184 
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b0= 0.416 f(bo)=-2.171 
iteration     8 of golden section, domain length =    0.10333 
a0= 0.313 f(a0)=-2.184 
a1= 0.353 f(a1)=-2.184 
b1= 0.377 f(b1)=-2.181 
b0= 0.416 f(bo)=-2.171 
iteration     9 of golden section, domain length =    0.06386 
a0= 0.313 f(a0)=-2.184 
a1= 0.337 f(a1)=-2.185 
b1= 0.353 f(b1)=-2.184 
b0= 0.377 f(bo)=-2.181 
iteration    10 of golden section, domain length =    0.03947 
a0= 0.313 f(a0)=-2.184 
a1= 0.328 f(a1)=-2.185 
b1= 0.337 f(b1)=-2.185 
b0= 0.353 f(bo)=-2.184 
iteration    11 of golden section, domain length =    0.02439 
a0= 0.328 f(a0)=-2.185 
a1= 0.337 f(a1)=-2.185 
b1= 0.343 f(b1)=-2.185 
b0= 0.353 f(bo)=-2.184 
iteration    12 of golden section, domain length =    0.01507 
a0= 0.328 f(a0)=-2.185 
a1= 0.334 f(a1)=-2.185 
b1= 0.337 f(b1)=-2.185 
b0= 0.343 f(bo)=-2.185 
Golden section completed after    12 iterations xmin=   0.33282 fmin=  -2.18518 

 
 

3.3 Fibonacci Search Method 

The Fibonacci sequence F1, F2, F3,...,Fn is defined as follows. Starting with the following two 

values: 01 F  and 10 F  

 

Then for values of 0k   we have that (3.14) defined the Fibonacci sequence: 

11   kkk FFF  (3.14) 

 

The first 10 values of the Fibonacci sequence are then given in Table 5.1. 
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Table 5.1: Fibonacci Sequence 

k Fk 

-1 0 

0 1 

1 1 

2 2 

3 3 

4 5 

5 8 

6 13 

7 21 

8 34 

9 55 

10 89 

Instead of using the a constant value of )38197.0( , as was the case for the Golden search 

method, for the Fibonacci search, the value of k  changes with iteration number and is given 

by the sequence of (3.15). Note that the sequence of k is in reverse order to the Fibonacci 

number sequence, and that you always need one more Fibonacci sequence number than the 

number of iterations required!! 
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 (3.15) 

 
Fibonacci Search Example Problem 1: Problem 45 in Worked Examples 

Minimize 𝑓(𝑥) = 7𝑥2 − 20𝑥 + 22 for −2 ≤ 𝑥 ≤ 4 with Fibonacci Search Parameters: N=8 
Fibonacci terms (i.e. 7 Fibonacci iterations), xmin=-2, xmax=4. Calculations: 

iteration     1 of fibonacci, rho =    0.38182 domain length =    6.00000 
a0=-2.000 f(a0)=90.000 
a1= 0.291 f(a1)=16.774 
b1= 1.709 f(b1)= 8.265 
b0= 4.000 f(bo)=54.000 
iteration     2 of fibonacci, rho =    0.38235 domain length =    3.70909 
a0= 0.291 f(a0)=16.774 
a1= 1.709 f(a1)= 8.265 
b1= 2.582 f(b1)=17.024 
b0= 4.000 f(bo)=54.000 
iteration     3 of fibonacci, rho =    0.38095 domain length =    2.29091 
a0= 0.291 f(a0)=16.774 
a1= 1.164 f(a1)= 8.206 
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b1= 1.709 f(b1)= 8.265 
b0= 2.582 f(bo)=17.024 
iteration     4 of fibonacci, rho =    0.38462 domain length =    1.41818 
a0= 0.291 f(a0)=16.774 
a1= 0.836 f(a1)=10.169 
b1= 1.164 f(b1)= 8.206 
b0= 1.709 f(bo)= 8.265 
iteration     5 of fibonacci, rho =    0.37500 domain length =    0.87273 
a0= 0.836 f(a0)=10.169 
a1= 1.164 f(a1)= 8.206 
b1= 1.382 f(b1)= 7.730 
b0= 1.709 f(bo)= 8.265 
iteration     6 of fibonacci, rho =    0.40000 domain length =    0.54545 
a0= 1.164 f(a0)= 8.206 
a1= 1.382 f(a1)= 7.730 
b1= 1.491 f(b1)= 7.741 
b0= 1.709 f(bo)= 8.265 
iteration     7 of fibonacci, rho =    0.33333 domain length =    0.32727 
a0= 1.164 f(a0)= 8.206 
a1= 1.273 f(a1)= 7.884 
b1= 1.382 f(b1)= 7.730 
b0= 1.491 f(bo)= 7.741 
Fibonacci search completed with xmin=   1.38182 fmin=   7.72959 

 
 
Fibonacci Search Example Problem 2: Problem 46 in Worked Examples 

Minimize 𝑓(𝑥) = 𝑥3 + 𝑥2 − 𝑥 − 2 for −1 ≤ 𝑥 ≤ 2 with with Fibonacci Search Parameters: N=8 
Fibonacci terms (i.e. 7 Fibonacci iterations), xmin=-2, xmax=4. Calculations: 

iteration     1 of fibonacci, rho =    0.38182 domain length =    3.00000 
a0=-1.000 f(a0)=-1.000 
a1= 0.145 f(a1)=-2.121 
b1= 0.855 f(b1)=-1.500 
b0= 2.000 f(bo)= 8.000 
iteration     2 of fibonacci, rho =    0.38235 domain length =    1.85455 
a0=-1.000 f(a0)=-1.000 
a1=-0.291 f(a1)=-1.649 
b1= 0.145 f(b1)=-2.121  
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b0= 0.855 f(bo)=-1.500 
iteration     3 of fibonacci, rho =    0.38095 domain length =    1.14545 
a0=-0.291 f(a0)=-1.649 
a1= 0.145 f(a1)=-2.121 
b1= 0.418 f(b1)=-2.170 
b0= 0.855 f(bo)=-1.500 
iteration     4 of fibonacci, rho =    0.38462 domain length =    0.70909 
a0= 0.145 f(a0)=-2.121 
a1= 0.418 f(a1)=-2.170 
b1= 0.582 f(b1)=-2.046 
b0= 0.855 f(bo)=-1.500 
iteration     5 of fibonacci, rho =    0.37500 domain length =    0.43636 
a0= 0.145 f(a0)=-2.121 
a1= 0.309 f(a1)=-2.184 
b1= 0.418 f(b1)=-2.170 
b0= 0.582 f(bo)=-2.046 
iteration     6 of fibonacci, rho =    0.40000 domain length =    0.27273 
a0= 0.145 f(a0)=-2.121 
a1= 0.255 f(a1)=-2.173 
b1= 0.309 f(b1)=-2.184 
b0= 0.418 f(bo)=-2.170 
iteration     7 of fibonacci, rho =    0.33333 domain length =    0.16364 
a0= 0.255 f(a0)=-2.173 
a1= 0.309 f(a1)=-2.184 
b1= 0.364 f(b1)=-2.183 
b0= 0.418 f(bo)=-2.170 
iteration     8 of fibonacci, rho =    0.50000 domain length =    0.10909 
a0= 0.255 f(a0)=-2.173 
a1= 0.309 f(a1)=-2.184 
b1= 0.309 f(b1)=-2.184 
b0= 0.364 f(bo)=-2.183 
Fibonacci completed with xmin=   0.33636 fmin=  -2.18517 

 
3.4 Steepest-Descent Method 

The steepest-descent method is the simplest numerical method for unconstrained 

optimization. The aim of the method is to find the direction d, at the current iteration, in which 
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the cost function f(x) decreases most rapidly, at least locally. The steepest-descent method is 

a first-order method since only the gradient of the cost function is calculated and used to 

evaluate the search direction.  

 

The gradient of a scalar function f(x1, x2, . . ., xn) as the column vector is given by (3.16). 
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The vector c is used to represent the gradient of the cost function f(x); represented by (3.17). 
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  (3.17) 

 

The point xk at which this vector is then calculated is represented by (3.18). 
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The gradient at a point x points is the direction of maximum increase in the cost function. Thus 

the direction of maximum decrease is opposite to that, that is, negative of the gradient vector. 

Any small move in the negative gradient direction will result in the maximum local rate of 

decrease in the cost function. The negative gradient vector thus represents a direction of 

steepest descent for the cost function and is represented by (3.19). 
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
 cd  (3.19) 

 

Since d = – c , the descent condition of inequality is always satisfied due to (5.20). 

 

  0
2
 cdc  (3.20) 

 

The Steepest-Descent Algorithm is then given by the following 6 steps: 

 

Step 1: Estimate a starting design  0x and set the iteration counter 0k . Select a 

convergence parameter 0 . 

Step 2: Calculate the gradient of  xf  at the current point 
 kx  as     kk xfc  . 

Step 3: Calculate the length of 
 kc as 

 kc . If 
  kc , then stop the iterative process 

because  kxx * is a local minimum point. Otherwise, continue.  

Step 4: Let the search direction at the current point  kx  be    kk cd  . 

Step 5: Calculate a step size 
k that minimizes       kkxff d   in the direction  kd

Any one-dimensional search algorithm may be used to determine
k . 

Step 6: Update the design using
     kkk xx d1

. Set 1 kk and go to Step 2. 
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The basic idea of the steepest-descent method is quite simple. We start with an initial estimate 

for the minimum design. The direction of steepest descent is computed at that point. If the 

direction is nonzero, we move as far as possible along it to reduce the cost function. At the 

new design point, we calculate the steepest-descent direction again and repeat the entire 

process. 

 

3.5 What is a Simplex 

The simplex can be thought of as a polygon with n + 1 vertices. Where n is the number of 

design variables. So, if there are 2 design variables, n = 2, the simplex has 3 vertices and is 

a triangle, Figure 3.2. 

 
Figure 3.2: A Simplex which represents 2 design variables consists of 3 points and is a 

triangle. 
 

If there are 3 design variables, then n = 3 and the simplex has 4 vertices and is now a 

tetrahedron, Figure 3.3. 

 
Figure 3.3: A Simplex which represents 3 design variables consists of 4 points and is a 

tetrahedron. 
 

When the points are equidistant, the simplex is said to be regular. Basically, it has one more 

point than the number of design variables which represents the number of dimensions. 

 

3.6 Nelder-Mead Simplex Method 

 

The Nelder and Mead simplex method carries out a search in nth dimensional space using 

heuristic ideas. Also known as nonlinear simplex.  

 

The strengths of this method are: 

1) Does NOT require derivatives of the Objective Function 

2) The Objective Function does not have to be smooth. 
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The weakness of the method are that it is: 

1) Not very efficient, particularly for problems with more than about 10 design variables;  

2) Above n = 10, convergence becomes increasingly difficult 

 

The basic idea in the simplex method is to compare the values of the objective function at the 

n + 1 vertices of a general simplex. Then move the simplex gradually toward the optimum 

point using an iterative process with 5 simple operations. The sequence of operations is 

chosen based on the relative values of the objective function at each of the points. 

 

The Steps of the Nelder-Mead Simplex Method are: 

1) Find the n+1 points of the simplex  

2) Evaluate and sort the points 

3) Carry out the 5 Simplex Operations: 

i) Reflection,  

ii) Expansion, 

iii) Inside and Outside Contraction 

iv) Shrinking 

v) Convergence 

We are now going to look at these 3 steps and 5 operations. Appreciate that each of the 

operations generates a new point. The sequence of operations carried out in each iteration 

depends on the value of the objective function at the new point relative to the other key points. 

 

Let's now start with determining the initial Simplex, that is, the n+1 points 

 

3.6.1 Step 1: Find the n+1 points of the simplex 
The 1st step is to find the n+1 points of the simplex from an initial guess starting position x0. 

Then add a step size to each component of x0 to generate n+1 new points. Generating a 

simplex with equal length edges is preferable. Start by assuming that the length of all sides is 

defined as c and that the initial guess, x0 is the (n + 1)th point. The remaining points, i = 1...n 

can be computed by adding a vector to x0. With all components  1,2, 1, 1,i i i n   equal 

to b, apart for the ith component which is a. The equations to calculate a and b are given in 

(5.21) and (3.22). 

 

3 (3.21) 

2

c
a b   (3.22) 

where n is the number of design variables. 

 

Let us assume that we have 2 design variables, x1 and x2. That means that we need to 

generate 3 points. Let us also assume that the point x0 is given by an initial guess:
0
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And let's assume a step size of c units. 

 

Since n = 2, then b and a become (i) and (ii): 

 

     1 1 2 1 1 3 1 0.25882
2 2 2 2 2

c c c
b n c

n
          (i) 



Page 44 
Copyright © 2024 University of Leeds UK. All rights reserved. 

0.25882 0.96593
2 2

c c
a b c c      (ii) 

 

The two new points, x1 and x2 then become (iii) and (iv). 
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So, if c = 3 and 0
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, then x1 and x2 become (v) and (vi). 
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So the 3 points of the simplex are then given by (vii). And graphically, these 3 points generate 

the Simplex of Figure 3.4. 

0 1 2
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; ;
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x x x
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 (vii) 

 

 
Figure 3.4: The triangular Simplex showing the generated points about x0. 
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If we have a problem with 3 design variables, x1, x2 and x3. That means that we need to 

generate 4 points. 

 

If the initial guess point x0 is
0 0 00 1 2 3

T

x x x x   
 and assuming a step size of c units, then 

since n = 3, then b and a become (viii) and (ix). 
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The three new points, x1, x2 and x3 then become (x). 

 

0 0

0 0

0 0

1 1

1 2 2

3 3

0.94281

0.23570

0.23570

x a x c

x x b x c

x b x c

    
   

      
   

       

,

0

0

0

1

2 2

3

x b

x x a

x b

 
 

  
 

  

and

0

0

0

1

3 2

3

x b

x x b

x a

 
 

  
 

  

 (x) 

 

Table 3.2 gives the calculated values for a and b from equations (3.21) and (3.22) to calculate 

the vertices of the initial Simplex for problems of up to 10 design variables 

 

Table 3.2: Values of a and b for up to 10 design variables 
 n a b  
 2 0.96593c 0.25882c  
 3 0.94281c 0.23570c  
 4 0.92561c 0.21851c  
 5 0.91210c 0.20499c  
 6 0.90106c 0.19395c  
 7 0.89181c 0.18470c  
 8 0.88388c 0.17678c  
 9 0.87699c 0.16988c  
 10 0.87092c 0.16381c  

 

3.6.2 Step 2: Evaluate and Sort the points 
 

After generating the initial simplex, the objective function needs to be evaluated at each of its 

vertices. Then all of the points need to be sorted from best (lowest valued) to worst (highest 

valued). Such that the points are arranged as per (3.23).  

 

       L i T Hf x f x f x f x      (3.23) 

 

Three points then need to be identified: 

1) The point with the highest (worst) values of the objective function: (xH) 

2) The point which is next to the highest (worst) values of the objective function: (xT)  

3) The point with the lowest (best) values of the objective function: (xL) 

 

The following five (5) Simplex operations now need to be carried out: 
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3.6.3 Step 3: Carry out the 5 Simplex Operations 
 

3.6.3.1 Reflection 
 

Calculate the centroid of all the points xi, excluding the worst point (when i = H) using equation 

(3.24). Graphically, for the case of n = 2, it looks like Figure 3.5. Note that for the Simplex with 

2 design variables (n=3), x2 is also the next to highest point xT. 
1

1

1 n

Ce i
i

i H

x x
n







   
(3.24) 

After computing xCe, we know that the line from xH to xCe is a descent direction, Figure 3.6. A 

new point can then be found on this line by reflection, which means that we reflect the distance 

from H to Ce about Ce. 

 
Figure 3.5: Simplex showing the position of the centroid point. 

 

 
Figure 3.6: Simplex showing the descent direction from xH towards xCe. 

 

This gives the new point XR, which is calculated using equation (3.25) and is shown in Figure 

3.7. 

   1R Ce H Ce Ce Hx x x x x x         (3.25) 

 

where:  is the reflection coefficient It always has a value greater than 0 but less than 1, 

although it is usually given the value 1. It is defined by (3.26). 

 

distance between and 

distance between and 
R Ce

H Ce

x x

x x
   (3.26) 
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Figure 3.7: Simplex showing the reflected new point xR. 

 

Since the direction of movement of the simplex is always away from the worst result, we will 

be moving in a favourable direction.  

Depending on the value of the objective function at the reflected point xR, there are 4 choices 

which can be made of what to do next, these are: 

1) If f(xR) lies between f(xT) and f(xL) such that       L R Tf x f x f x  , then xH is replaced 

by xR. A new simplex is started, and therefore we need to check for convergence. So go 

to Section 3.6.3.5 Convergence. 

2) If f(xR) is less than f(xL) such that     R Lf x f x , then the reflection produced a new 

minimum. This suggests that moving further in the same direction pointing from xCe to xR 

might produce a new minimum. Which means we need to carry out the Expansion 

Operation, so go to Section 3.6.3.2 Expansion. 

3) If f(xR) is greater than f(xT) and less than f(xH) such that       T R Hf x f x f x  . This 

suggests that the reflected point is between the two worst points. Which means we need 

to carry out the Outside Contraction Operation, so go to Section 5.6.3.3 Outside 

Contraction. 

4) If f(xR) is greater than f(xH) such that     R Hf x f x , this means that the reflection 

produced a point worse than the worst. This suggests that there might be a point inside 

the original points which might be better. Which means we need to carry out Inside 

Contraction Operation (iii), so go to Section 3.6.3.3a Inside Contraction 

 

3.6.3.2 Expansion 
 

To expand xR to xE , it is necessary to use equation (3.27), where the expansion process is 

shown in Figure 3.8. 

 

   1E R Ce Ce R Cex x x x x x         (3.27) 

 

where:  is the expansion coefficient It always has a value greater than 1, although it is usually 

given the value 2. It is defined by (3.28). 

 

distance between and 
1

distance between and 
E Ce

R Ce

x x

x x
    (3.28) 
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Figure 3.8: Simplex showing the expansion new point xE. 

Depending on the value of the objective function at the expansion point xE, there are 2 choices 

which can be made of what to do next, these are: 

1) If f(xE) is less than f(xR) such that f(xE) < f(xR), then we need to replace xH with xE. A new 

simplex is started, and therefore we need to check for convergence. So go to Section 

3.6.3.5 Convergence. 

2) If f(xE) is greater than f(xR) such that f(xE) > f(xR), this means that the Expansion process 

was NOT successful. So, need to replace xH with xR and. A new simplex is started, and 

therefore we need to check for convergence. So go to Section 3.6.3.5 Convergence. 

 

3.6.3.3 Outside Contraction 
 

To carry out Outside Contraction it is necessary to use equation (3.29), where the outside 

contraction process is shown in Figure 3.9. 

 

 OC Ce R Cex x x x    (3.29) 

 

where:  is the contraction coefficient It always has a value less than 1, although it is usually 

given the value 0.5. It is defined by (3.30). 

 

distance between and 
1

distance between and 
OC Ce

R Ce

x x

x x
    (3.30) 

 

 
Figure 3.9: Simplex showing the outside contraction new point xOC. 
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Depending on the value of the objective function at the Outside Contraction point xOC, there 

are 2 choices which can be made of what to do next, these are: 

1) If f(xOC) is less than f(xR) such that     OC Rf x f x , then replace xH with xOC. A new 

simplex is started, and therefore we need to check for convergence. So go to Section 

3.6.3.5 Convergence. 

2) Otherwise the Shrinking Operation needs to be carried out, so go to Section 3.6.3.4 

Shrinking. 

 

3.6.3.3a Inside Contraction 
 

To carry out Inside Contraction it is necessary to use equation (3.31), where the inside 

contraction process is shown in Figure 3.10. 

 

 IC Ce R Cex x x x    (3.31) 

 

where:  is the contraction coefficient It always has a value less than 1, although it is usually 

given the value 0.5. It is defined by (3.32). 

 

distance between and 
1

distance between and 
IC Ce

R Ce

x x

x x
    (3.32) 

 

 
Figure 3.10: Simplex showing the inside contraction new point xIC. 

 

Depending on the value of the objective function at the Outside Contraction point xIC, there 

are 2 choices which can be made of what to do next, these are: 

1) If f(xIC) is less than f(xH)     IC Hf x f x , then replace xH with xIC. A new simplex is 

started, and therefore we need to check for convergence. So go to Section 3.6.3.5 

Convergence. 

2) Otherwise the Shrinking Operation needs to be carried out, so go to Section 3.6.3.4 

Shrinking. 

 

3.6.3.4 Shrinking 
 

If Reflection, Expansion and both Contractions failed, it will be necessary to resort to the 

Shrinking operation. This operation retains the best point (xL) and shrinks the Simplex about 
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that point. To shrink all points about the best point, (xL) it is necessary to use equation (3.33) 

and this process is shown in Figure 3.11. 

 

For 2 1i n   :  i L i Lx x x x    (3.33) 

 

where:  is the shrinking coefficient It always has a value less than 1, although it is usually 

given the value 0.5. It is defined by (3.34). 

 

distance between and 
1

distance between and 
Newi L

H L

x x

x x
    (3.34) 

 

As a new simplex is generated, we need to check for convergence. So go to Section 3.6.3.5 

Convergence. 

 
Figure 5.11: Simplex showing the shrinking new points xi. 

 

5.6.3.5 Convergence 
 

Two convergence criteria can be used: 

 

1) The size of the Simplex needs to be less than a tolerance  S , given by equation (3.35). 

1
1

n

i i S

i

s x x 




    (3.35) 

 

2) The standard deviation of the function value in all vertices of the Simplex needs to be less 

than a small quantity   , given by equation (3.36). 

    
1

2

1

1

n

i Ce

i

f x f x

n
 







 



 

(3.36) 

 

To determine what to do next, 2 choices are available, these are: 

1) If the convergence tolerance has been satisfied:  Ss  or    , the solution has 

converged, so stop the algorithm. 

2) The solution has not converged so need to sort point and start the cycle again, so go to 

Section 3.6.2 Evaluate and Sort the points 
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3.6.3 Example 
 

Minimize the function (a) starting from the point (b) with a step size of c = 2 

Minimize:        
2 22

1 2 2 1 1, 100 1f x x x x x     (a) 

 0

1.2

1.0
x

 
  
 

 (b) 

Use the following parameters to solve this problem:   , , , 1,0.5,2,0.5      

Step 1: Find the n+1 points of the simplex:  

We have previously calculated these values to be (c) and (d). 

 

0 0

0 0

1 1

1

2 2

0.96593

0.25882

x a x c
x

x b x c

    
    

       

 (c) 

0 0

0 0

1 1

2

2 2

0.25882

0.96593

x b x c
x

x a x c

    
    

       

 (d) 

 

Substituting for x0 and c gives (e) and (f). 

 

1

1.2 0.96593 2 0.732

1.0 0.25882 2 1.518
x

     
    

    
 (e) 

2

1.2 0.25882 2 0.682

1.0 0.96593 2 2.932
x

c

      
    

    
 (f) 

 

Therefore the 3 points of the simplex are given in (g), and plotted in Figure 3.12. 

 

0

1.2

1.0
x

 
  
 

, 1

0.732

1.518
x

 
  
 

and 2

0.682

2.932
x

 
  
 

 (g) 
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Figure 3.12: Initial Simplex for this problem. 

 

Step 2: Evaluate and Sort the points 

 

Substituting the 3 values from (g) into the function (a), gives the results of (h). 

 
0

1.2,1.0 24.2xf   ,  
1

0.732,1.518 96.51xf  and  
2

0.682,2.932 611.06xf    (h) 

 

Which coincidentally happen to be aligned in increasing order such that, the new names for 

the points are given in (i). 

1.2

1.0
Lx

 
  
 

, 
0.732

1.518
Tx

 
  
 

 and 
0.682

2.932
Hx

 
  
 

 (i) 

 

So, now need to carry out the Reflection Operation 

 

Step 3: Operation (i) Refection 

 

Now need to calculate the centroid of all the points xi, excluding the worst point. This is done 

by substituting xL and x1 into equation (3.24), which gives the coordinates in (j). 

 

 

 

1

1

1.2 0.732

0.2341 2

1.2591.0 1.518

2

n

Ce i
i

i H

x x
n







  
   
     
   
 
 

  (j) 

 

Evaluate this point, gives (k). 
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 0.234,1.259 146.49Cef    (k) 

 

Calculate the reflection point using  = 1, using the points in (l). 

 

0.234

1.259
Cex

 
  
 

and 
0.682

2.932
Hx

 
  
 

 (l) 

 

Substituting these values into equation (3.25) gives (m). 

 

   
0.234 0.682 0.214

1 1 1 1
1.259 2.932 0.414

0.214

0.414

R Ce H

R

x x x

x

 
      

            
     

 
   

 

 (m) 

 

Evaluate this point, gives (n). 

 

 0.214, 0.414 21.79Rf    (n) 

 

We now need to compare the value of f(xR) with those of the other points of the Simplex, and 

using the rules set in section 3.6.3.1 Reflection, we can then decide what needs to happen 

next. 

 

Since     R Lf x f x , the next step to follow is Step 3: (ii) Expansion. 

Step 3: Operation (ii) Expansion 

 

Calculate the expansion point using  = 2, using the points in (o). 

 

0.234

1.259
Cex

 
  
 

and 
0.214

0.414
Rx

 
  

 
 (o) 

 

Substituting these values into equation (3.27) gives (p). 

 

   
0.214 0.234 0.663

1 2 1 2
0.414 1.259 2.087

E R Cex x x 
     

             
      

 (p) 

 

Evaluate this point, gives (q). 

 

 0.663, 2.087 638.26Ef    (q) 

 

We now need to compare the value of f(xE) with those of the other points of the Simplex, and 

using the rules set in section 3.6.3.2 Expansion, we can then decide what needs to happen 

next. 
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Since     E Lf x f x this means that the Expansion process was not successful. So, replace 

xH with xR and generate the new Simplex (shown in Figure 3.13), and then go to Step 3: (v) 

Convergence 

 
Figure 3.13: New Simplex generated by replacing xH with xR. 

 

 

Step 3: Operation (v) Convergence 

 

When putting the new Simplex together, arrange it in increasing order (r). 

 

0.214

0.414
Lx

 
  

 
, 

1.2

1.0
Tx

 
  
 

 and 
0.732

1.518
Hx

 
  
 

 
(r) 

 0.214, 0.414 21.79Lf   ,  1.2,1.0 24.20Tf   and  0.732,1.518 98.28Hf   

 

Now need to calculate the standard deviation of the function value in all vertices of the Simplex 

using equation (3.36). But firstly, must calculate the centroid and function evaluation of the 

centroid point of the new Simplex using equation (3.24), the points xL and x1 which is calculated 

in (s). 

 

 

1

1

0.214 1.2

0.4931 2

0.2930.414 1.0

2

n

Ce i
i

i H

x x
n







 
   
     
    
 
 

  (s) 

 

Evaluating this point gives (t). 

 0.493,0.293 2.48Cef    (t) 
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Substituting all of these function values to (3.36) gives (u). 

 

    

     

1
2

1

2 2 2

1

21.79 2.48 24.20 2.48 98.28 2.48

3

32.8

n

i Ce
i

f x f x

n













    


 



 

(u) 

 

As we haven’t specified a tolerance, at this stage we can’t check if the problem has converged. 

So the next step, now that we have a new Simplex is to carry out another Reflection. 

 

Step 3: Operation (i) Reflection 

 

As we have already calculated the position of the centroid in the previous step. We can now 

calculate the reflection point using  = 1, using the points in (v). 

 

0.493

0.293
Cex

 
  
 

and 
0.732

1.518
Hx

 
  
 

 (v) 

 

Substituting these values into equation (3.25) gives (w). 

 

   
0.493 0.732

1 1 1 1
0.293 1.518

1.718

0.932

R Ce H

R

x x x

x

 
   

         
   

 
   

 

 (w) 

 

Evaluate this point, gives (x). 

 

 1.718, 0.932 1514.5Rf     (x) 

 

We now need to compare the value of f(xR) with those of the other points of the Simplex, and 

using the rules set in section 3.6.3.1 Reflection, we can then decide what needs to happen 

next. 

 

Since     R Hf x f x , need to carry out Operation (iii) Inside Contraction. 

 

Step 3: Operation (iii) Inside Contraction 

 

Calculate the Inside contraction using point using  = 0.5. Substituting the values of xCE and 

xR of (y) into equation (5.31) gives (z). 

 

0.493

0.293
Cex

 
  
 

and 
1.718

0.932
Rx

 
  

 
 (y) 
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Figure 5.14: New Simplex generated by replacing xH with xIC. 

 

     
0.493 1.718

1 1 0.5 0.5
0.293 0.932

0.119

0.905

IC Ce R Ce Ce R

IC

x x x x x x

x

  
    

            
   

 
  
 

 (z) 

 

And evaluating this point, gives (aa). 

 

 0.119,0.905 80.16ICf   (aa) 

 

We now need to compare the value of f(xRIC) with those of the other points of the Simplex, and 

using the rules set in section 3.6.3.3a Inside Contraction, we can then decide what needs to 

happen next. 

 

Since     IC Hf x f x then replace xH with xIC and generate the new Simplex (shown in 

Figure 3.14), and go to Step 3: (v) Convergence.... and keep going! 

 

Figure 3.15, shows the plot of the function (a) superimposed on the Simplex of Figure 3.14. 
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Figure 3.15: Plot of the contour of the function superimposed on the Simplex 

 

Nelder-Mead Simplex Worked Example 1 

Minimise 𝑓(𝑥1, 𝑥2) = 100 (𝑥2 − 𝑥1)
2 + (1 − 𝑥1)

2   using the following parameters: 

Starting point 𝑥0 = [𝑥1   𝑥2] = [−1.2   1.0] 
Initial step size c=2 
𝛼 = 1.0, 𝛽 = 0.5, 𝛾 = 2.0, 𝜌 = 0.5 
tol = 0.0001.  
This takes a total of 70 iterations to converge. The calculations for the first 10 iterations give: 

Initial simplex 
xL=  -1.200    1.000, fL=2.420e+01 
xM=   0.732    1.518, fM=9.651e+01 
xH=  -0.682    2.932, fH=6.111e+02 
After 1 iterations, simplex is given by: 
xL=   0.214   -0.414, fL=2.179e+01 
xM=  -1.200    1.000, fM=2.420e+01 
xH=   0.732    1.518, fH=9.651e+01 
After 2 iterations, simplex is given by: 
xL=   0.214   -0.414, fL=2.179e+01 
xM=  -1.200    1.000, fM=2.420e+01 
xH=   0.119    0.905, fH=8.016e+01 
After 3 iterations, simplex is given by: 
xL=   0.214   -0.414, fL=2.179e+01 
xM=  -1.200    1.000, fM=2.420e+01 
xH=  -0.187    0.599, fH=3.324e+01 
After 4 iterations, simplex is given by: 
xL=  -0.340    0.446, fL=1.272e+01 
xM=   0.214   -0.414, fM=2.179e+01 
xH=  -1.200    1.000, fH=2.420e+01 
After 5 iterations, simplex is given by: 
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xL=  -0.631    0.508, fL=3.856e+00 
xM=  -0.340    0.446, fM=1.272e+01 
xH=   0.214   -0.414, fH=2.179e+01 
After 6 iterations, simplex is given by: 
xL=  -0.631    0.508, fL=3.856e+00 
xM=  -1.185    1.368, fM=4.913e+00 
xH=  -0.340    0.446, fH=1.272e+01 
After 7 iterations, simplex is given by: 
xL=  -0.631    0.508, fL=3.856e+00 
xM=  -1.185    1.368, fM=4.913e+00 
xH=  -0.624    0.692, fH=1.179e+01 
After 8 iterations, simplex is given by: 
xL=  -0.631    0.508, fL=3.856e+00 
xM=  -1.051    1.061, fM=4.386e+00 
xH=  -1.185    1.368, fH=4.913e+00 
After 9 iterations, simplex is given by: 
xL=  -0.497    0.201, fL=2.448e+00 
xM=  -0.631    0.508, fM=3.856e+00 
xH=  -1.051    1.061, fH=4.386e+00 
After 10 iterations, simplex is given by: 
xL=  -0.497    0.201, fL=2.448e+00 
xM=  -0.807    0.708, fM=3.580e+00 
xH=  -0.631    0.508, fH=3.856e+00 
 

The evolution of the final solution is shown in the following figure: 

 
Plot of the Nelder-Mead Simplex solution from the calculations above. 

 
Nelder-Mead Simplex Worked Example 2 

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥1 − 3)2 + (𝑥2 + 1)2 using the following parameters: 

Starting point 𝑥0 = [𝑥1   𝑥2] = [0   0] 
Initial step size c=2 

𝛼 = 1.0, 𝛽 = 0.5, 𝛾 = 2.0, 𝜌 = 0.5 
tol = 0.001.  
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Initial simplex 
xL=   1.932    0.518, fL=3.444e+00 
xM=   0.000    0.000, fM=1.000e+01 
xH=   0.518    1.932, fH=1.476e+01 
After 1 iterations, simplex is given by: 
xL=   1.414   -1.414, fL=2.686e+00 
xM=   1.932    0.518, fM=3.444e+00 
xH=   0.000    0.000, fH=1.000e+01 
After 2 iterations, simplex is given by: 
xL=   3.346   -0.897, fL=1.305e-01 
xM=   1.414   -1.414, fM=2.686e+00 
xH=   1.932    0.518, fH=3.444e+00 
After 3 iterations, simplex is given by: 
xL=   3.346   -0.897, fL=1.305e-01 
xM=   2.604   -1.992, fM=1.140e+00 
xH=   1.414   -1.414, fH=2.686e+00 
After 4 iterations, simplex is given by: 
xL=   3.346   -0.897, fL=1.305e-01 
xM=   3.756   -1.459, fM=7.820e-01 
xH=   2.604   -1.992, fH=1.140e+00 
After 5 iterations, simplex is given by: 
xL=   3.346   -0.897, fL=1.305e-01 
xM=   3.078   -1.585, fM=3.482e-01 
xH=   3.756   -1.459, fH=7.820e-01 
After 6 iterations, simplex is given by: 
xL=   2.668   -1.022, fL=1.107e-01 
xM=   3.346   -0.897, fM=1.305e-01 
xH=   3.078   -1.585, fH=3.482e-01 
After 7 iterations, simplex is given by: 
xL=   3.042   -1.272, fL=7.586e-02 
xM=   2.668   -1.022, fM=1.107e-01 
xH=   3.346   -0.897, fH=1.305e-01 
After 8 iterations, simplex is given by: 
xL=   3.101   -1.022, fL=1.060e-02 
xM=   3.042   -1.272, fM=7.586e-02 
xH=   2.668   -1.022, fH=1.107e-01 
After 9 iterations, simplex is given by: 
xL=   3.101   -1.022, fL=1.060e-02 
xM=   2.870   -1.085, fM=2.413e-02 
xH=   3.042   -1.272, fH=7.586e-02 
After 10 iterations, simplex is given by: 
xL=   2.957   -0.944, fL=5.041e-03 
xM=   3.101   -1.022, fM=1.060e-02 
xH=   2.870   -1.085, fH=2.413e-02 
After 11 iterations, simplex is given by: 
xL=   2.949   -1.034, fL=3.722e-03 
xM=   2.957   -0.944, fM=5.041e-03 
xH=   3.101   -1.022, fH=1.060e-02 
After 12 iterations, simplex is given by: 
xL=   3.027   -1.005, fL=7.441e-04 
xM=   2.949   -1.034, fM=3.722e-03 
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xH=   2.957   -0.944, fH=5.041e-03 
After 13 iterations, simplex is given by: 
xL=   3.027   -1.005, fL=7.441e-04 
xM=   2.972   -0.982, fM=1.104e-03 
xH=   2.949   -1.034, fH=3.722e-03 
After 14 iterations, simplex is given by: 
xL=   3.027   -1.005, fL=7.441e-04 
xM=   2.974   -1.014, fM=8.438e-04 
xH=   2.972   -0.982, fH=1.104e-03 
NM simplex converged with tol = 1.000e-03 after 14 iterations 
Minimum f=7.441e-04 at x=   3.027   -1.005 

 
Plot of the Nelder-Mead Simplex solution from the calculations above. 

 

Nelder-Mead Simplex Worked Example 3 

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥1 + 𝑥2)
2 + 𝑠𝑖𝑛2(𝑥1 + 2) + 𝑥2

2 + 10 using the following parameters: 

Starting point 𝑥0 = [𝑥1   𝑥2] = [2.0   1.0] 
Initial step size c=2 
𝛼 = 1.0, 𝛽 = 0.5, 𝛾 = 2.0, 𝜌 = 0.5 
tol = 0.001.  

Initial simplex 
xL=   2.000    1.000, fL=2.057e+01 
xM=   3.932    1.518, fM=4.212e+01 
xH=   2.518    2.932, fH=4.926e+01 
After 1 iterations, simplex is given by: 
xL=   3.863   -2.087, fL=1.767e+01 
xM=   2.000    1.000, fM=2.057e+01 
xH=   3.932    1.518, fH=4.212e+01 
After 2 iterations, simplex is given by: 
xL=   3.863   -2.087, fL=1.767e+01 
xM=   1.931   -2.605, fM=1.774e+01 
xH=   2.000    1.000, fH=2.057e+01 
After 3 iterations, simplex is given by: 
xL=   2.448   -0.673, fL=1.454e+01 
xM=   3.863   -2.087, fM=1.767e+01 
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xH=   1.931   -2.605, fH=1.774e+01 
After 4 iterations, simplex is given by: 
xL=   2.448   -0.673, fL=1.454e+01 
xM=   2.543   -1.993, fM=1.524e+01 
xH=   3.863   -2.087, fH=1.767e+01 
After 5 iterations, simplex is given by: 
xL=   1.129   -0.578, fL=1.064e+01 
xM=   2.448   -0.673, fM=1.454e+01 
xH=   2.543   -1.993, fH=1.524e+01 
After 6 iterations, simplex is given by: 
xL=   1.129   -0.578, fL=1.064e+01 
xM=   1.034    0.741, fM=1.371e+01 
xH=   2.448   -0.673, fH=1.454e+01 
After 7 iterations, simplex is given by: 
xL=   1.129   -0.578, fL=1.064e+01 
xM=  -0.285    0.836, fM=1.198e+01 
xH=   1.034    0.741, fH=1.371e+01 
After 8 iterations, simplex is given by: 
xL=   1.129   -0.578, fL=1.064e+01 
xM=  -0.191   -0.484, fM=1.163e+01 
xH=  -0.285    0.836, fH=1.198e+01 
After 9 iterations, simplex is given by: 
xL=   1.129   -0.578, fL=1.064e+01 
xM=   0.092    0.152, fM=1.084e+01 
xH=  -0.191   -0.484, fH=1.163e+01 
After 10 iterations, simplex is given by: 
xL=   1.129   -0.578, fL=1.064e+01 
xM=   0.210   -0.348, fM=1.078e+01 
xH=   0.092    0.152, fH=1.084e+01 
After 11 iterations, simplex is given by: 
xL=   0.381   -0.155, fL=1.055e+01 
xM=   1.129   -0.578, fM=1.064e+01 
xH=   0.210   -0.348, fH=1.078e+01 
After 12 iterations, simplex is given by: 
xL=   0.482   -0.358, fL=1.052e+01 
xM=   0.381   -0.155, fM=1.055e+01 
xH=   1.129   -0.578, fH=1.064e+01 
After 13 iterations, simplex is given by: 
xL=   0.780   -0.417, fL=1.043e+01 
xM=   0.482   -0.358, fM=1.052e+01 
xH=   0.381   -0.155, fH=1.055e+01 
After 14 iterations, simplex is given by: 
xL=   0.780   -0.417, fL=1.043e+01 
xM=   0.882   -0.620, fM=1.052e+01 
xH=   0.482   -0.358, fH=1.052e+01 
After 15 iterations, simplex is given by: 
xL=   0.780   -0.417, fL=1.043e+01 
xM=   0.657   -0.438, fM=1.046e+01 
xH=   0.882   -0.620, fH=1.052e+01 
After 16 iterations, simplex is given by: 
xL=   0.780   -0.417, fL=1.043e+01 
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xM=   0.637   -0.332, fM=1.044e+01 
xH=   0.657   -0.438, fH=1.046e+01 
After 17 iterations, simplex is given by: 
xL=   0.780   -0.417, fL=1.043e+01 
xM=   0.760   -0.311, fM=1.044e+01 
xH=   0.637   -0.332, fH=1.044e+01 
After 18 iterations, simplex is given by: 
xL=   0.703   -0.348, fL=1.043e+01 
xM=   0.780   -0.417, fM=1.043e+01 
xH=   0.760   -0.311, fH=1.044e+01 
After 19 iterations, simplex is given by: 
xL=   0.703   -0.348, fL=1.043e+01 
xM=   0.751   -0.347, fM=1.043e+01 
xH=   0.780   -0.417, fH=1.043e+01 
After 20 iterations, simplex is given by: 
xL=   0.754   -0.382, fL=1.043e+01 
xM=   0.703   -0.348, fM=1.043e+01 
xH=   0.751   -0.347, fH=1.043e+01 
NM simplex converged with tol = 1.000e-03 after 20 iterations 
Minimum f=1.043e+01 at x=   0.754   -0.382 

 
Plot of the Nelder-Mead Simplex solution from the calculations above. 

 

3.7 Hooke-Jeeves Method 

The Hooke-Jeeves method belongs to the class of search methods known as pattern search. 

Similarly, to the Nelder-Mead Simplex method, it carries out a pattern search of the design 

space without the need to calculate derivatives of the objective function, by only relying on the 

evaluation of the objective function at specific points. Although there is nothing stopping you 

from using this method on a function which can be differentiated! 

 

The method requires two steps, an “exploratory search” to determine the best direction from 

the current location, and then a “pattern move” in that best direction.  
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3.7.1 Exploratory Search 
The aim of this exploratory search step is to try to find a direction which improves the value of 

the objective function from the current point. In order to do this, the value of the current point 

is “perturbed” by a small amount () (called perturbation step) in the positive and negative 

direction, along each (design) variable, one at a time, and every time the objective function is 

evaluated to determine if the new point is better than the current point. At the end of each 

perturbation, the current point is replaced by the new point, provided it has a better objective 

function value. 

 

Before carrying out the exploratory search, we need to specify the following four parameters: 

1. The initial or current point about which the exploratory search will take place. This can 

take the form of the current point vector given by (3.37). 

 0

1 2, , , , ,i nx x x xx  (3.37) 

where: i is the ith design variable and n is the total number of design variables and also 

perturbation directions. 

2. The size of the perturbation step along each direction, which is the same as saying the 

perturbation step for each design variable. This can take the form of the perturbation 

vector given by (5.38). 

 0 1 2, , , , ,i nx x x x    P  (3.38) 

where: ix is the ith design variable step size. Note that all perturbation step sizes are 

generally relatively small and do not have to be equal to each other. 

3. The step size reduction parameter  1  , typical values are: 2 or 10. 

4. The perturbation tolerance limit vector  T , which defines the smallest possible 

perturbation for each design variable and which is used to stop the algorithm. This has 

the same form as the perturbation vector of (5.38) and is given by (3.39). 

 1 2, , , , ,i nt t t tT  (3.39) 

 

The exploratory search steps are: 

1. At the current point  0x , calculate the objective function  0f x  and copy these to the 

best point vector  bestx and best function value  bestf respectively. 

2. Copy the perturbation vector  0P into the working perturbation vector  wP  

3. Combine the current point vector  0x and the working perturbation vector  wP into 

the search point vector  1x , which is of the form of (3.40). 

1

1 1 1 2 2 2, , , , ,j j k j k i ij k i n nj k nx d x x d x x d x x d x             x  (3.40) 

 

where:  

 

j: is the perturbation direction of the ih design variable, starting with j = 1 up to n. 

 1 to i i n
x


: are the design variables of the initial point from (3.37) 
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ij : is the Kronecker delta given by equation (3.41), which allows to generate the 

perturbation step one design variable at a time 

 0  

1  
ij

if i j

if i j



 


 (3.41) 

kd : is the direction vector which allows the perturbation step to be carried out in 

the positive  1d

  and negative  1d


  directions given by (3.42) 

 1  

1  k
k

if k
d

if

 
 

  
 (3.42) 

k: is the direction vector index which defines if the direction vector has a positive 

(k = +) or negative (k = –) perturbation direction 

 1 to i i n
x


 : are the perturbation step sizes from (3.38); 

 

4. Set the perturbation direction to have the initial value of one  1j   and set the 

direction vector index to positive  k   , so the search point vector goes from the 

format of equation (5.40) to that below: 

 

 

1

1 1 1 2

1

1 1 1 2

, , , , ,

, , , , ,

k i n

i n

x d x x x x

x x x x x

  

   

x

x
  

5. At the current search point vector  1

jx , calculate the objective function  1

jf x . 

6. If  1 best

jf fx : Replace the best point with this one, such that 
1best

jx x and 

 best 1

jf f x , update j such that  1j j   and set the direction vector index to 

positive  k    which then goes from the format of equation (3.40) to that below: 

1

1 1 2 1 1, 1 1

1

1 1 2 1 1

, , , , ,

, , , , ,

j j j j j n

j j j n

x x x d x x

x x x x x


     

  

    

     

x

x
  

However, if  j n go to step 9, otherwise go to step 5. 

7. If  1best

jf f x  and the direction vector index is positive  k   , set the direction 

vector index to negative  k   , which then goes from the format of equation (5.40) 

to that below and go to step 5, otherwise go to step 8. 

1

1 2

1

1 2

, , , , ,

, , , , ,

j j jj j n

j j j n

x x x d x x

x x x x x




    

     

x

x
  

8. If  1best

jf f x  and the direction vector index is negative  k   , this perturbation 

has not improved the objective function, so it can be discarded. Update j, such that 

 1j j  , set the direction vector index to positive  k    and go to step 5, but if 

 j n go to step 9. 

9. Determine if the exploratory search has succeeded or failed. 

i) If  0bestf f x , the exploratory search has succeeded, so now go to step 11. 
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ii) Else if  0bestf f x and 
best 0x x  the exploratory search has failed as a 

better value of the objective function could not be found. The following now 

needs to happen: 

a) Reduce the size of the working perturbation vector  wP  using 

(3.43). 

W
W




P
P  (3.43) 

 

b) If the working perturbation vector  wP is greater or equal to the 

perturbation tolerance limit vector  T , that is  w P T , then go to 

step 3 

c) If, however, the working perturbation vector  wP is less than the 

perturbation tolerance limit vector  T , that is  w P T , go to step 

10. 

10. As the solution could not be improved any further, the final solution to the problem 

 bestx and  bestf are given the initial values of the problem  0x and  0f x . Then 

go to step 11.. 

11. Exit the exploratory search step.  

 

3.7.2 Pattern Move 

The pattern move step uses the initial or current point  0x  and the best point  bestx with an 

objective function value less than the current point  0bestf f x  in order to move in an 

improving direction. A new point  2x  is created by moving from  0x to  2x using (3.44). 

 2 0 0Besta  x x x x  (3.44) 

where:  0Best x x is the improving direction vector and  a is a positive accelerator factor, 

which extends the length of direction vector. A typical value of the accelerator factor is two 

 2a   

 

3.7.3 The Hooke-Jeeves Pattern Search Algorithm 

The Hooke-Jeeves Pattern Search Algorithm requires the following five parameters, four of 

which were specified in Exploratory Search. These are: 

1) A starting point vector  0x . 

2) A perturbation step size vector  0P . 

3) The perturbation tolerance limit vector  T , 

4) The step size reduction parameter   , and  

5) The acceleration factor  a  

 

The seven steps for the Hooke-Jeeves Pattern Search Algorithm are as follow: 
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1) Specify the five parameters required for the algorithm to work:  0 0, , , ,ax P T  

2) Carry out an exploratory search around  0x . 

3) If the solution from the exploratory search is the same as the initial problem 

 0bestf f x , then this solution is the optimum. Go to step 7.  

4) If the solution from the exploratory search is better than that of the initial problem 

 0bestf f x , then carry out the Pattern Move step and calculate  2f x . 

5) If  2Bestf f x , then copy the best point  bestx to the current point  0x  and go to 

step 2. 

6) If  2 Bestf fx , then copy the new point  2x to the current point  0x  and go to step 

2. 

7) Exit the algorithm.  

 
Hooke-Jeeves Worked Example 1 

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥1 − 3)2 + (𝑥2 + 1)2 using the following parameters: 
 

Starting point 𝑥0 = [𝑥1   𝑥2] = [1.5   1.5] 
Perturbation step size 𝑃0 = [∆𝑥1 ∆𝑥2] = [0.5   0.5]  
Perturbation tolerance limit 𝑇 = [𝑡1 𝑡2] = [0.025   0.025] 
Exploration accelerator factor a = 2 
Step size reduction parameter η=2 

 
Call     1 to exploratory search increment =    0.50000 
Start x0 =   1.500000   1.500000 f0 =   8.500000 
x =   2.000000   1.500000 f =   7.250000 
x =   2.000000   2.000000 f =  10.000000 
x =   2.000000   1.000000 f =   5.000000 
Pattern search x2 =   2.500000   0.500000 f2 =   2.500000 
Call     2 to exploratory search increment =    0.50000 
Start x0 =   2.500000   0.500000 f0 =   2.500000 
x =   3.000000   0.500000 f =   2.250000 
x =   3.000000   1.000000 f =   4.000000 
x =   3.000000   0.000000 f =   1.000000 
Pattern search x2 =   3.500000  -0.500000 f2 =   0.500000 
Call     3 to exploratory search increment =    0.50000 
Start x0 =   3.500000  -0.500000 f0 =   0.500000 
x =   4.000000  -0.500000 f =   1.250000 
x =   3.000000  -0.500000 f =   0.250000 
x =   3.000000   0.000000 f =   1.000000 
x =   3.000000  -1.000000 f =   0.000000 
Pattern search x2 =   2.500000  -1.500000 f2 =   0.500000 
Call     4 to exploratory search increment =    0.50000 
Start x0 =   3.000000  -1.000000 f0 =   0.000000 
x =   3.500000  -1.000000 f =   0.250000 
x =   2.500000  -1.000000 f =   0.250000 
x =   3.000000  -0.500000 f =   0.250000 
x =   3.000000  -1.500000 f =   0.250000 
search increment reduced to    0.25000 
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Call     5 to exploratory search increment =    0.25000 
Start x0 =   3.000000  -1.000000 f0 =   0.000000 
x =   3.250000  -1.000000 f =   0.062500 
x =   2.750000  -1.000000 f =   0.062500 
x =   3.000000  -0.750000 f =   0.062500 
x =   3.000000  -1.250000 f =   0.062500 
search increment reduced to    0.12500 
search completed - increment    0.12500 below tolerance    0.25000 
search completed xbest=    3.00000   -1.00000 fbest =    0.00000 
 

 
Plot of the Hooke-Jeeves solution from the calculations above. 

 

Hookes-Jeeves Worked Example 2 

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥1 + 𝑥2)
2 + 𝑠𝑖𝑛2(𝑥1 + 2) + 𝑥2

2 + 10 using the following parameters: 

Starting point 𝑥0 = [𝑥1   𝑥2] = [2.0   1.0] 
Perturbation step size 𝑃0 = [∆𝑥1 ∆𝑥2] = [0.3   0.3]  
Perturbation tolerance limit 𝑇 = [𝑡1 𝑡2] = [0.025   0.025] 
Exploration accelerator factor a = 2 
Step size reduction parameter η=2 

Call     1 to exploratory search increment =    0.30000 
Start x0 =   2.000000   1.000000 f0 =  20.572750 
x =   2.300000   1.000000 f =  22.729360 
x =   1.700000   1.000000 f =  18.570726 
x =   1.700000   1.300000 f =  20.970726 
x =   1.700000   0.700000 f =  16.530726 
Pattern search x2 =   1.400000   0.400000 f2 =  13.465301 
Call     2 to exploratory search increment =    0.30000 
Start x0 =   1.400000   0.400000 f0 =  13.465301 
x =   1.700000   0.400000 f =  14.850726 
x =   1.100000   0.400000 f =  12.411729 
x =   1.100000   0.700000 f =  13.731729 
x =   1.100000   0.100000 f =  11.451729 
Pattern search x2 =   0.800000  -0.200000 f2 =  10.512217 
Call     3 to exploratory search increment =    0.30000 
Start x0 =   0.800000  -0.200000 f0 =  10.512217 



Page 68 
Copyright © 2024 University of Leeds UK. All rights reserved. 

x =   1.100000  -0.200000 f =  10.851729 
x =   0.500000  -0.200000 f =  10.488169 
x =   0.500000   0.100000 f =  10.728169 
x =   0.500000  -0.500000 f =  10.608169 
Pattern search x2 =   0.200000  -0.200000 f2 =  10.693666 
Call     4 to exploratory search increment =    0.30000 
Start x0 =   0.500000  -0.200000 f0 =  10.488169 
x =   0.800000  -0.200000 f =  10.512217 
x =   0.200000  -0.200000 f =  10.693666 
x =   0.500000   0.100000 f =  10.728169 
x =   0.500000  -0.500000 f =  10.608169 
search increment reduced to    0.15000 
Call     5 to exploratory search increment =    0.15000 
Start x0 =   0.500000  -0.200000 f0 =  10.488169 
x =   0.650000  -0.200000 f =  10.465313 
x =   0.650000  -0.050000 f =  10.585313 
x =   0.650000  -0.350000 f =  10.435313 
Pattern search x2 =   0.800000  -0.500000 f2 =  10.452217 
Call     6 to exploratory search increment =    0.15000 
Start x0 =   0.650000  -0.350000 f0 =  10.435313 
x =   0.800000  -0.350000 f =  10.437217 
x =   0.500000  -0.350000 f =  10.503169 
x =   0.650000  -0.200000 f =  10.465313 
x =   0.650000  -0.500000 f =  10.495313 
search increment reduced to    0.07500 
Call     7 to exploratory search increment =    0.07500 
Start x0 =   0.650000  -0.350000 f0 =  10.435313 
x =   0.725000  -0.350000 f =  10.426864 
x =   0.725000  -0.275000 f =  10.441864 
x =   0.725000  -0.425000 f =  10.434364 
Pattern search x2 =   0.800000  -0.350000 f2 =  10.437217 
Call     8 to exploratory search increment =    0.07500 
Start x0 =   0.725000  -0.350000 f0 =  10.426864 
x =   0.800000  -0.350000 f =  10.437217 
x =   0.650000  -0.350000 f =  10.435313 
x =   0.725000  -0.275000 f =  10.441864 
x =   0.725000  -0.425000 f =  10.434364 
search increment reduced to    0.03750 
Call     9 to exploratory search increment =    0.03750 
Start x0 =   0.725000  -0.350000 f0 =  10.426864 
x =   0.762500  -0.350000 f =  10.429614 
x =   0.687500  -0.350000 f =  10.428818 
x =   0.725000  -0.312500 f =  10.431552 
x =   0.725000  -0.387500 f =  10.427802 
search increment reduced to    0.01875 
search completed - increment    0.01875 below tolerance    0.02500 
search completed xbest=    0.72500   -0.35000 fbest =   10.42686 
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Plot of the Hooke-Jeeves solution from the calculations above. 

 

Hookes-Jeeves Worked Example 3 

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥2 − 𝑥1)
2 + (1 − 𝑥1)

2 using the following parameters: 

Starting point 𝑥0 = [𝑥1   𝑥2] = [−1.2   1.2] 
Perturbation step size 𝑃0 = [∆𝑥1 ∆𝑥2] = [0.3   0.3]  
Perturbation tolerance limit 𝑇 = [𝑡1 𝑡2] = [0.05   0.05] 
Exploration accelerator factor a = 2 
Step size reduction parameter η=2 

Call     1 to exploratory search increment =    0.30000 
Start x0 =  -1.200000   1.200000 f0 =  10.600000 
x =  -0.900000   1.200000 f =   8.020000 
x =  -0.900000   1.500000 f =   9.370000 
x =  -0.900000   0.900000 f =   6.850000 
Pattern search x2 =  -0.600000   0.600000 f2 =   4.000000 
Call     2 to exploratory search increment =    0.30000 
Start x0 =  -0.600000   0.600000 f0 =   4.000000 
x =  -0.300000   0.600000 f =   2.500000 
x =  -0.300000   0.900000 f =   3.130000 
x =  -0.300000   0.300000 f =   2.050000 
Pattern search x2 =   0.000000  -0.000000 f2 =   1.000000 
Call     3 to exploratory search increment =    0.30000 
Start x0 =   0.000000  -0.000000 f0 =   1.000000 
x =   0.300000  -0.000000 f =   0.580000 
x =   0.300000   0.300000 f =   0.490000 
Pattern search x2 =   0.600000   0.600000 f2 =   0.160000 
Call     4 to exploratory search increment =    0.30000 
Start x0 =   0.600000   0.600000 f0 =   0.160000 
x =   0.900000   0.600000 f =   0.100000 
x =   0.900000   0.900000 f =   0.010000 
Pattern search x2 =   1.200000   1.200000 f2 =   0.040000 
Call     5 to exploratory search increment =    0.30000 
Start x0 =   0.900000   0.900000 f0 =   0.010000 
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x =   1.200000   0.900000 f =   0.130000 
x =   0.600000   0.900000 f =   0.250000 
x =   0.900000   1.200000 f =   0.100000 
x =   0.900000   0.600000 f =   0.100000 
search increment reduced to    0.15000 
Call     6 to exploratory search increment =    0.15000 
Start x0 =   0.900000   0.900000 f0 =   0.010000 
x =   1.050000   0.900000 f =   0.025000 
x =   0.750000   0.900000 f =   0.085000 
x =   0.900000   1.050000 f =   0.032500 
x =   0.900000   0.750000 f =   0.032500 
search increment reduced to    0.07500 
Call     7 to exploratory search increment =    0.07500 
Start x0 =   0.900000   0.900000 f0 =   0.010000 
x =   0.975000   0.900000 f =   0.006250 
x =   0.975000   0.975000 f =   0.000625 
Pattern search x2 =   1.050000   1.050000 f2 =   0.002500 
Call     8 to exploratory search increment =    0.07500 
Start x0 =   0.975000   0.975000 f0 =   0.000625 
x =   1.050000   0.975000 f =   0.008125 
x =   0.900000   0.975000 f =   0.015625 
x =   0.975000   1.050000 f =   0.006250 
x =   0.975000   0.900000 f =   0.006250 
search increment reduced to    0.03750 
search completed - increment    0.03750 below tolerance    0.05000 
search completed xbest=    0.97500    0.97500 fbest =    0.00062 
 

 
Plot of the Hooke-Jeeves solution from the calculations above. 
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Chapter 4 
 
Search Methods of Optimization 

 
4.0 Introduction  

 

There are many search methods which can be used to find an optimum. In this course, he 

following methods will be introduced: 

1. Ant Colony Optimization (ACO) 

2. Differential Evolution (DE) Algorithm 

3. Genetic Algorithms (GA) – Excel Add-in provided  

4. Particle Swarm Optimization (PSO) – Excel Add-in provided  

5. Random Search Method – can just use Excel, very simple! 

6. Simulated Annealing (SA) 

 

4.1 Random Search Method 

 

Pure Random Search is the simplest stochastic1 method for global optimization, and most 

other stochastic methods are variations of it. Be aware that it is very inefficient!  

 

Pure random search consists only of a global phase of two steps:  

1) Evaluate f(x) at N sample points from a random uniform distribution over the set Sb.  

2) The smallest function value found is the candidate global minimum for f(x). 

 

Pure random search is asymptotically guaranteed to converge, in a probabilistic sense, to the 

global minimum point. It is quite inefficient because of the large number of function evaluations 

required to provide such a guarantee.  

 

A simple extension of the method is so-called single start. In single start, a single local search 

is performed (if the problem is continuous) starting from the best point in the sample set at the 

end of pure random search. 

 

4.1.1 Multistart Method 
 

The Multistart method is one of several extensions of pure random search where a local phase 

is added to the global phase to improve efficiency. In Multistart, each sample point is used as 

a starting point for the local minimization procedure. The best local minimum point found is a 

candidate for the global minimum
*

Gx . The method is reliable, but it is not efficient since many 

sample points will lead to the same local minimum. 

                                                
1Stochastic optimization (SO) methods are those that use random numbers for their operations. 
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The algorithm consists of three simple steps: 

1) Take a random point x(0) from a uniform distribution over the set Sb. 

2) Start a local minimization procedure from x(0). 

3) Return to Step 1 unless a stopping criterion is satisfied.  

Once the stopping criterion is satisfied, the local minimum with the smallest function value is 

taken as the global minimum
*

Gx . 

 

To calculate the value of a design variable from a random number using the upper and lower 

limits for the design variable, use equation (6.1). 

 

 ; 1i iL i iU iLx x r x x i to n     (4.1) 

where:   
 L: lower limit; 
 U: upper limit, 
 i: ith design point; 
 0: 0th generation; 
 ri: uniformly distributed random number between 0 and 1 

 

Please note:  Equation (4.1) is used by all stochastic methods to calculate the value of the 

design variables from random numbers. 

 

Random Search Example: 

Use the Random Search Method to solve the minimization of the following function after 10 

full iterations of the algorithm, between the limits of -2 < x < 2. 

0164.11.1
3

1.24)( 2
4

2 







 xx

x
xxf

 

The random points and optimum solution are given by: 

 
For Random Search with 10 points and xmin= -2.0000 xmax =   2.0000 

For random point i xrand=  0.1576 x= -1.3695 obj=  1.8241 

For random point i xrand=  0.9706 x=  1.8824 obj=  5.7235 

For random point i xrand=  0.9572 x=  1.8287 obj=  5.3856 

For random point i xrand=  0.4854 x= -0.0585 obj=  0.9657 

For random point i xrand=  0.8003 x=  1.2011 obj=  4.7385 

For random point i xrand=  0.1419 x= -1.4325 obj=  1.6864 

For random point i xrand=  0.4218 x= -0.3130 obj=  1.0441 

For random point i xrand=  0.9157 x=  1.6629 obj=  4.8970 

For random point i xrand=  0.7922 x=  1.1688 obj=  4.6973 

For random point i xrand=  0.9595 x=  1.8380 obj=  5.4361 

Optimum from Random Search with 10 random points x= -0.0585 obj=  0.9657. 

 

These are shown on the following figure: 
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NOTE: since the random search is stochastic, these points will change every time the 

algorithm is run. 

 

4.2 Simulated Annealing (SA) 

 

Simulated annealing (SA) is a stochastic approach for locating a good approximation to the 

global minimum of a function.  The name comes from the annealing process in metallurgy, 

which involves heating and controlled cooling of a material to increase the size of its crystals 

and reduce their defects.  At high temperatures, the atoms become loose from their initial 

configuration and move randomly to reach a configuration having absolute minimum energy. 

The cooling process should be slow, and enough time needs to be spent at each temperature, 

giving more chance for the atoms to find configurations of lower internal energy. If the 

temperature is not lowered slowly and enough time is not spent at each temperature, the 

process can become trapped in a local minimum for the internal energy. The resulting crystal 

may have many defects or the material may even become glass with no crystalline order. 

 

The Simulated Annealing method for optimization of systems emulates this process. Given a 

long enough time to run, an algorithm based on this concept finds global minima for 

continuous-discrete-integer variable nonlinear programming problems. 

 

The basic procedure is to generate random points in the neighbourhood of the current best 

point and evaluate the problem functions there. If the cost (or penalty) function value is smaller 

than its current best value, the point is accepted and this becomes best function value. If the 

function value is higher than the best value known so far, the point is sometimes accepted and 

sometimes rejected.  

 

The point’s acceptance is based on the value of the probability density function of the 

Bolzman-Gibbs distribution. If this probability density function has a value greater than a 

random number, then the trial point is accepted as the best solution even if its function value 

is higher. 
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A parameter called the Temperature (T) is used to calculate the probability density function. 

For the optimization problem, this temperature can be a target value for the optimum value of 

the cost function. Initially, a larger target value is selected. As the trials progress, the target 

value (temperature) is reduced (called the cooling schedule), and the process is terminated 

after a large number of trials. 

 

The acceptance probability steadily decreases to zero as the temperature is reduced. So, in 

the initial stages, the method sometimes accepts worse designs, while in the final stages the 

worse designs are almost always rejected. This strategy avoids getting trapped at a local 

minimum point. The SA method requires evaluation of a cost and constraint functions only. 

Continuity and differentiability of functions are not required. So the method can be useful for 

non-differentiable problems, and problems where gradients cannot be calculated or are too 

expensive to calculate. 

 

The (SA) algorithm is simple and easy to program. The following five steps give the basic 

ideas of the algorithm: 

1) Choose an initial temperature 
 1T  (Section 4.2.1) and a feasible trial point   1

x . 

Compute   1
f x . Select a limit on the number of iterations (M) to reach the expected 

minimum value. Initialize the iteration counter (k = 1). 

2) Generate a new point 
 1k

x


 randomly in a neighbourhood of the current point 
 1

x

using (4.2). If the point is infeasible, generate another random point until feasibility is 

satisfied. Calculate 
  1k

f x


 and      1 1k
f f x f x


   . 

             
 

 

1 1 1 1max min

1

k
k k k

i i i i i i i i

T
x x x x r x x s

T

      
 

 (4.2) 

where: i is the ith design variable in the range  1,...,i n , n is the number of design 

variables,    ,
k k

i ir s  are random numbers for the ith design variable in the kth iteration in the 

range  0,1  

3) If 0f then accept  1k
x


as the new best point   1

x , set      1 1k
f x f x


 go to Step 

4. Otherwise, calculate the probability density function (6.3).Generate a random 

number (z) uniformly distributed in [0,1]. If  z p f  , then accept x(k+1) as the new 

best point x(1) and go to Step 4. Otherwise go to Step 2. 

   

 
exp

K

f

T

k

f
p f e

T

 
 
 
 

 
   

 
 (4.3) 

 

4) If k < M, then k = k+ 1 and go to Step 5, else if k > M and one of the stopping criteria 

explained below is satisfied, then stop. 

5) Update the temperature T(k), (Section 4.2.2); go to Step 2. 

 

In order to implement this algorithm, the following three points need to be considered: 



Page 75 
Copyright © 2024 University of Leeds UK. All rights reserved. 

1) In Step 2 only one point is generated at a time within a certain neighbourhood of the current 

point. Thus, although SA randomly generates design points without the need for function 

or gradient information, it is not a pure random search within the entire design space. At 

the early stage, a new point can be located far away from the current point to speed up 

the search process and to avoid being trapped at a local minimum point. Once the 

temperature gets low, the new point is usually created nearby in order to focus on the local 

area. This can be controlled by defining a step size procedure. 

2) In Step 2, the newly generated point needs to be feasible. If it is not, another point is 

generated until a point in the feasible region is obtained. Another method for treating 

constraints is to use the penalty function approach; that is, the constrained problem is 

converted to an unconstrained one. The cost function is replaced by the penalty function 

in the algorithm. Therefore, the feasibility requirements are not imposed explicitly in Step 

2. 

3) The following stopping criteria are suggested for Step 4: 

a. The algorithm stops if change in the best function value is less than some specified 

value for the last j number of consecutive iterations. 

b. The algorithm stops if k reaches a specified number of iterations by the user. 

 

4.2.1 Selecting the Initial Temperatures 
 1T  

 

A suitable initial temperature is one that results in an acceptance probability of value close to 

1, which means that there is an almost 100% chance that a change which increases the 

objective function will be accepted. The value of initial temperature will clearly depend on the 

objective function and, hence, be problem-specific. It can be estimated by conducting an initial 

search in which all increases are accepted (i.e., the fixed number of iterations of simulated 

annealing in which all perturbed solutions are unconditionally accepted) and calculating the 

maximum objective increase observed f . Then, the initial temperature 
 1T  is given by (4.4). 

 

 
1

ln

f
T

p


  (4.4) 

where: p is a probability close to 1 (e.g. 0.8 – 0.9). 

 

4.2.2 Decreasing the Temperature 
 k

T   
 

In the SA algorithm, the temperature is decreased gradually such that (4.5) and (4.6) are 

satisfied. 

  0
k

T   (4.5) 

 lim 0
k

k
T


  (4.6) 

 

There is always a compromise between the quality of the obtained solutions and the speed of 

the cooling scheme. If the temperature is decreased slowly, better solutions are obtained but 

with a more significant computation time. The temperature T can be updated using one of four 

different schemes: 1) Linear, 2) Geometric, 3) Logarithmic, and 4) Modified logarithmic. These 

are explained next. 
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4.2.2.1 Linear Temperature Update Scheme  
 

The Linear temperature update scheme consists of (4.7), where the temperature T is  

 

     1
1

k
T T k T     (4.7) 

where: T  is a specified constant value which decreases the temperature equally in each 

iteration, k is the iteration number. 

 

The value of T  can be calculated with (4.8), where M is the number of trials (iterations) 

 

   1 Final
T T

T
M


   (4.8) 

 

4.2.2.2 Geometric Temperature Update Scheme 
 

The Geometric temperature update scheme consists of equation (6.9) where the temperature 

in each iteration is a multiple of the previous temperature. 

 
Figure 4.1: Temperature change during the search process for T(1) = 300 °C and  =0.9. 

 

   1k k
T T


  (4.9) 

 

where   is a value between 0 and 1. The smaller the value of   the faster that the 

temperature reaches 0, the larger the value of  the more number of iterations before reaching 

a solution. Figure 4.1 shows how the temperature decreases during the search process for an 

initial temperature of T(1) = 300 °C and the multiplier with a value of  =0.9. 

 
4.2.2.3 Logarithmic Temperature Update Scheme 
 

The Logarithmic temperature update scheme consists of (4.10), where the initial temperature 

is divided by the logarithm of the current iteration number (k). 
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 
   1 1

ln( ) log( )

k T T
T or

k k
  (4.10) 

 

This scheme is too slow to be applied in practice but has been proven to have the property of 

convergence to a global optimum. 

 

Figure 4.2 shows how the temperature decreases during the search process for an initial 

temperature of T0 = 300 °C and 20,000 iterations. 

 
Figure 4.2: Temperature change during the search process for T(1) = 300 °C and 20,000 

iterations. 
 

4.2.2.4 Modified Logarithmic Temperature Update Scheme 
 

The main trade-off in a cooling scheme is the use of a large number of iterations at a few 

temperatures or a small number of iterations at many temperatures. The Modified logarithmic 

temperature update scheme consists of (4.11), which is a very slow decreasing function, 

Figure 4.3. 

 
 

 

1

1

k
k

k

T
T

T





 (4.11) 

where   is a very small constant parameter with values of approximately 410  . Figure 

4.12 shows how the temperature decreases during the search process for an initial 

temperature of T(1)  = 300 °C, 410   and 20,000 iterations. 
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Figure 4.3: Temperature change during the search process for T(1)  = 300 °C, 410 

and 20,000 iterations. 
 

Simulated Annealing Worked Example 

The aim is to minimise 𝑓(𝑥) = (4 − 2.1𝑥 +
𝑥3

3
) 𝑥2 + 1.1𝑥 + 1.0164 in the x-interval −2 < 𝑥 < 2 

using 6 iterations of the SA algorithm.  
 

 

Number Random Values Rand Used k f(x) TK

1 0.02850 1 1 x1 = -1.8860 1.6014 350

2 0.34773 2,3 x2 = -0.6213 1.5833

3 0.75934 f = f(x2) - f(x1)= -0.01816 <0 Accept

4 0.73739

5 0.86296 2 x1 = -0.6213 1.5833 300

6 0.69197 4,5 x3 = 0.01569 1.0346

7 0.69055 f = f(x3) - f(x1)= -0.54862 <0 Accept

8 0.72874

9 0.44761 3 x1 = 0.01569 1.0346 250

10 0.00820 6,7 x4 = 0.00222 1.0189

11 0.80004 f = f(x4) - f(x1)= -0.01577 <0 Accept

12 0.15108

13 0.22558 4 x1 = 0.0022 1.0189 200

14 0.45510 8,9 x5 = 0.3220 1.7632

15 0.85492 f = f(x5) - f(x1)= 0.744335 >0 Check

p(f) = 0.99629

10 Next Rand Number  z = 0.0082

z < p(Δf) True Accept

5 x1 = 0.3220 1.7632 150

11,12 x6 = 0.7470 3.4742

f = f(x6) - f(x1)= 1.711002 >0 Check

p(f) = 0.98866

13 Next Rand Number  z = 0.22558

z < p(Δf) True Accept

6 x1 = 0.7470 3.4742 100

14,15 x7 = 0.2389 1.5008

f = f(x7) - f(x1)= -1.97338 <0 Accept
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The numerical solution is given by the following calculations: 

 
Initial random number =  0.02850 xmin=-2.00000 xmax= 2.00000 initial x=-1.88600 
Iteration   1 T=350.000 xmin=-2.000 xmax= 2.000 
x1=-1.88600 f1= 1.60142 
r= 0.34773 s= 0.75934 probrand= 0.00000  
x2=-0.62129 f2= 1.58326 
Iteration   2 T=300.000 xmin=-2.000 xmax= 2.000 
x1=-0.62129 f1= 1.58326 
r= 0.73739 s= 0.86296 probrand= 0.00000  
x2= 0.01569 f2= 1.03464 
Iteration   3 T=250.000 xmin=-2.000 xmax= 2.000 
x1= 0.01569 f1= 1.03464 
r= 0.69197 s= 0.69055 probrand= 0.00000  
x2= 0.00222 f2= 1.01887 
Iteration   4 T=200.000 xmin=-2.000 xmax= 2.000 
x1= 0.00222 f1= 1.01887 
r= 0.72874 s= 0.44761 probrand= 0.00820  
x2= 0.32202 f2= 1.76320 
Iteration   5 T=150.000 xmin=-2.000 xmax= 2.000 
x1= 0.32202 f1= 1.76320 
r= 0.80004 s= 0.15108 probrand= 0.22558  
x2= 0.74701 f2= 3.47420 
Iteration   6 T=100.000 xmin=-2.000 xmax= 2.000 
x1= 0.74701 f1= 3.47420 
r= 0.45510 s= 0.85492 probrand= 0.00000  
x2= 0.23894 f2= 1.50082 
SA search after   6 iterations completed: x=    0.23894 f =    1.50082 
 

The solution is shown on the following figure: 

 

4.3 Particle Swarm Optimization (PSO) 

 

Particle Swarm Optimization (PSO) is a population based search algorithm based on the 

simulation of the social behaviour of birds in a flock, Figure 4.4. PSO is stochastic and mimics 

the flock’s behaviour as it adjusts its movement to avoid predators to seek food sources. 

Individual particles exchange information about their position, velocity and fitness. The 

position of each individual particle represents a candidate solution to the optimization problem. 
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The particle swarm optimisation algorithm (PSOA) uses a fitness function to evaluate the 

optimality of each solution. 

 
Figure 4.4: Swarming of starlings 

 

This function enables each solution to be compared and ranked against each other. If the 

objective function is required to be minimised, a solution with the smallest value will have a 

higher fitness value. The sharing of information between particles is fundamental to the PSOA 

as it offers an evolutionary advantage. The act of exchanging information influences the 

behaviour of the flock, which adapts by returning to regions of high fitness already discovered 

and searching for better positions with each time step. The real-valued particle swarm 

optimization method works like this: 

 

Assume that the search space has (d) dimensions (d is the number of design variables). The 

ith particle of a swarm with Np particles can be represented by the d-dimensional position vector 

of (6.12).  

 idiii xxxX ,,, 21   (4.12) 

The velocity of the particle is denoted by the vector of (4.13). 

 

 idiii vvvV ,,, 21   (4.13) 

 

In order for PSO to work, it is also necessary to consider both the best-visited position of the 

ith particle (4.14) and the best global position explored so far by the entire swarm (4.15). 

 

 idiibesti pppP ,,, 21,   (4.14) 

 gdggbestg pppP ,,, 21,   (4.15) 

 

The velocity of the particle which is then used to calculate its position at the (t + 1) iteration is 

given by (4.16) and (4.17) respectively. 

 

       ibestgibestiii XPcXPctwVtV  ,22,111   (4.16) 
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     11  tVtXtX iii  (4.17) 

where:   
 c1: A positive constant called the cognitive parameter, a typical value is 0.72 

 c2: A positive constant called the social parameter, a typical value is 1.44 

 
1 : random variables with uniform distribution between 0 and 1 

 
2 : random variables with uniform distribution between 0 and 1 

 w : is the inertia weight which shows the effect of the velocity vectors on the 
new vector. This value is generally constant for the entire optimization, 
but could be made to vary between two values with decreasing effect as 
the solution evolves using equation (6.18) 

max

minmax
max

)(

t

tww
ww d

t


  (4.18) 

 t: tth iteration  

 tmax: Maximum number of iterations, specified by the user.  

 d: dth design variable   

 
minw : Minimum inertia value  

 
maxw  Maximum inertia value, used at the start of the optimization to 

allow a wide search space. The maximum inertia value should 
be less than ~50% of the design variable range: 

 max 0.5 U L

d dw V x x    

 

 d

tw  Actual inertia value at tth iteration  

 

An upper bound is placed on the velocity in all dimensions Vmax .This limitation prevents the 

particle from moving too rapidly from one region in search space to another. This value is 

usually initialized as a function of the range of the problem. For example, if the range of all Xij 

is [-50,50] then Vmax is proportional to 50. 

 

Pi,best for each particle is updated in each iteration when a better position for the particle or for 

the whole swarm is obtained. PSO is driven by social interaction. Individuals (particles) within 

the swarm learn from each other, and based on the knowledge obtained then move to become 

similar to their “better” previously obtained position and also to their “better” neighbours.  

Individuals within a neighbourhood communicate with one other. Based on the communication 

of a particle within the swarm different neighbourhood topologies are defined. Each particle 

can communicate with every other individual, forming a fully connected social network. In this 

case each particle is attracted toward the best particle (best problem solution) found by any 

member of the entire swarm. Each particle therefore imitates the overall best particle. So the 

value of Pg,best is updated when a new best position within the whole swarm is found.  

 

The algorithm for the PSO consists of the following 7 steps: 

1) Initialize the swarm X. The positions of the Np particles are randomly initialized within 

the hypercube of feasible space. 

2) Evaluate the performance F of each particle, using its current position X(t). 

3) Compare the performance of each individual to its best performance so far. If 

   bestii PFXF ,  then     ibestiibesti XPXFPF  ,, ,  
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4) Compare the performance of each particle to the global best particle. If

   bestgi PFXF ,  then     ibestgibestg XPXFPF  ,, ,  

5) Change the velocity of the particle based on the value calculated using equation (1). 

6) Move each particle to a new position using equation (2). 

7) Go to step 2, and repeat until convergence. 

 

Particle Swarm Optimisation Worked Example 

The aim is to minimise 𝑓(𝑥) = (4 − 2.1𝑥 +
𝑥3

3
) 𝑥2 + 1.1𝑥 + 1.0164 in the x-interval −2 < 𝑥 < 2 

using the PSO algorithm. The following parameters are used with 3 iterations: 
 
 
 
 
 
 

6.4 Differential Evolution (DE) Algorithm 

 

 

 

 

 

 

 

 

 

 

 

The calculations result in: 

 
PSO: c1= 0.750 c2= 1.500 Np= 2 Niter= 3 w_x= 1.000 v_initial= 0.500 xmin=-2.000 xmax= 2.000 
------------------------------------------------------------------------------------------- -------------------------------------- 
Random numbers used throughout PSO calculations: 
----------------------------------------------------------------------- 
Particle initialisation: for particle 1 xrand= 0.45700, particle 2 xrand= 0.81800 
For k=1 particle 1: thi1= 0.28500 thi2 =  0.37300 particle 2: thi1= 0.60900 thi2 =  0.25100 
For k=2 particle 1: thi1= 0.67800 thi2 =  0.77800 particle 2: thi1= 0.96400 thi2 =  0.07300 
For k=3 particle 1: thi1= 0.42900 thi2 =  0.57200 particle 2: thi1= 0.21900 thi2 =  0.89100 
---------------------------------------------------------------------------------------------------------------------- 
Iteration 1: Initial x1=  -0.17200 x2=   1.27200 f1=   0.94371 f2=   4.80190 
------------------------------------------------------------------------------------------------- 
Initial x1best=  -0.17200 f1best=   0.94371 x2best=   1.27200 f2best=   4.80190 
Initial xgbest=  -0.17200 fgbest=   0.94371 
For particle 1 thi1=   0.28500 thi2=   0.37300  For particle 2 thi1=   0.60900 thi2=   0.25100 
Initial veocity particle 1=   0.50000 particle 2=   0.50000 
  
Start of iteration   2 xgbest=  -0.17200 fgbest=   0.94371 
----------------------------------------------------------- 
Before iteration x1=  -0.17200 x2=   1.27200 f1=   0.94371 f2=   4.80190 
Before iteration x1best=  -0.17200 f1best=   0.94371 x2best=   1.27200 f2best=   4.80190 
For particle 1 thi1=   0.28500 thi2=   0.37300  For particle 2 thi1=   0.60900 thi2=   0.25100 
After iteration: For particle 1 velocity=   0.50000 particle 2 velocity=  -0.04367 
After iteration x1=   0.32800 x2=   1.22833 f1=   1.78365 f2=   4.76708 
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After iteration x1best=  -0.17200 f1best=   0.94371 x2best=   1.22833 f2best=   4.76708 
After iteration   2 xgbest=  -0.17200 fgbest=   0.94371 
----------------------------------------------------------- 
  
Start of iteration   3 xgbest=  -0.17200 fgbest=   0.94371 
----------------------------------------------------------- 
Before iteration x1=   0.32800 x2=   1.22833 f1=   1.78365 f2=   4.76708 
Before iteration x1best=  -0.17200 f1best=   0.94371 x2best=   1.22833 f2best=   4.76708 
For particle 1 thi1=   0.67800 thi2=   0.77800  For particle 2 thi1=   0.96400 thi2=   0.07300 
After iteration: For particle 1 velocity=  -0.33775 particle 2 velocity=  -0.19700 
After iteration x1=  -0.00975 x2=   1.03133 f1=   1.00606 f2=   4.43074 
After iteration x1best=  -0.17200 f1best=   0.94371 x2best=   1.03133 f2best=   4.43074 
After iteration   3 xgbest=  -0.17200 fgbest=   0.94371 
----------------------------------------------------------- 
 PS search completed xgbest=   -0.17200 fgbest =    0.94371 

 

 

 

4.4 Differential Evolution (DE) 

 

The differential evolution (DE) algorithm works with a population of designs. At each iteration 

(called generation), a new design is generated using some current designs and random 

operations. If the new design is better than a preselected parent design, then it replaces that 

design in the population; otherwise, the old design is kept and the process is repeated. 

Compared to genetic algorithms (GA), DE algorithms are easier to implement, and don’t 

require binary number coding and encoding. 

 

The basic DE algorithm consists of the following four steps, which will be explained next. 

1) Generate an initial population of designs. 

2) Mutation with difference of vectors to generate a donor design vector. 

3) Crossover/recombination to generate a design vector. 

4) Selection (accept/reject) the trial design vector using the fitness function. 

 

4.4.1 Generation of the Initial Population 
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It is necessary to generate an initial population of Np design points. Np is usually a large 

number, between five (5n) and ten times (10n): the number of design variables (n), where 

each design variable is called a chromosome.  The initial designs are generated using 

equation (6.1), which for DE has the form of (6.19). 

 

  ntojxxrxx jLjUijjL

i

j 1;)0,(   (4.19) 

where:   
 L: lower limit; 
 U: upper limit, 
 I: ith design point; 
 0: 0th generation; 
 J: jth component of the population 
 rij: Uniformly distributed random number between 0 and 1, generated for each 

component of the design point. 
 

4.4.2 Generate a Donor Design 
 

The donor design point is created by changing a design point from the current population. This 

change is done by combining the design vector with the difference between two other vectors 

of the population, all randomly selected. The generated design vector is called the donor 

design/vector. Mutation implies changing all components of a design vector. So, at the kth 

generation, to generate the donor design vector, the following steps are required: 

1) Randomly select three design points from the current population, represented by these 

3 variables:
      1, 2, 3,

, ,
r k r k r k

x x x : r1, r2, and r3 are three different designs. 

2) Select a fourth point
 ,p k

x , called the parent/target design point; p means parent 

design. 

3) Generate a Donor design vector using (6.20) 

 

        krkrkrkp xxFxV ,3,2,1,   (4.20) 

where:   
F: is a scale factor, with values typically between 0.4 and 1; 
V(p,k): Donor  design vector at the kth generation/iteration associated with pth parent 

design 
 

4.4.3 Crossover Operation to Generate Trial Design 
 

The crossover operation is carried out using (4.21). 

 
 

  ntoj
otherwisex
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

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  (4.21) 

where:   
rpj: is a uniformly distributed random number between 0 and 1; 
jr: is a randomly generated index between 1 and n that ensures that U(p, k) 

receives at least one component from V(p,k); 
Cr: Crossover rate (value of 0.9 commonly used). 

 

4.4.4 Acceptance/Rejection of the Trial Design 
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Check if the trial design U(p,k) is better than the parent design x(p,k).If it is, it replaces the parent 

design (to keep population size constant). This is represented by (4.22). 

 

 
       
 



 



otherwisex

xfUfifU
x

kp

kpkpkp
kp

,

,
,

,,,
1,

 (4.22) 

 

If the cost function value for the trial design point is less than for the parent design, it replaces 

the parent design point in the next generation; otherwise, the parent design is retained. The 

population then gets better or remains the same but doesn’t deteriorate. Note that the parent 

design is replaced by the trial design even if both produce the same cost function value. This 

allows the design vectors to move over a flat fitness landscape. 

 

4.4.5 The DE Algorithm 
 

The DE algorithm only requires three parameters: Np, F, and Cr, and its flow chart is given in 

Figure 4.5.  The termination criteria consist of the following three steps: 

1) Specify a limit kmax on the number of generations. 

2) The best fitness/cost function value of the population does not change appreciably for 

several generations. 

3) A specified value for the cost function is reached. 

 

Figure 4.5: Main steps of the differential evolution algorithm.. 

 

Differential Evolution Worked Example 

The aim is to minimise 𝑓(𝑥) = (4 − 2.1𝑥 +
𝑥3

3
) 𝑥2 + 1.1𝑥 + 1.0164 in the x-interval −2 < 𝑥 < 2 

using the DE algorithm. The following parameters are used: 
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Differential Evolution: n=1 Np=6 Ngen=2 xmin= -2.0000 xmax=  2.0000 F=  0.4000 Cr=  0.9000 
------------------------------------------------------------------------------------------  
  
Random numbers for initialisation of design points: 
--------------------------------------------------- 
Point 1=  0.6582 2=  0.7161 3=  0.2503 4=  0.7816 5=  0.8839 6=  0.5247 
  
Random numbers for generating donor and target points at each iteration: 
------------------------------------------------------------------------ 
Generation 1 random numbers:   0.1934   0.5037   0.0998   0.4530 
Generation 1 donor designs:   2   4   1 and target design  3 
  
At start of generation   1: 
--------------------------- 
x1=  0.6328 x2=  0.8644 x3= -0.9988 x4=  1.1264 x5=  1.5356 x6=  0.0988 
f1=  2.9989 f2=  3.9226 f3=  2.1491 f4=  4.6308 f5=  4.8315 f6=  1.1639 
Minimum function value=  1.1639 at x=  0.0988 
For generation   1 donation use r1=  2 r2=  4 r3=  1 for target rp=  3 with potential x=  1.0618 
 
At end of generation   1: 
--------------------------- 
x1=  0.6328 x2=  0.8644 x3= -0.9988 x4=  1.1264 x5=  1.5356 x6=  0.0988 
f1=  2.9989 f2=  3.9226 f3=  2.1491 f4=  4.6308 f5=  4.8315 f6=  1.1639 
Minimum function value=  1.1639 at x=  0.0988 
  
DE search completed xbest=    0.09880 fbest =    1.16393 

 

 
 
The following example solves the same problem but with a different set of random numbers 
and a larger number of generations: 
 
Differential Evolution: n=1 Np=6 Ngen=10 xmin= -2.0000 xmax=  2.0000 F=  0.4000 Cr=  0.9000 
------------------------------------------------------------------------------------------ 
  
Random numbers for initialisation of design points: 
--------------------------------------------------- 
Point 1=  0.9106 2=  0.8006 3=  0.7458 4=  0.8131 5=  0.3833 6=  0.6173 
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Random numbers for generating donor and target points at each iteration: 
------------------------------------------------------------------------ 
Generation 1 random numbers:   0.5755   0.0871   0.8990   0.4106 
Generation 1 donor designs:   4   1   5 and target design  3 
Generation 2 random numbers:   0.5301   0.8021   0.6259   0.9843 
Generation 2 donor designs:   4   5   4 and target design  6 
Generation 3 random numbers:   0.2751   0.9891   0.1379   0.9456 
Generation 3 donor designs:   2   6   2 and target design  6 
Generation 4 random numbers:   0.2486   0.0669   0.2178   0.6766 
Generation 4 donor designs:   2   1   2 and target design  4 
Generation 5 random numbers:   0.4516   0.9394   0.1821   0.9883 
Generation 5 donor designs:   3   6   2 and target design  6 
Generation 6 random numbers:   0.2277   0.0182   0.0418   0.7668 
Generation 6 donor designs:   2   1   1 and target design  5 
Generation 7 random numbers:   0.8044   0.6838   0.1069   0.3367 
Generation 7 donor designs:   5   4   2 and target design  3 
Generation 8 random numbers:   0.9861   0.7837   0.6164   0.6624 
Generation 8 donor designs:   6   5   4 and target design  4 
Generation 9 random numbers:   0.0300   0.5341   0.9397   0.2442 
Generation 9 donor designs:   1   4   6 and target design  2 
  
At start of generation   1: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
For generation   1 donation use r1=  4 r2=  1 r3=  5 for target rp=  3 with potential x=  2.0961 
 
At end of generation   1: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
At start of generation   2: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
For generation   2 donation use r1=  4 r2=  5 r3=  4 for target rp=  6 with potential x=  0.5648 
 
At end of generation   2: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
At start of generation   3: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
For generation   3 donation use r1=  2 r2=  6 r3=  2 for target rp=  6 with potential x=  0.9090 
 
At end of generation   3: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
 
At start of generation   4: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
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Minimum function value=  1.2782 at x= -0.4668 
For generation   4 donation use r1=  2 r2=  1 r3=  2 for target rp=  4 with potential x=  1.3783 
 
At end of generation   4: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
 
At start of generation   5: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
For generation   5 donation use r1=  3 r2=  6 r3=  2 for target rp=  6 with potential x=  0.6901 
 
At end of generation   5: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
 
At start of generation   6: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
For generation   6 donation use r1=  2 r2=  1 r3=  1 for target rp=  5 with potential x=  1.2022 
 
At end of generation   6: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
 
At start of generation   7: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3=  0.9834 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  4.3039 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2782 at x= -0.4668 
For generation   7 donation use r1=  5 r2=  4 r3=  2 for target rp=  3 with potential x= -0.4467 
 
At end of generation   7: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3= -0.4467 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  1.2422 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2422 at x= -0.4467 
 
At start of generation   8: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3= -0.4467 x4=  1.2525 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  1.2422 f4=  4.7879 f5=  1.2782 f6=  2.3146 
Minimum function value=  1.2422 at x= -0.4467 
For generation   8 donation use r1=  6 r2=  5 r3=  4 for target rp=  4 with potential x= -0.2186 
 
At end of generation   8: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3= -0.4467 x4= -0.2186 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  1.2422 f4=  0.9623 f5=  1.2782 f6=  2.3146 
Minimum function value=  0.9623 at x= -0.2186 
 
At start of generation   9: 
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--------------------------- 
x1=  1.6423 x2=  1.2022 x3= -0.4467 x4= -0.2186 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  1.2422 f4=  0.9623 f5=  1.2782 f6=  2.3146 
Minimum function value=  0.9623 at x= -0.2186 
For generation   9 donation use r1=  1 r2=  4 r3=  6 for target rp=  2 with potential x=  1.3672 
 
At end of generation   9: 
--------------------------- 
x1=  1.6423 x2=  1.2022 x3= -0.4467 x4= -0.2186 x5= -0.4668 x6=  0.4691 
f1=  4.8751 f2=  4.7397 f3=  1.2422 f4=  0.9623 f5=  1.2782 f6=  2.3146 
Minimum function value=  0.9623 at x= -0.2186 
DE search completed xbest=   -0.21857 fbest =    0.96231 

 

 
4.5 Genetic Algorithms (GA) 

 

Genetic algorithms (GA) are a class of stochastic algorithms which simulate natural 

inheritance and Darwin’s survival of the fittest concept. They belong to the class of probabilistic 

algorithms; but are very different from random ones, as they combine elements of directed 

and stochastic search. They are superior to hill-climbing methods, since at any time a GA 

provides for both exploitation of the best solutions, and exploration of the search space. 

 

GA performs a multi-directional search by maintaining a population of potential solutions and 

encourages information formation and exchange between these directions. This population 

undergoes a simulated evolution: at each generation the relatively “good” solutions reproduce, 

while the relatively “bad” solutions die. One of the main differences between GA and other 

stochastic methods is in the way that the design variables are stored and manipulated. GA 

attempts to simulate numerically biological genetics and evolution. So, the design variables 

are represented not as a vector of values, but as a binary string of 0’s and 1’s called a 

chromosome. This means that this vector of design variables:  1 2, , , nx x x x  is represented 

by this binary string: 010101001001011000100100111100101010100111x . But 

instead of calling this the design variables, this binary string is called a chromosome (6.23). 
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 010101001001011000100100111100101010100111chromosome  (4.23) 

 

A chromosome (also called an Individual or string) is a binary string which holds all of the 

design variables and which needs to be optimized. Since the design variables are all 

embedded inside of the chromosome, then all of the segments which make up each individual 

design variable are the genes, (4.24).  

 












 

var

010010010100111100101010100111
21 Ngenegenegene

chromosome  (4.24) 

 

The genes then represent the design variables inside of the chromosome. In the chromosome 

of (4.24), the number of design variables is Nvar, and each one has been coded using 10 bits, 

i.e. Ngene = 10. The length of this chromosome is then given by (4.25). 

 

bitsNNNN genebits varvar 10  (4.25) 

 

Each individual bit of a chromosome is called an Allele, (4.26). 

 












 

var

010010010100111100101010100111
21 Ngenegenegene

chromosome  (4.26) 

 

A Population consists of a group of individuals that interact (breed) together and looks like 

(4.27).  



























110100100100001001011001011001011111100100

101010000000101001001011000101000010010011

010101001001011000100100111100101010100111


Population  (4.27) 

 

A population of individuals can then be manipulated and combined by using the following six 

genetic operators, each of these operators will be explained in the sections which follow. 

1) Evaluation 

2) Selection 

3) Reproduction (Cross-over) 

4) Mutation 

5) Elitism 

6) Extermination 

 

4.5.1 Evaluation 
 

In conventional optimization, the objective function is used to provide a measure of optimality 

for the values of the design variables. In GA, the fitness of an individual is used to determine 

its relative performance (fitness) compared to the other individuals of a population. Fitness 

Function (FF): is the function used to calculate the fitness, (4.28).  

15/40 
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    xfgxF   (4.28) 

where:   
 f: is the objective function; 
 g: transforms the value of the objective function to a non-negative number 
 F: is the resulting relative fitness. 

 

4.5.2 Selection 
 

The process of selection consists of selecting two chromosomes (individuals) from the mating 

pool (population) in order to carry out reproduction to produce two new offspring. The selection 

process is biased toward fit members of the current population. Using the fitness value Fi for 

each individual of the population, its probability of being selected is calculated using (4.29).  





pN

j

j
i

i FQ
Q

F
P

1

,  (4.29) 

 

The members with the higher fitness have the largest probability of selection. To explain the 

process of selection, consider the roulette wheel with a handle, Figure 4.6. The wheel has Np 

segments to cover the entire population. The size of the ith segment is proportional to the 

probability Pi. A random number w is generated between 0 and 1. The wheel is then rotated 

clockwise, with the rotation proportional to the random number w. 

 

 

 

Figure 4.6: Roulette wheel process for selection of designs for new generation (reproduction). 

After spinning the wheel, the member pointed by the arrow at the starting location is selected 

for inclusion in the next generation. In Figure 4.6, the 2nd individual is selected as a parent for 

reproduction. Since the segments on the wheel are sized according to the probabilities Pi, the 

selection process is biased toward fitter members of the current population. 
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Note that a member selected for mating remains in the current population for further selection. 

Therefore, the new population may contain identical members and may not contain some of 

the less fit individual members from the current population. This guarantees that the average 

fitness of the new population is increased. The three of the most common selection methods 

are:  

1) Roulette Wheel Selection 

2) Linear-rank selection 

3) Tournament selection: 

 

4.5.2.1 Roulette Wheel Selection 
 

Roulette Wheel Selection or Proportional Selection was the original selection process. As was 

just explained, each individual of the population is represented by a space proportional to its 

fitness.  By repeatedly spinning the wheel, individuals are chosen using random sampling with 

replacement. 

 

4.5.2.2 Linear-Rank Selection 
 

The individuals of the population are ordered according to their fitness. Copies are assigned 

in such a way that the best individual receives a pre-determined multiple of the number of 

copies the worst one receives. Rank selection implicitly reduces the dominating effects of 

“super individuals” in populations (i.e., individuals that are assigned a significantly better 

fitness value than all other individuals). However, it warps the difference between close fitness 

values, thus increasing the selection pressure in stagnant populations. 

 

4.5.2.3 Tournament Selection 
 

There are a number of variants on this theme. The most common one is k-tournament 

selection where k individuals are selected from a population. The fittest individual of the k 

selected ones is considered for reproduction. In this variant, selection pressure can be scaled 

quite easily by choosing an appropriate number for k. 

 

4.5.3 Reproduction (Cross-over) 
 

The operator to produce new individuals is call reproduction. Like nature, reproduction is 

carried out by crossover, which produces new individuals with some parts from the genetic 

material of both parents.  There are 3 common forms of cross over, these are: 

1) Single-point Crossover 

2) Multi-point Crossover 

3) Uniform Crossover 

 

4.5.3.1 Single-point Crossover 
 

Consider the following two binary strings as two parents: 
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1110011000

0100110101

2

1





P

P
  

 

A position, i, is selected randomly between 1 and the string length, l. Assume that for this 

problem, the position i = 5 was randomly selected. The two strings are then cut between the 

5th and 6th allele. 

1110011000

0100110101

2

1





P

P
  

 

The segments of the strings to the right of the cut are then swapped. 

 

1110011000

0100110101

2

1





P

P
  

 

To produce these two children 

0100111000

1110010101

2

1





O

O
  

 

4.5.3.2 Multi-point Crossover 
 

For multi-point crossover, m crossover positions are chosen at random with no duplicates and 

these are then sorted into ascending order, (4.30).  

 

 1,,12,7,3,1  lk i   (4.30) 

where:   
 ki: are the crossover points 
 l: is the length of the chromosome 

 

Then, the bits (alleles) between successive crossover points are exchanged between the two 

parents to produce two new offspring 

 

Consider the following two binary strings as two parents: 

001010100010000

011001110111101

2

1





P

P
  

 

If the number of cross overs (m) was set to m = 3. With the 3 positions randomly selected to 

be  13,6,3ik , this then creates the 4 segments shown below. But only segments 2 and 4 

take part in the crossover. These two segments are cut are then swapped. 

 

 

001010100010000

011001110111101

2

1





P

P
  

 

2 1 3 4 
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To produce these two children 

011010100111000

001001110010101

2

1





O

O
  

 

4.5.3.3 Uniform Crossover 
 

Uniform crossover generalises this scheme to make every locus a potential crossover point. 

A crossover mask (the same length as the chromosome) is randomly created with values of 0 

or 1. The value of the bits in the mask indicates which parent supplies each offspring with their 

information. Consider the following two parents and the randomly generated crossover mask. 

010100000010110

011010100111000

001001110010101

2

1







mask

P

P

  

 

The first offspring, O1, is produced by taking the bit from P1 if the corresponding mask bit is 1 

or the bit from P2 if the corresponding mask bit is 0. Offspring O2 is created using the inverse 

of the mask. For the two parents and mask shown above, the two offspring become: 

011001110010001

001010100111100

2

1





O

O
  

 

4.5.4 Mutation 
 

In natural evolution, mutation is a random process where one allele of a gene is replaced by 

another to produce a new genetic structure. In GA, mutation is randomly applied with a 

probability of between 0.001 and 0.01 (0.1% to 1%). Mutation takes place after the 

reproduction (cross-over) stage and modifies individual alleles in the chromosome by inverting 

their value. Mutation provides a guarantee that all possible strings will be searched. It acts as 

a safety net to recover good genetic material which may have be lost through selection and 

crossover 

 

Consider that the 2nd of these two offspring was randomly selected for mutation. It was then 

randomly found, that the 7th position was going to be mutated.  

011001110010001

001010100111100

2

1





O

O
  

 

Since the current value is 0, this is then mutated to have a value of 1. 

011001111010001

001010100111100

2

1





O

O
  

 

4.5.5 Elitism 
 

A very small proportion of the individuals (chromosomes) with the best fitness are carried over 

from one generation to the next. Elitism guarantees that the solution quality obtained by the 
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GA does not decrease from one generation to the next. A reasonable proportion of the 

population to be considered for elitism is 10%. 

 

4.5.6 Extermination 
 

It’s reasonable to exterminate a certain percentage (%) of the population of lowest fitness. A 

reasonable proportion of the population to be exterminated is between 10 and 25%. 

 

4.5.7 Termination Condition 
 

The GA process can go forever, unless there is some sort of termination condition. There are 

normally a couple of ways to achieve this: 

1) Maximum number of iterations (called generations) reached . A typical value is 150 

generations 

2) Fitness function conversion. If the fitness function value does not improve by more 

than a minimum relative threshold (typically) 0.0001% (0.000001) over the previous n 

generations (typically 10) the process is terminated. 

 

 

4.5.8 The Genetic Algorithm Procedure 
 

The virtual code of Figure 4.7 shows how the GA procedure works. 

 Genetic Algorithm Procedure 

begin 

t = 1 

Initialize P(t) - Randomly 

Evaluate P(t) 

while (not termination-condition) do 

begin 

Extermination P(t ) 

Selection from P(t ) 

Elitism P(t+1) from P(t ) 

Reproduction P(t+1) 

Mutation P(t+1) 

Evaluate P(t+1) 

t = t+  1 

end 

end 

Figure 4.7: GA virtual code 

 

4.6 Ant Colony Optimization (ACO) 

 

Ant colony optimization (ACO) emulates the food searching behaviour of ants. The method 

was originally developed by Dorigo (1992) to search for the optimal path for a problem 

represented by a graph. It was based on the behaviour of ants seeking the shortest path 
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between their colony and a food source.  ACO falls into the metaheuristics2 and swarm 

intelligence methods class. It is a stochastic technique for solving computational problems, 

which can be used to find optimal paths. 

 

4.6.1 How Real Ants Work 
 

Ants are able to deal with complex tasks by acting collectively. This collective behaviour is 

supported by the release of a chemical substance, named pheromone. During their 

movement, ants deposit pheromone in their followed paths.  

 

The presence of pheromone in a path attracts other ants. In this way, pheromone plays a key 

role in the information exchange between ants, allowing them to accomplish several important 

tasks. A classic example is the selection of the shortest path between their nest and a food 

source. 

 

Consider four ants (A1, A2, A3 and A4), and two possible paths, P1 and P2, Figure 6.8. These 

two paths link a nest (NE) to a food source (FS), and for this explanation, it is assumed that 

path P1 is longer than path P2, hence P2 < P1. 

 

Figure 4.8: Two paths between a nest and food source with four ants. 
 

Initially, all the ants (A1, A2, A3 and A4) are in NE and must choose between the paths P1 and 

P2 to arrive to FS. 

 

At the NE, the four ants don’t know the localization of the food source (FS). Randomly they 

choose between P1 and P2, with the same probability. So assume that ants A1 and A2 choose 

P1, and ants A3 and A4 choose P2, Figure 4.8. 

 

As the ants travel by P1 and P2, they leave a certain amount of pheromone on the paths, 1  

and 2 , respectively. Since P2 < P1, A3 and A4 arrive to FS before A1 and A2. At that moment, 

22  , but 01  since A1 and A2 have not arrived to FS, Figure 4.9. 

                                                
2 Metaheuristics: Makes few assumptions about the optimization problem being solved, making it 
usable for a variety of problems. 
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Figure 4.9: Two ants follow path P1 and the other two paths P2. Now at the food source, the 
ants need to decide which path to take. 

 

In order to come back to NE, A3 and A4 must choose again between P1 and P2. At the FS, 

12   , the probability of these ants choosing P2 is higher. Assume then, that A3 and A4 

choose P2, so that as they travel back to NE 42  . 

 

 

Figure 4.10: With ants A3 and A4 already along path P2, ants A1 and A2 need to decide which 
path to take. 

 

When A1 and A2 arrive at the FS, then 42   and 21  , Figure 4.10. When A1 and A2 decide 

to go back to NE, since 12   , then the probability that they choose to return via P2 becomes 

higher.  As they do, then 62  .  When all ants are back at NE, then 62  and 21  , so in 

the future P2, will have highest probability of being selected, Figure 6.11. 

 

 

Figure 4.11: Final pheromone composition in the two paths after all ants are back at the 
nest. 

 

When there is no pheromone, an ant looking for food randomly will choose between P1 and 

P2 with a probability of 0.5 (50% possibility of choosing each path). When there is pheromone 
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on at least one of the paths, the probability of selecting a given path is proportional to the 

amount of pheromone on it. Thus, paths with a higher concentration of pheromone have a 

higher probability of being selected. 

 

To understand how to use ant colonies to solve problems, it is necessary to understand the 

problem of foraging for food and how ants solve it. Each location (nest, food source, etc.) is 

represented by a node and each path by an edge in a graph, Figure 4.12. 

 

To solve a problem using ant colony optimization the domain needs to be able to be 

represented, as a graph and the goal will then be to find the best path. 

 

Figure 4.12: Two nodes representing the nest and food source connected by two paths. 
 

 

4.7 How to Solve Constrained Optimization Problems 

 

The most common approach for solving optimization problems which have constraints 

(particularly, inequality constraints) with any of the stochastic methods mentioned in this 

chapter as well as pattern search methods of chapter 3 (sections 3.6 and 3.7) is to use Penalty 

Functions. 

 

The idea of this method is to change a constrained-optimization problem into an unconstrained 

problem; by adding a value to the objective function based on the amount of constraint 

violation present in the solution. The modified objective function with the penalty terms is given 

by equation (4.31).  

     
22

1 1

( )
p m

k j k

j i

F x f x r h x r g x
 

     (4.31) 

where:   
 

kr  
is (> 0) and has to be appropriately selected. A possible equation for it is 
given by equation (4.32). It needs to have a small value at the start but then 
increase to a larger value for the purpose of tightening the constraints. 

  g x  
is the function of equation (4.33) which has a value of zero if the inequality 
constraint is not violated or the value of how much the constraint is violated. 

   

1
max 1,k

i j

r
g x h x

 
 
 
 

 (4.32) 

   max 0,i ig x g x     (4.33) 
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In case constraints are satisfied   0ig x  , then  ig x  will be zero and there will be no 

penalty on the objective function. In case constraints are violated   0ig x   then  ig x  will 

be a positive value resulting in a penalty on the objective function. The penalty will be higher 

for higher infeasibility of the constraints. The function F(x) can be optimized using the 

algorithms for unconstrained problems. The penalty function method of this form is called the 

exterior penalty function method. 

 

The main advantages of the penalty function method are that: 

a) It can be started from an infeasible point. 

b) Unconstrained optimization methods can be directly used. 

 

The main disadvantages of the penalty function method are that: 

a) The function becomes ill-conditioned as the value of the penalty terms is increased. 

Owing to abrupt changes in the function value, the gradient value may become large 

and the algorithm may show divergence. 

b) As this method does not satisfy the constraints exactly, it is not suitable for optimization 

problems where feasibility must be ensured in all iterations. 

 

Only exterior penalty function method was presented, which can be started even from an 

infeasible point. Some problems require feasibility to be maintained in all iterations. In such 

cases, the interior penalty function methods also called barrier function methods can be 

used. 
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Chapter 5 

 
Design of Experiments (DoE) 

 
 
5.0 Introduction  

 

A Design of Experiment (DoE) [42, 48, 123] is a procedure for selecting the values of the input 

variables for the experiment from the predetermined parameter domain. DoE methods are not 

always relevant for certain physical experiments, such as data values dictated by geographical 

locations, however they are ideal for computer simulations. Theoretically there are an infinite 

number of possible design choices, practically however the domain is discretised into a finite 

number of possible data points either based upon the computer paradigm and/or engineering 

requirements. The values for the design parameters chosen by the DoE are members of this 

finite set and are also known as the training data for the resulting approximation model. The 

quantity of training data points required for any given situation is problem dependent and can 

be viewed as an optimisation in its own right, how to obtain the best (most representative) 

results for the least amount of work. 

 

Whilst the overall aim is to use computer simulations as a complement, or even as a 

replacement, for physical experiments, the techniques are illustrated using standard analytical 

optimisation test problems. However, a possible drawback with this approach is that for 

practical engineering problems we do not usually know how smooth the actual response 

surface is. The addition of a small (< 10%) amount of normally distributed random errors 

(‘noise’) to the true analytical response value can mimic real life engineering applications 

slightly better, whilst remaining computationally cheap to analyse and potentially highlighting 

any possible pitfalls with the surrogate models, such as over-fitting. Hueng et al. [61] use this 

approach for several analytical test functions, with varying amounts of noise per function, 

normally distributed about the true values. 

 

5.0.1 Test Functions 
 

Two different analytical test functions with different properties have been chosen for illustrative 

and testing purposes. The first is the Six-Hump Camel-Back (SHCB) function [102, 151] which 

has three pairs of local minima, of which one pair are global minima, within the specified 

domain. The second test function, the Rosenbrock ‘Banana’ (RB) [143], presents different 

challenges with large response values at the domain extrema and a notoriously difficult to find 

global minimum [6] located within a banana shaped groove. 
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The SHCB function is described by (8.1) with the global minima having values of 𝑓 =  −1.0316 

at (0.0898,−0.7127) and (−0.0898,0.7127). Contours of the function are shown in Figure 5.1. 

The contours shown are evenly spaced at increments of  𝑓 =  0: 25. 

 

 𝑓(𝑥1, 𝑥2) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4,  

for 𝑥1 ∈ [−2,2], 𝑥2 ∈ [−1,1].          (5.1) 
 

 
Figure 8.1: Contour plot for the Six-Hump Camel-Back analytical function. 

 
Whilst the SHCB function has multiple minima, it only accepts two-dimensional training data. 

The two-dimensional RB function given by (5.2a), shown in Figure 5.2, can be extended to 𝑝 

dimensions, as in equation (5.2b). 

 

 𝑓(𝑥1, 𝑥2) = (1 − 𝑥1)
2 + 100(𝑥2 − 𝑥1

2)2,     (5.2a) 

 𝑓(𝑥
→
) = ∑ ((1 − 𝑥1)

2 + 100(𝑥𝑖+1 − 𝑥𝑖
2)2)

𝑝

𝑖=1
.     (5.2b) 

 

For the two dimensional case, the single global minimum lies at (1,1)  with a value of f =  0. 

For higher dimensions [6, 79], there are multiple minima (two for 4 ≤ 𝑛 ≤ 7, with the global 

located at 𝑥𝑖 = 1, 𝑖 = 1,… , 𝑝 at a value of 𝑓 =  0.   

The contour plot for the two dimensional case is shown in Figure 5.2, with contours at 𝑓 =

 0.5, 1, 2, 3, 4, 5, 10, 25, 50, 100, 250, 500, 1000 and 2000. 

 

 
Figure 5.2: Contour plot for the 2D Rosenbrock Banana function. 
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5.0.2 DoE Notation 
 

Each DoE contains n training data points  1ix i n  located within the parameter domain, 

where each data point is represented by a 𝑝 dimensional coordinate 𝑥𝑖⃗⃗  ⃗𝜖𝑅
𝑝. As such, each 

DoE can be represented as either a vector of vectors or a matrix, (8.3), which may be used to 

determine the quality of the experimental design. Some DoE techniques require that each 

design parameter be discretised into levels (intervals) to aid with allocation of the parameter 

values for the 𝑛 data points. 

 

 
11 1

1 2

1

, , ,

n

n

p pn

x x

X x x x

x x

 
 

   
 
 

 (5.3) 

 

Whilst in the context of CFD and engineering, each training data point corresponds to a 

particular set of values for the design parameters, for the purposes of this report (and following 

literature [92, 103]) a ‘design’ can be taken to mean a particular set of n training data points 

that constitute a given DoE and may be interchanged accordingly. The design parameters 𝑝 

are the variables for both the DoE and the resulting n simulations, hence the terms design 

parameters and parameters are equally valid in both instances. 

 

Following this notation, a population of DoEs contains Q individual designs, each design 

containing n training data points in p dimensions, 𝑥𝑖⃗⃗  ⃗𝜖𝑅
𝑝 for 1 i n  . 

 

 

5.1 Experimental Designs for Simulations 

 

Theoretically the exact input-output relationship for computer simulations is already known. 

Furthermore, plotting the computer response for the entire parameter domain would provide 

an accurate response (hyper-) surface. However as this may be too computationally expensive 

to realise, numerous methods (known as surrogate models or often termed metamodels) for 

mimicking the behaviour of a given hyper-surface have been developed [25, 54, 69, 86, 123, 

129, 151] based on a reduced (hopefully minimum) number of strategically chosen input data 

points. 

 

Regardless of the ultimate experimental objective, there exist several different and well-

documented methods for obtaining the initial training data. Recent years have seen an 

increase in the development of such techniques for computational experiments [42, 73, 125], 

tailoring the methods to the specific requirements, many of which are straightforward to 

implement for regular parameter domains. As irregular domains may be problematic [73] and 

affect properties of the method, they will not be considered in this thesis. However, constraints 

may be added to a regular domain [73], after DoE selection and surrogate model construction, 

as part of the optimisation process. Although this may incur additional computational efforts, 

it simplifies the groundwork stages enormously. 
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5.1.1 DoE Requirements for Simulations 
 

An obvious requirement is that given any set of design parameters and number of training 

data points, the DoE technique yields different sets of training data whose resulting surrogate 

models have predictive (quantitative and qualitative) qualities, thus allowing accurate 

comparison of different surrogate modelling techniques. If different designs produce 

significantly different hyper-surfaces when implementing the same surrogate model, this 

indicates that the initial design may not have contained enough data points. Alternatively, it 

may suggest that the surrogate model was inappropriate and another may provide better 

results. There may even be a necessity to customise a DoE such that it is suitable for a certain 

surrogate model. 

 

As uniform designs provide a good basis for an average surrogate model representation 

across the parameter domain [125], a sensible strategy could be to get basic approximation 

with a space-filling design and then tailor the surrogate model further with exploratory 

techniques for allocating additional data points. As such, the initial focus is concerned with 

space-filling designs. Situations that require additional training data that also fulfil the space-

filling requirement are also considered, for example when the initial number of data points is 

insufficient. 

 

For most practical engineering problems, it is a reasonable assumption that the cost of the 

calculation of the response value at each training data point is computationally expensive, 

especially in comparison with the cost associated with that of generating a suitable DoE, which 

may be small, or even negligible, to that of a single data point evaluation. Therefore the time 

taken to obtain a good set of input points can potentially avoid wasted simulation time. 

 

5.1.2 Quantifying and Comparing Spatial Coverage 
 

A population of distinct DoE designs can be generated from any DoE method for a given 

number of training data points in any specified parameter domain. Each member of the 

population can be evaluated according to the spatial coverage it provides over the parameter 

domain and the most appropriate DoE design employed for the subsequent simulation. There 

exist several documented measurements based on the Euclidean distance between the data 

locations in parameter space to quantify spatial coverage and compare different experimental 

designs. The methods are equally applicable for comparisons of different designs in a 

population or modification to an individual design to produce a new design, and hence 

determining whether the modification has yielded any improvement. Two of the simplest 

quantifiers are the maxi-min and mini-max methods, mathematical details for both can be 

found in [125] and references therein. 

 

The maxi-min method ensures that in any individual design no two training data points are too 

‘close’ in parameter space. The first stage calculates the Euclidean distances between all the 

data points in a design and determines the minimum. If another design, be it a modification or 

another member of the population, has a greater minimum Euclidean distance, then the 
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second design is better under this criterion. Similarly the mini-max method guarantees that 

the data points are not too far apart by finding the minimum of the maximum Euclidean 

distances. Used in tandem, the mini-max and maxi-min methods can provide bounds for 

ascertaining the ‘best’ design in a population. However, these methods may not provide the 

optimum design as they do not consider the distribution of data points in each design as a 

whole, only the extrema. 

 

The potential energy analogy is shown to overcome this barrier [11, 13, 14, 88] by effectively 

assigning a unit of ‘charge’ to each of the n data points and calculating the resulting ‘energy’, 

U, in the whole design:  

2

1 1

,
n n

ij

i j i

U r for i j

  

   (5.4) 

 

where: rij is the Euclidean distance between data points i and j The ‘best’ (as in the most 

uniformly distributed) DoE of any given set of DoE designs is the one with the lowest potential 

energy U. 

 

 

5.2 Overview of Various Design of Experiment Techniques 

 

Traditionally experiments were carried out by varying one design factor at a time and holding 

the others constant. Classical DoE techniques came in 1920 when Fisher published his 

strategy for experimenting with several design variables [148], initially applying his Full 

Factorial designs to agricultural problems. The next developmental wave came in the 1950s 

with Box and Wilson’s work on Response Surface Methodology (RSM), with application in the 

chemical industry [148]. Since then, classical DoE methods have traditionally been used with 

physical experimentation [92], however they are not always applicable to computational 

simulations. Newer methods, such as Hammersley Sampling and Latin Hypercube Sampling, 

have been developed to fulfil the requirements, and exploit the additional flexibility, of 

computational experimentation.  

 

The desired outcome of the experiment can also influence the choice of technique used. The 

authors of [103] advise that a sequence of smaller experiments can provide better results than 

one large experiment. An example of which is a screening DoE to determine the significance 

of the design variables with a view to reducing the final set of experimental variables to the 

most significant. A strategy, therefore, would be to consider a low resolution design for 

screening the main effects followed by a high resolution design for investigating input-output 

relationships in detail. They also state that the ‘effect’ of any given design factor be determined 

by the change in the average response over the m levels (intervals dividing the domain). This 

is in stark contrast to the Taguchi viewpoint which advocates a large experiment including all 

the main factors to highlight the interactions, including noise parameters [148]. Taguchi 

methodology has been fundamental in the development of robust design in industry over the 

last thirty years. 
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Training data can be chosen from the parameter domain randomly, uniformly or in an 

exploratory manner. Santner et al. [125] recommend that for computer simulations the 

experiment be designed so as to obtain a surrogate model which provides estimates of the 

computer response at unsampled locations over the entire experimental domain. They also 

suggest that the DoE (set of training data points) allows for a range of surrogate models. Both 

of these objectives can be achieved using uniformly distributed training data points, also 

known as space-filling designs. 

 

5.2.1 Classical Designs 
 

Full factorial designs [92,103] became popular in the 1920s as an alternative to the existing 

costly and time-consuming methods [148]. They contain 𝑛 = 𝑚𝑝 points for 𝑚 level designs, 

where 𝑚 is typically 2 or 3, increasing too rapidly with increasing 𝑚 or 𝑝 to be viable for most 

problems. A two level design can be represented by strings (or matrices) of −1 and 1, or even 

simply + and −, whilst a three level design typically includes the centre point and is 

represented by 0. Fractional factorial designs [92] were developed in the 1930s and 1940s 

[148] as a cost effective alternative to full factorial designs. They contain a selected fraction of 

the full factorial, typically 1
2
 or 1

3
, however 𝑛 still rises rapidly with 𝑚 and (especially) 𝑝. 

 

Box-Wilson Central-Composite designs (CCD) [103] and Box-Behnken designs (BBD) 

[20,103] are a direct consequence of the RSM development in the 1950s. CCD typically 

contain five levels for each variable, with full or fractional factorial designs (with centre points) 

embedded in the design space. BBD is more efficient than CCD [157], containing three levels 

for each design variable, including the central point but omitting the corners, thereby requiring 

fewer data points n than CCD. However unlike CCD, Box-Behnken designs do not contain 

embedded full or fractional factorial designs. Both methods are used to generate quadratic 

response surfaces. 

 

5.2.2 Non-Classical Designs 
 

Sacks et al. [123] note that a common feature of classical DoEs is to account for random, non-

repeatable, errors in physical experiments, which therefore make them inappropriate for 

deterministic computer experiments [73]. Simpson et al. [130] find that DoEs with a more 

uniform coverage of the design domain produce more accurate approximations, irrespective 

of the sample size (𝑛). Several computer-aided algorithms have been developed to generate 

and evaluate the design matrices, including Monte Carlo methods, orthogonal arrays and Latin 

Hypercube sampling. 

 

Monte Carlo (MC) methods [30, 73] are statistical sampling techniques based on randomly 

generated numbers. Basic MC methods may over sample some areas of the design space, 

leaving others inadequately sampled. Stratified MC [70, 73] divide the domain into hypercubes 

of equal probability to ensure a more even coverage of data points.  

 

Orthogonal arrays aim to separate the effects of various design parameters from other factors 

[18], with an equal number of levels (design intervals) in each column of the array, including 
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domain corner points [73, 130]. Taguchi proposed a set of orthogonal arrays for robust design, 

where noise accounts for variation in response values [7, 30]. Fractional designs and Latin 

hypercubes are also subsets of orthogonal arrays [30]. 

 

For a regular parameter domain in Latin Hypercube Sampling (LHS) [73, 130], for 𝑛 samples 

and 𝑝 parameters, the domain is divided into 𝑛𝑝 hypercubes of equal probability (where each 

variable is discretised into 𝑛 levels). The 𝑛 samples are chosen such that no two data points 

lie in the same hypercube or share any coordinate values. Whilst random LHS (RLHS) evenly 

samples each design parameter, it may not sample the parameter domain evenly, although 

there exist techniques to obtain LHS which do. 

 

5.3 Latin Hypercube Sampling 

 

LHS can be described for normalized design parameters [73] by (5.5). Here 𝜅 𝑖 is a vector of 

independent, random permutations of the sequence of integers {0,… , 𝑛 − 1} and 𝜏 𝑖 is generally 

a vector of uniform random numbers in the interval [0,1]  although this can differ between texts; 

𝜏 𝑖  may also be set as a constant, 0.5  say [73, 125], for all i. Equally valid, is to discretise the 

parameter domain from 1 to n and force the data points onto the nodes. The latter method 

ensures fewer DoE permutations which can be of benefit when searching for uniform designs. 

Use of random number generators to determine the design matrix makes it highly unlikely for 

the process to produce the same results twice. 

 

, 1i i
i

k
x i n

n


     (5.5) 

 

One of the main shortcomings of RLHS is illustrated in Figures 5.3a and 5.3b which shows 

two equally likely DoEs in two dimensions for ten training data points, highlighting that spatial 

coverage cannot be guaranteed with random LHS. 

 

 

(A) Non-uniform spatial coverage   (B) Worst case scenario. 

Figure 5.3: Two sample 10 point normalised RLHS in 2D. 

 

As with all random sampling methods, there is a tendency for uniformity to increase with larger 

numbers of design points. Figures 5.4a to 5.5 show the distribution for three n = 50 and one n 
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= 100 RLHS DoEs respectively, for two design parameters in a normalised domain, and their 

corresponding minimum distance plots (from one DoE point to its nearest neighbour). It can 

be seen that the minimum distances between neighbouring data points varies drastically, 

which would not be the case if the designs were uniformly distributed over the parameter 

domain. However, it is important to note that although the minimum distance plots are a useful 

visual aid (as in [150]), they can also be misleading as would be the case for Figure 5.3b which 

would show a small constant minimum distance for all the data points. 

 

 
(A) Example A. 

 

 
(B) Example B. 

 

 
(C) Example C. 
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Figure 5.4: Three sample 50 point normalised RLHS in 2D. Left: Point distributions. Right: 

Minimum distances. 
 

 

Figure 5.5: A sample 100 point normalised RLHS in 2D. Left: Point distribution. Right: 

Minimum distances. 

 

As discussed in section 5.1.2 there are various methods to quantify the spatial distribution of 

the DoE. Using the minimum Euclidean distances as in [150], a mean 𝜇 and standard deviation 

𝜎 can be assigned to these distances. As demonstrated in Figure 5.3 above, the mean and 

standard deviation of the minimum distances is a necessary, but certainly not sufficient, 

condition to guarantee uniform spatial coverage of the design space as only one extreme is 

considered. When comparing DoEs, a better indication of the entire spatial distribution of data 

points can be achieved by considering the Potential Energy analogy given by (5.4). 

 

To illustrate the need for uniform spatial coverage of the design space, the three two-

dimensional 50 point DoEs presented in Figure 5.4 are used as training data for cubic Radial 

Basis Function (RBF) surrogate models of the Six-Hump Camel-Back function, Figure 5.6, 

and the Rosenbrock Banana function, Figure 5.7. RBF methods will be discussed in greater 

detail in the next chapter. Both figures show the contours of the three resultant surrogate 

models and the contours of the errors produced by direct comparison of the surrogate models 

with the analytical function, where a positive error value indicates that the surrogate model 

has over-predicted the true function and a negative value under-predicts. The relevant DoEs 

are superimposed on all contour plots. 

 

For the SHCB function in Figure 5.6, the contours are evenly spaced at intervals of 𝑓 =  0.25 

for the surrogate models and 𝑓 =  0.125 for the error plots. The RBF however has dramatically 

different scales and evenly spaced contours are not appropriate. The contours for the 

surrogate models include those shown in the analytical function depicted in Figure 3.2, 

however some additional negative values are also required: 𝑓 =

±0.5,±1,±2,±3,±4,±5,±10,±25,±50,100,250,500,1000 and 2000. The error contours are at 

𝑓 =  0, ±5,±10,±25,±50 and ±100. 
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Although the number of training data points, the choice of surrogate model and the choice of 

analytical function is arbitrary for this illustration, several conclusions can still be drawn. 

Perhaps the most obvious is that all the training data points lie on contours of zero error due 

to the interpolation surrogate model used. An approximation model would have minimum 

errors close to the data points, but not necessarily zero. Another obvious trend is that the 

maximum errors are on the edges of the domain where there are fewer data points to influence 

the surrogate model, highlighting one drawback of surrogate modelling. Naturally, errors are 

larger where there is a lower concentration of points. Clearly 50 data points are sufficient to 

capture the essence of these functions, if somewhat inaccurately. 

 

  
(A) Example A. Left: prediction. Right: error. 

 

  
(A) (B) Example B. Left: prediction. Right: error. 
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(A) (C) Example C. Left: prediction. Right: error. 

 
Figure 5.6: Surrogate model and error contour plots based on three 50 point RLHS 

predicting the SHCB function. 
 

 

  
(A) Example A. Left: prediction. Right: error. 

 

  
(B) Example B. Left: prediction. Right: error. 
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(C) Example C. Left: prediction. Right: error. 

 
Figure 5.7: Surrogate model and error contour plots based on three 50 point RLHS 

predicting the RB function. 
 

Despite having the lowest potential of the three DoEs, the surrogate model based on DoE 

Example C is the only model to over-predict the number of local minima for the SHCB, 

incorrectly showing seven whereas the other two examples both show six reasonably close to 

the true locations. The surrogate model based on DoE Example A, on the other hand, vastly 

under-predicts the global minimum for the RB.  

 

To produce the contour plots, each coordinate axis is divided into 100, with the values of the 

surrogate model and associated errors determined at 1002 locations, effectively creating an 

output lattice of data points. Clearly this method is adequate for graphical purposes, adjusting 

the size of this lattice as required, but it is severely limited for optimisation. For example, 

increasing the accuracy of the coordinates in the output lattice by one decimal place requires 

that the total number of evaluations increases by a factor of 10𝑝, quickly making this infeasible. 

Also worthy of consideration is the fact that discretising the domain then performing an 

optimisation routine may find a different minimum than optimising on a continuous domain. 

Further, for domains that are unequal in size (in the coordinate directions) and have not been 

normalised, as with the SHCB case, the Euclidean distances between output points are not 

equal (in the coordinate directions). 

 

5.3.1 Optimising the Latin Hypercube 
 

The aim of optimising the LH is to obtain a uniform DoE, otherwise known as an Audze-Eglais 

Latin Hypercube (AELH) [11, 13]. Intuitively, this can be achieved simply by rearranging the 

coordinates of the design points [88] and calculating the value of the designated spatial 

quantifier, 𝑈 say. It is easily seen that ‘brute-force’ systematic rearranging of the design is not 

a feasible option for larger numbers of design parameters 𝑝 (or larger numbers of design points 

𝑛) as this method rapidly becomes too expensive [13]. For 2 design variables 𝑝 and 5 training 

data points 𝑛, there are 52 possible positions for the first data point, 42 for the second and so 

forth, leading to a total of 5!2 (or 14,400) possible designs. This generalises to 𝑛!2 which rapidly 

becomes infeasibly large. Even if one of the parameters is fixed [13], systematic checking of 
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each and every design combination is not an option for large numbers of design variables or 

data points as the equation is only reduced to 𝑛!𝑝−1. 

 

Another option is to use an optimisation algorithm to find a ‘better’, if not necessarily the best, 

DoE. One method of achieving this is to generate an initial population of designs, encode 

them, and then use a Genetic Algorithm (GA) [13, 14, 26, 59, 60] to find a better configuration. 

Genetic Algorithms follow four basic steps: initialisation, selection, reproduction and 

termination. Once a population size 𝑄 has been chosen, 𝑄 random LH designs can be 

generated. The fitness for each individual design is assessed using the potential energy 𝑈, 

(5.4). Designs which do not satisfy a criterion based on the fitness value are discarded whilst 

the remainder are selected to go through to the next generation and to reproduce further 

designs so that every generation has 𝑄 individual designs. The algorithm is terminated either 

when a specified number of generations is met or the designs meet a designated criterion. 

 

Two possible methods for elite selection criteria are only allowing designs which are within a 

user specified percentage (10% say) of the minimum fitness value to pass through to the next 

generation or using the average fitness for the generation as a kill criteria. The latter method 

is based on a modified version of that presented in [102]: a design is allowed through to the 

next generation if it has a fitness value less than the average for the current generation. The 

fitness 𝑈𝑗 for an individual design 𝑗 is determined from the potential energy 𝑈, as defined in 

(5.4), whilst the average fitness for a generation 𝑈ave is calculated from the sum of the 

individual finesses: 

1

1 Q

ave j

j

U U
Q 

   (5.6) 

 

Once the selected designs are through to the next generation, individual designs are chosen 

at random to become ‘parents’. Each pair of parents produce one ‘child’ which is added to the 

generation. Thus each generation, apart from the initial one, consists entirely of parents from 

the previous generation and their children. When applying a GA to a LH DoE, it has been 

found, that due to the nature of the LH, permutations to the design are more suitable than 

encoding the design and using a binary method with penalties [14], as permutations ensure 

that the LH criteria are fulfilled at every stage, making the resulting GA inherently more 

efficient. 

 

5.3.1.1 The ‘PermGA’ Method 
 

The potential energy, 𝑈, of the DoE designs is to be minimised using a permutation GA. 

Permutating parent designs can be accomplished through mutation of a single design or 

swapping values between two parents. Bates et al. [14] found that ‘cycle crossover’ used in 

conjunction with a mutating ‘inversion’ provided the speediest solutions for the GA. The 

permutation technique is known as permGA [14, 102]. 

 

Cyclic Crossover Two parents are chosen from a population of designs. For example for a 

problem with 1 design parameter and 6 training points we could have: 

Parent A = [2 5 4 6 1 3] 
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Parent B = [1 4 5 3 6 2]. 

 

The first entry in Parent A becomes the first entry in Child A: 

Child A = [2 ∗ ∗ ∗ ∗ ∗]. 

 

Next, the value from the first entry in Parent B is located in Parent A and inserted into Child A. 

Here the value is 1 and is the fifth entry in Parent A (and consequently in Child A): 

Child A = [2 ∗ ∗ ∗  1 ∗]. 

 

In this example, the fifth entry in Parent B has a value of 6, which is the fourth entry in Parent 

A. Similarly, the fourth entry in Parent B is 3, which is the sixth entry in Parent A, giving Child 

A as: 

Child A = [2 ∗ ∗  6 1 3]. 

 

The sixth entry in Parent B has a value of 2, which is located in the first entry of Parent A, 

thereby ending the cycle. The remaining entries in Child A are filled with the corresponding 

entries from Parent B. The LH criteria are fulfilled as the cycle ensures that no data points are 

repeated in any given dimension. A second child can be generated using this method with the 

first entry from Parent B as a starting point. 

Child A = [2 4 5 6 1 3], 

Child B = [1 5 4 3 6 2]. 

 

This crossover method is applied to each design variable independently. There may be 

instances where the first entry for a design variable for each of the parents is identical, in which 

case no crossover occurs and Child A = Parent A (similarly Child B = Parent B) for that design 

variable. The example below shows a two design variables and six training data points, where 

the LH values for the first design variable are identical for both parents (the second variables 

take the values described in the previous example): 

Parent A = [
1 2 3 4 5 6
2 5 4 6 1 3

] and  Parent B = [
1 2 3 4 5 6
1 4 5 3 6 2

] 

Child A = [
1 2 3 4 5 6
2 4 5 6 1 3

] and  Child B = [
1 2 3 4 5 6
1 5 4 3 6 2

] 

 

It need not be the case that all the values for the first design variables are identical, if just the 

primary entries for each design variable are identical in both parents, then no cycle crossover 

occurs. As such, this method cannot guarantee that the children produced are different from 

their parents. 

 

Inversion Mutation (IM) Two ‘cut-off’ points are randomly chosen, inverting the values in the 

parent design to produce the single offspring. For cut-off points 2 and 5 say, represented by 

||  and applied to Parent A, we obtain 

Parent A = [2 4||5 6 1||3], 

Child C = [2 4||1 6 5||3]. 
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In practice, this is applied not to a parent, but as a transformation applied to a child generated 

from the cycle crossover described above. The cut-off points are allocated randomly for each 

design variable, with the restriction that the cut-off points are not in the same location. Hence 

this method does guarantee that an identical design is not obtained as a result of inverting the 

original design. 

 

5.3.1.2 Effect of Uniform Spatial Coverage 
 

In addition to running the permGA for the validation parameters, near optimal DoEs were also 

generated for 𝑝 =  2; 𝑛 =  50 for direct comparison with the RLHS shown in Figure 5.4. The 

point distributions and minimum distance plots for these three examples are shown in Figure 

5.5. Visual comparisons between Figures 5.4 and 5.13 show that a greater uniformity of spatial 

coverage has been achieved using the permGA method than any of the original three RLHS. 

 

As before, a cubic based RBF was used to build a surrogate model approximation for both the 

SHCB function and RB function. Clearly both test functions have different requirements, in 

particular the RB approximations would greatly benefit from iterative improvement in the 

trough area. However, a more uniform distribution of training data points improves all the 

approximations for the two test functions. Other factors such as choice of surrogate model 

(including parameters) and number of data points also influence the final approximation. 

 
 
 
 
 

 
 (A) Example A. 
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 (B) Example B. 

 

 
 (C) Example C. 

 
Figure 5.8: Optimised LHS DoE with 50 data points in 2 dimensions and corresponding 

minimum distance plots. 
 
 
 
 
 
 
 

  
(A) Example A. Left: prediction. Right: error. 
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 (B) Example B. Left: prediction. Right: error. 

 

  
 (C) Example C. Left: prediction. Right: error. 

 
Figure 5.9: Surrogate model and error contour plots based on three 50 point OLHS 

predicting the SHCB function. 
 
 
 
 
 
 
 

  
(A) Example A. Left: prediction. Right: error. 

 



Page 117 
Copyright © 2024 University of Leeds UK. All rights reserved. 

  
 (B) Example B. Left: prediction. Right: error. 

 

  
 (C) Example C. Left: prediction. Right: error. 

 
Figure 5.10: Surrogate model and error contour plots based on three 50 point OLHS 

predicting the RB function. 
 

 

5.3.2 Simultaneous Generation of Initial and Validation OLH DoEs 
 

Analytical test functions are known a priori making validation of surrogate models trivial, as 

the test functions can be evaluated at any number of data points in the parameter domain. 

Clearly this is not the case for more expensive functions where a more sophisticated method 

is required. In practical engineering applications, the process of surrogate model fitting 

includes the initial build stage and validation of the model. The validation is usually problem 

specific, dependent on the required accuracy, and must be valid throughout the design 

parameter domain [102]. As such, in addition to an OLH DoE for the initial build points, the 

validation points should also meet OLH DoE criteria. Further, subsequent to a successful 

validation exercise, a refined surrogate model based on the combined build and validation 

DoE points requires that the merged DoEs also exhibit space filling properties, as proposed 

by Narayanan et al. [102]. 

 

The total number of levels, 𝑛, in the DoE is split into build, 𝑏, and validation, 𝑣, levels such that 

𝑛 =  𝑏 + 𝑣. The number of validation levels can be varied according to the problem in 

question. Figure 3.16 illustrates a simple case with a total of 𝑛 = 7 for 𝑝 = 2, where the build 
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and validation levels are 𝑏 = {1,3,5,7} and 𝑣 =  {2,4,6} respectively. The (blue) build points are 

free to allocate any of the intersections of the solid lines, whilst the (red) validation points are 

confined to the intersections of the dashed lines. The build and validation sections of the 

chromosomes are generated separately for the initial population. The fitness of a design, 𝑈𝑓𝑖𝑡, 

is given as a multi-objective function of the individual fitness of the build, validation and merged 

DoEs: 

 

 , ,fit b v mU f U U U  (5.7) 

 

Each generation is ranked according to the multi-objective fitness function, those designs 

whose overall fitness are less than the average fitness for that generation become the elite 

designs for the next, as with the single objective fitness function for the basic permGA and in 

line with strategy presented in [102]. The parents are chosen in the same way as in the basic 

permGA with tournament selection and a weighted roulette wheel. The cycle crossover for 

generating children preserves the build and validation levels and are therefore applied 

independently to each. 

 

 
Figure 5.11: Illustration of build and validation levels. 

 

 

 
(A) Build DoE. 
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 (B) Validation DoE. 

 

 
 (C) Merged DoE. 

 
Figure 5.12: Example BVM with b = 32 and v = 18. Left: Point distributions. Right: Minimum 

distances. 
 

5.3.3 Inclusion of Corner Points 

 

Section 5.2 introduces various sampling techniques for obtaining training data points whose 

computer responses can be used with a surrogate model to provide an approximation of the 

response surface. Whilst some methods do not meet the space-filling criteria required for DoE 

for surrogate models they can provide a cheap overview for determining which of the design 

variables warrant further investigation, which will inevitably lead to data points with useful 

response information. Due to the computational expense of acquiring the response data it 

would be desirable to reuse this information by incorporating it into the final design, however, 

this is likely to mean that the final design is not technically a Latin Hypercube. Toropov et al. 

[150] simply call these types of designs ‘Extended Latin Hypercubes’ (ELH).  

 

A weakness of LHS is that it is not possible to have training data points located at each ‘corner’ 

of the domain [150]. Simpson et al. [130] find that orthogonal arrays, which have points located 

in the corners of the design domain, have lower values of maximum errors [73]. This can be 

seen in Figures 5.6, 5.7, 5.9 and 5.10 where the largest errors are at the edges and corner 

points of the domain. Leary et al. [86] find that the training data points need to go to edge of 



Page 120 
Copyright © 2024 University of Leeds UK. All rights reserved. 

domain, otherwise surrogate models methods fail as they are not designed for extrapolation. 

Thus, including the corner points should help to bound the surrogate model and hence improve 

accuracy. The technique used in [150] is to allow the fixed data points to be included in the 

calculation of the ‘potential energy’ objective function, but to exclude the points from the design 

variable set which is being modified to minimise the objective function. 

 

One method to achieve this is to divide the domain into the extremities and the interior, where 

the LH requirement is relaxed on the boundaries only. The inner LH is self-contained, but 

optimised subject to the potential for the domain as a whole. Figure 5.13 shows an example 

in two dimensions with 𝑛 =  10 training data points. The corners require four of these points 

(𝑛𝑐 = 4), shown in red, leaving a further six data points within the inner LH (𝑛𝐿𝐻 = 6), shown 

in blue. To ensure equal spacing between the levels, the domain is divided into (6 + 2)2 

intersections. For the multidimensional case, the number of corner points increase rapidly as 

𝑛𝑐  =  2𝑝 whilst the number of points in the inner LH decrease as 𝑛𝐿𝐻 =  𝑛 − 2𝑝 and the domain 

is divided into ( 𝑛 − 2𝑝−1)𝑝 hypercubes. Due to the number of corner points rising rapidly, this 

method is restricted to 𝑛𝑐  <  𝑛𝐿𝐻 to ensure adequate spatial coverage. 

 

 
Figure 5.13: Illustration of fixed corner points and inner DoE in two dimensions. 
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Chapter 6 

 
Surrogate Modelling Techniques 

 
 
 
6.0 Introduction  

 

A surrogate model (which is also often called a metamodel or a response surface model) 

aims to mimic the response surface of some important output metric over the entire parameter 

domain based on the location and response information provided from a small (ideally 

minimal) number of experimentally- and/or computationally-generated training data points 

chosen from the domain. Whilst metamodels are not optimizing methods in themselves, they 

form a cheaper alternative to direct optimization on problems when obtaining data points is 

expensive, as is often the case with experiments or using a high fidelity computational 

simulations such as a CFD solve and post process. The goal is to produce a metamodel that 

is much faster to compute than the original function, but is still sufficiently accurate away from 

the known data points. This enables the optimization procedure to be carried out using the 

metamodel and the optimal result to be validated subsequently using experiments or a high 

fidelity computational evaluation.  

 

This general approach is often referred to as surrogate-based optimisation (SBO), whereas 

if the optimization is carried out using both the surrogate model and data obtained from the 

experiments or high fidelity simulations, this is termed surrogate-assisted optimisation. 

 

The first step in creating the surrogate model is to generate the high fidelity data at a series of 

sampling, or Design of Experiment (DoE) points. Once sampling has been performed we have 

a list of data points called the training data {𝑥𝑖, 𝑓𝑖} for i=1,..,n, where 𝑥𝑖 is the ith DoE point, 𝑓𝑖 

contains the corresponding high fidelity output at 𝑥𝑖  and n is the number of DoE points. 

 
Surrogate models can be based on interpolation or regression. Interpolation builds 

surrogate models that exactly matches the training data. Regression methods do not try to 

match training points exactly – they minimise the error between a smooth trend function and 

the training data. To fit a surface by means of regression, the criteria of passing the surface 

exactly through the data points is relaxed. The use of regression techniques (such as least 

squares methods discussed below) in determining surrogate surfaces can be explained by the 

origins of Response Surface Methods, which lie in the interpretation of experimental data [73]. 

Data obtained from physical experiments is noisy since all observations are subject to 

measurement error. Regression techniques allow for this noise as the surrogate surface does 

not pass through the data points, only close by. Exactly how close depends on tuneable 

parameters in the model, which will be referred to generically as hyper-parameters of the 

surrogate model, with larger parameters allowing for noisier data. 
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The surrogate modelling process for two design variables is illustrated in the following figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Surrogate Model Validation 

 

To ensure confidence, any surrogate model requires that its accuracy and quality be checked. 

One method is to validate against extra (potentially expensive) data. Other methods rely on 

cross-validation methods where the original DoE dataset is split up (often randomly to avoid 

bias errors) into training and testing sub-sets. Such approaches are needed to avoid over-

fitting the surrogate model to the training dataset, as this results in the surrogate model being 

inaccurate at points not contained in the training dataset. In practice, each surrogate modelling 

technique will have a range of hyper-parameters associated with it and cross-validation 

methods enable the most appropriate hyper-parameters to be obtained.  

 

Note that obtaining the hyper-parameters is often an extremely challenging optimization 

problem in itself! 

 

6.1.1 Holdout Dataset Cross-Validation 

One popular approach is to use most of the DoE data to train, or fit, the surrogate model and 

use the rest of the DoE points to test/validate the accuracy of the generated surrogate model. 

A common approach would be to use typically 70%-80% of the DoE dataset, chosen randomly 

from the full DoE dataset, to train the surrogate model and then use the surrogate model to 

predict the value of the output metric, f say, at the remaining DoE points that have not been 

used to construct the surrogate model.  

 

The points used to train the surrogate model are referred to as the training dataset and those 

at which the accuracy of the surrogate model is determined are referred to as the testing 

dataset. If the full DoE dataset {𝑥𝑖, 𝑓𝑖} =1,…,n is split into ntrain training points {𝑥𝑡𝑟𝑎𝑖𝑛
𝑖 , 𝑓𝑡𝑟𝑎𝑖𝑛

𝑖 } 

and ntest testing points {𝑥𝑡𝑒𝑠𝑡
𝑖 , 𝑓𝑡𝑒𝑠𝑡

𝑖 } where n=ntrain+ntest, then the accuracy of the surrogate 

model at the testing data points can be quantified using metrics such as the Root Mean Square 

Error, RMSE, defined by 
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𝑅𝑀𝑆𝐸 = √
1

𝑛𝑡𝑒𝑠𝑡
∑ (𝑓𝑖 − 𝑓𝑡𝑒𝑠𝑡

𝑖 )2
𝑛𝑡𝑒𝑠𝑡

𝑖=1

 

where 𝑓𝑖 is the value of the output from the surrogate model at the ith testing point and 𝑓𝑡𝑒𝑠𝑡
𝑖  

is the (actual) value of the output at the DoE testing point. Clearly, smaller values of the RMSE 

indicate that the surrogate model is more accurate at the testing datapoints.  

 

Note that, if possible, this process would be repeated a number of times to decrease bias 

errors resulting from specific train/test data splits. 

 

The hyper-parameters of the surrogate model would be determined by minimising the RMSE 

during the training/testing cross-validation process. 

 

 

6.1.2 Leave-One-Out Cross-Validation (LOOCV) 

LOOCV is particularly useful when the DoE dataset is small so that it is possible to remove 

too many points from the surrogate model’s training dataset. In this approach, the first DoE 

point is removed from the training dataset and the surrogate model is trained on the remaining 

(n-1) DoE points.  The square of the difference between the surrogate model at this first DoE 

point 𝑓1 and the (actual) value of the output at the first DoE point, 𝑓1, (𝑓1 − 𝑓1)
2
 is stored. 

This process is repeated consecutively at each of the n DoE points and the total RMSE 

calculated via 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑓𝑖 − 𝑓𝑖 )2
𝑛

𝑖=1

 

 

Once again, the hyper-parameters of the surrogate model would be determined by minimising 

the RMSE during the training/testing cross-validation process. 

 

6.1.3. k-fold Cross-Validation 

This process is similar to LOOCV but this time the DoE dataset is split randomly into k roughly 

equally-sized data subsets. The first subset is removed from the full DoE dataset and used as 

the first testing dataset. The surrogate model is then trained on the remaining (k-1) subsets 

and the RMSE calculated for the first testing dataset. This process is repeated over each of 

the k data subsets and an average value of the RMSE is calculated.  

 

Once again, if possible, this k-fold randomisation process would be repeated a number of 

times to decrease bias errors resulting from specific train/test data splits. The hyper-

parameters of the surrogate model would then be determined by minimising the RMSE during 

the training/testing cross-validation process. 

 

6.1.4. Adding Extra Points into the DoE sample 
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Sometimes we find that the surrogate model is not accurate enough so it is necessary to 

include additional points in the DoE sample and re-construct the surrogate model – a process 

called infill. It is claimed that for an accurate estimate of a global optimum to be found, the 

surrogate surface must converge to the true surface at every point in the domain [69, 149]. 

Thus, any method for selecting additional data points to evaluate must also incorporate 

samples from untested regions in parameter space so the entire domain is adequately 

represented [54]. There are a number of methods for updating the DoE points. Whilst general 

surrogate modelling methods often have to use empirical approaches, or computationally 

expensive Bayesian techniques, some methods such as Kriging/Gaussian Process 

Regression can provide simple methods for estimating the errors in the surrogate model which 

can be used as a convenient guide for choosing the next DoE point to evaluate.  

 

6.2 Least Squares Regression Surrogate Modelling 
As noted above, regression can be very useful when the data is noisy since interpolation 

models may produce undesirable oscillations when filtering the noise.  

 

6.2.1. Linear Least Squares Regression 
If we have n DoE points giving a response f as a function of ndv design variables x1, x2, x3,…, 

xndv, we can look for a polynomial fit of the data. 

 

For example, a linear fit for three design variables we would fit the data to a hyper-plane of 

the form: f = c1+c1x1+c2x2+c3x3. The goal is then to find the regression coefficients c1, c2, c3, 

c4. The regression coefficients are the hyper-parameters of the surrogate model in this case. 

 

Least squares regression analysis seeks to minimise the sum of the squares of the differences 

(Square Errors, SE) between the data points and the fitted curve. For this example 

 

𝑆𝐸 =  ∑(𝑓𝑖 −  𝑐1 − 𝑐2 𝑥1
𝑖 −  𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖 )

2
𝑛

𝑖=1

 

 

 where 𝑓𝑖 is the response at the ith DoE point. 

 

To find the regression coefficients ci which minimise the SE we need to satisfy  

𝜕𝑆𝐸

𝜕𝑐1
= −2 ∑(𝑓𝑖 −  𝑐1 − 𝑐2 𝑥1

𝑖 −  𝑐3𝑥2
𝑖 − 𝑐4𝑥3

𝑖 )

𝑛

𝑖=1

= 0 

𝜕𝑆𝐸

𝜕𝑐2
= −2∑(𝑓𝑖

𝑖 −  𝑐1 − 𝑐2 𝑥1
𝑖 −  𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖 )𝑥1

𝑖 = 0

𝑛

𝑖=1

 

𝜕𝑆𝐸

𝜕𝑐3
= −2∑(𝑓𝑖 −  𝑐1 − 𝑐2 𝑥1

𝑖 −  𝑐3𝑥2
𝑖 − 𝑐4𝑥3

𝑖 )𝑥2
𝑖 = 0

𝑛

𝑖=1

 

𝜕𝑆𝐸

𝜕𝑐4
= −2∑(𝑓𝑖 −  𝑐1 − 𝑐2 𝑥1

𝑖 −  𝑐3𝑥2
𝑖 − 𝑐4𝑥3

𝑖 )𝑥3
𝑖 = 0

𝑛

𝑖=1

 

 

These lead to the four regression equations (a linear system): 
 

𝑛 𝑐1 + 𝑐2 ∑𝑥1
𝑖 + 𝑐3 ∑𝑥2

𝑖 + 𝑐4 ∑𝑥3
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

=  ∑𝑓𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 



Page 125 
Copyright © 2024 University of Leeds UK. All rights reserved. 

 

𝑐1 ∑𝑥1
𝑖

𝑛

𝑖=1

+ 𝑐2 ∑(𝑥1
𝑖)

2
+ 𝑐3 ∑𝑥1

𝑖𝑥2
𝑖 + 𝑐4 ∑𝑥1

𝑖𝑥3
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

=  ∑𝑓𝑖𝑥1
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

 

𝑐1 ∑𝑥2,𝑖

𝑛

𝑖=1

+ 𝑐2 ∑𝑥1
𝑖𝑥2

𝑖 + 𝑐3 ∑(𝑥2
𝑖 )

2
+ 𝑐4 ∑𝑥2

𝑖𝑥3
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

=  ∑𝑓𝑖𝑥2
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

 

𝑐1 ∑𝑥3
𝑖

𝑛

𝑖=1

+ 𝑐2 ∑𝑥1
𝑖𝑥3

𝑖 + 𝑐3 ∑𝑥2
𝑖𝑥3

𝑖 + 𝑐4 ∑(𝑥3
𝑖 )

2
𝑛

𝑖=1

𝑛

𝑖=1

=  ∑𝑓𝑖𝑥3
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

 
We solve these equations to obtain the regression coefficients c1, c2, c3, c4. this leads to the 
surrogate model: f = c1+c2x1+c3x2+c4x3.  
 
6.2.2. Engineering Example 
The following example explores the effect of the order of the polynomial regression model for 
representing data from an engineering company that produces algal photo-bioreactors to 
harvest phosphorous from wastewater. The company is trying to optimise the system so that 
they can extract the maximum amount of phosphorous (𝑘𝑔) which depends on the amount of 

light intensity (𝑤𝑎𝑡𝑡𝑠), the concentration of oxygen (
𝑘𝑔

𝑚^3
 ) and biomass (

𝑘𝑔

𝑚3 ). It is assumed that 

the phosphorus mass 𝑃(𝑜𝑥) depends only on the concentration of oxygen 𝑜𝑥. The dataset of 
Phosphorus mass as a function of oxygen concentration obtained from experiments is given 
by: 
 

ox P(ox) 

0.054848447 3.070101933 

0.399361417 2.288275883 

0.625771597 1.998910871 

0.920604333 2.538819248 

1.013368979 2.985745038 

1.426680967 2.489943212 

1.727360442 1.230933862 

1.786319956 1.215692053 

 
Least squares Regression fitting of P vs ox leads to the following regression curves: 
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Calculating the RMSE between the predicted points, using the polynomial curve fitting, and 
the actual data points points yields the following: 

 
 
These results are obtained by using the Python program, using_alldata.py on the alldata 
directory. These results suggest using a third order polynomial fit as this leads to the smallest 
RMSE error. However, this approach is not recommended and it is much more effective to use 
a cross-validation approach that splits the data into training and testing datasets in some way. 
This avoid the problem of over-fitting which can lead to the surrogate modelling being 
inaccurate at points not in the training dataset. 
 
In this case, the only hyper-parameter of the surrogate model is the order of the polynomial. 
How do we choose the order of regression to use? If we use Leave-One-Out Cross Validation 
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and calculate the RMSE for each regression order we obtain the following using the program 
using_leaveoneout.py on the leave-one-out directory, we obtain: 
 
 

 
 
On the basis of LOOCV we would use a 5th order polynomial regression model for to represent 
P vs ox.  
 
Suppose now that we use a holdout approach, where we divide the full dataset into a testing 
dataset consisting of two points selected randomly from the dataset of Phosphorus mass as 
a function of oxygen concentration obtained from experiments, given above, and a training 
dataset of the remaining six points. This algorithm is implemented in using_holdout.py on 
the holdout directory. Since the points are selected randomly, the solutions change every 
time the program is run. Here are two examples of results obtained by running 
using_holdout.py: 

 
 
The first result on the left suggests a first order polynomial approximation is best, whereas 

the second result suggests a third order polynomial is needed. How should be proceed? The 

main problem is that our dataset is so small. A more effective approach for smaller datasets 

is to use k-fold cross validation described in section 6.1.3 above. You will explore k-fold 

cross validation in your optimization assignment described below. 
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OPTIMIZATION ASSIGNMENT 

In this assignment you are asked to modify the codes you have been given above to explore 

what happens when you use 4-fold cross validation where you randomly selected 4 sets of 2 

points from the experimental dataset given above. You will combine 3 of these sets of 2 points 

into a training dataset with 6 points with the remaining points forming the testing dataset. 

 

You should: 

a. Write a Python program that calculates the RMSE at the testing datapoints for 

polynomial curves of orders 1 to 6 and determines which polynomial order leads to 

the smallest RMSE. Use your program to explore how much variability there is in the 

selected polynomial order of fit. 

 

b. Summarise your findings. 

Only if you have the time and are interested in doing so: 

 

c. Extend your Python program so that the 4-fold cross validation process is repeated a 

specified number of times. Explore how the variability in the selected polynomial 

order of fit depends on the number of times you repeat the 4-fold cross-validation. 

Good luck! 

 

Note: Once you have implemented your programs you can compare your findings with the 

using-kfold1.py and using_kfold2.py programs on the kfold directory. 

 

You have now finished your assignments for this brief, introductory course. The 

following content is for information only, if you are interested in finding out more 

about surrogate modelling! 

 

6.2.3. Second Order (Quadratic) Regression: example with 2 design variables 
This uses the surrogate model: 
 

𝑓(𝑥) = 𝑐1 + 𝑐2𝑥1 + 𝑐3 𝑥2 + 𝑐4𝑥1
2 + 𝑐5𝑥1𝑥2 + 𝑐6𝑥2

2. 
 
The Least Squares (LS) regression coefficients c1, c2, c3, c4, c5 and c6 at the output point 

{𝑥𝑗} = {𝑥1
𝑗
,   𝑥2

𝑗
} are obtained by minimising the sum of the least squares, SEj, over all the 

sampling points (𝑥1
𝑖 , 𝑥2

𝑖 ) defined by 
 

𝑆𝐸𝑗 = ∑(𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3 𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
)
2

𝑛

𝑖=1

 

 
The LS coefficients are obtained by requiring that   
 

𝜕𝑆𝐸𝑗

𝜕𝑐1
=

𝜕𝑆𝐸𝑗

𝜕𝑐2
=

𝜕𝑆𝐸𝑗

𝜕𝑐3
=

𝜕𝑆𝐸𝑗

𝜕𝑐4
=

𝜕𝑆𝐸𝑗

𝜕𝑐5
=

𝜕𝑆𝐸𝑗

𝜕𝑐6
= 0. 

𝜕𝑆𝐸𝑗

𝜕𝑐1
= ∑(𝑓𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

𝜕𝑆𝐸𝑗

𝜕𝑐2
= ∑𝑥1,𝑖 (𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1
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𝜕𝑆𝐸𝑗

𝜕𝑐3
= ∑𝑥2,𝑖 (𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

𝜕𝑆𝐸𝑗

𝜕𝑐4
= ∑𝑥1,𝑖

2 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

𝜕𝑆𝐸𝑗

𝜕𝑐5
= ∑𝑥1,𝑖𝑥2,𝑖 (𝑓

𝑖
𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

𝜕𝑆𝐸𝑗

𝜕𝑐6
= ∑𝑥2,𝑖

2 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

 
Solve equations for c1, c2, c3, c4, c5 and c6 and obtain the LS approximation 
 

𝑓(𝑥𝑗) =  𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3𝑥2

𝑗
+ 𝑐4(𝑥1

𝑗
)
2
+ 𝑐5𝑥1

𝑗
𝑥2

𝑗
+ 𝑐6(𝑥2

𝑗
)
2
 

 

of f, at the output point {𝑥1
𝑗
} = {𝑥1

𝑗
,   𝑥2

𝑗
}. 

 

6.2.4. Six Hump Camel Back Function Examples 

In the remainder of this chapter the surrogate modelling methods are demonstrated for the 

Six Hump Camel Back (SHCB) function defined in the previous chapter: 

 

𝑋1 = 4𝑥1 − 2;  𝑋2 = 2𝑥2 − 1; 0 ≤ 𝑥1, 𝑥2 ≤ 1 

𝑓(𝑥1, 𝑥2) = (4 − 2.1𝑋1

2
+ 𝑋1

4/3) 𝑋1

2
 + 𝑋1𝑋2 + (−4 + 4𝑋2

2
) 𝑋2

2
 

 

with the global minima having values of 𝑓 =  −1.0316 at (0.0898,−0.7127) and 

(−0.0898,0.7127). The SHCB surface is given below: 

 

 

 

 

 
 

In the following examples, the surrogate modelling is used within an optimisation algorithm to 

determine the global optimum. For example, if the analytical solution is used within a Nelder-

Mead Simplex optimisation algorithm in Python the following convergence to the optimum is 

observed when the initial point 𝑥0 = (0.3,0.7), 𝛼 =  1.0, 𝛽 = 0.5, 𝛾 = 1.0, 𝜌 = 0.5, 𝑐 = 0.5 and a 
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convergence tolerance of 0.0001. The path of the optimisation algorithm is shown as the 

solution meanders from (0.3,0.7) towards the optimum at (0.48,0.86) where the function 

value is -1.032. 

 

 
 

Examples of using Least Squares Regression for the SHCB function are given below: 
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It can be seen that Least Squares Regression is not very effective in these examples. 

 

6.3 Moving Least Squares Surrogate Modelling 
 

Least Squares Regression can be extended to the Moving Least Squares Method. In this 
case, weights are applied which are functions of the Euclidian distance rk from a k-th DoE 
sampling point to a point x where the surrogate model is evaluated.  
 
 
 
 
 
 

 

 

 

 

 

 

One possible approach is to create a surrogate model estimate in the form 

𝑓(𝑥) =  ∑𝑤𝑖(‖𝑥 − 𝑥𝑖‖)𝑓𝑖 

𝑛

𝑖=1

 

where 𝑟𝑖 = ‖𝑥 − 𝑥𝑖‖  is the Euclidean norm between the point at which the surrogate model 

is being evaluated and the ith DoE sampling point.  

 

6.3.1. First Order (Linear) Regression: example with 3 design variables 
MLSM used to estimate the response, f, using a first order (linear) interpolation fit to the 

sampling points with three design variables.  

 

This uses the surrogate modelling estimate 𝑓(𝑥) = 𝑐1 + 𝑐2𝑥1 + 𝑐3 𝑥2 + 𝑐4𝑥3.  
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The MLSM regression coefficients c1, c2, c3, c4 at the output point {𝑥𝑗} = {𝑥1
𝑗
,   𝑥2

𝑗
,  … ,   𝑥𝑛𝑑𝑣

𝑗
} 

are obtained by minimising the sum of the least squares, SEj, over all the sampling points 

{𝑥𝑖} = {𝑥1
𝑖 ,   𝑥2

𝑖 ,  … ,   𝑥𝑛𝑑𝑣
𝑖 }, defined by 

 

𝑆𝐸𝑗 = ∑𝑤𝑖𝑗(𝑓
𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3 𝑥2
𝑖 − 𝑐4𝑥3

𝑖 )
2

𝑛

𝑖=1

 

 

wij is the weight decay function between output point j and sample point i. For or a Gaussian 

weight decay function 𝑤𝑖𝑗 = 𝑒−𝛽𝑟𝑖𝑗
2

 where 𝑟𝑖𝑗 = ‖𝑥𝑗 − 𝑥𝑖‖ and β is the only hyper-parameter 

for the model. The MLS coefficients are obtained by requiring that   
𝜕𝑆𝐸𝑗

𝜕𝑐1
=

𝜕𝑆𝐸𝑗

𝜕𝑐2
=

𝜕𝑆𝐸𝑗

𝜕𝑐3
=

𝜕𝑆𝐸𝑗

𝜕𝑐4
= 0. 

 

𝜕𝑆𝐸𝑗

𝜕𝑐1
= 0 ⇒ 0 =  ∑[−2𝑤𝑖𝑗(𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖 )] ⇒

𝑛

𝑖=1

 

 𝑐1 ∑𝑤𝑖𝑗 + 𝑐2 ∑𝑤𝑖𝑗𝑥1
𝑖 + 𝑐3 ∑𝑤𝑖𝑗𝑥2

𝑖 + 𝑐4 ∑𝑤𝑖𝑗𝑥3
𝑖

𝑛

𝑖=1

=  ∑𝑤𝑖𝑗𝑓
𝑖 

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

 
𝜕𝑆𝐸𝑗

𝜕𝑐2
= 0 ⇒ 0 =  ∑ [−2𝑤𝑖𝑗𝑥1

𝑖(𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖 )] ⇒𝑛

𝑖=1   

𝑐1 ∑𝑤𝑖𝑗𝑥1
𝑖 + 𝑐2 ∑𝑤𝑖𝑗(𝑥1

𝑖)
2
+ 𝑐3 ∑𝑤𝑖𝑗𝑥1

𝑖𝑥2
𝑖 + 𝑐4 ∑𝑤𝑖𝑗𝑥1

𝑖𝑥3
𝑖 =

𝑛

𝑖=1

 ∑𝑤𝑖𝑗𝑓
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑥1
𝑖    

𝜕𝑆𝐸𝑗

𝜕𝑐3
= 0 ⇒ 0 =  ∑[−2𝑤𝑖𝑗𝑥2

𝑖 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖 )] ⇒

𝑛

𝑖=1

 

𝑐1 ∑𝑤𝑖𝑗𝑥2
𝑖 + 𝑐2 ∑𝑤𝑖𝑗𝑥1

𝑖𝑥2
𝑖 + 𝑐3 ∑𝑤𝑖𝑗(𝑥2

𝑖 )
2
+ 𝑐4 ∑𝑤𝑖𝑗𝑥2

𝑖𝑥3
𝑖 =

𝑛

𝑖=1

 ∑𝑤𝑖𝑗𝑓
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑥2
𝑖    

𝜕𝑆𝐸𝑗

𝜕𝑐4
= 0 ⇒ 0 =  ∑[−2𝑤𝑖𝑗𝑥3

𝑖 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖 )] ⇒

𝑛

𝑖=1

 

𝑐1 ∑𝑤𝑖𝑗𝑥3
𝑖 + 𝑐2 ∑𝑤𝑖𝑗𝑥1

𝑖𝑥3
𝑖 + 𝑐3 ∑𝑤𝑖𝑗𝑥2

𝑖𝑥3
𝑖 + 𝑐4 ∑𝑤𝑖𝑗(𝑥3

𝑖 )
2
=

𝑛

𝑖=1

 ∑𝑤𝑖𝑗𝑓
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑥3
𝑖    

 
We then solve these equations for c1, c2, c3 and c4 and obtain the MLSM surrogate model 
estimate at design point  

𝑓(𝑥𝑗) = 𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3 𝑥2

𝑗
+ 𝑐4𝑥3

𝑗
  

 

6.3.2. Second Order (Quadratic) Regression: example with 2 design variables 
This uses the surrogate model: 
 

𝑓(𝑥) = 𝑐1 + 𝑐2𝑥1 + 𝑐3 𝑥2 + 𝑐4𝑥1
2 + 𝑐5𝑥1𝑥2 + 𝑐6𝑥2

2. 
 

The MLS regression coefficients c1, c2, c3, c4, c5 and c6 at the output point {𝑥𝑗} = {𝑥1
𝑗
,   𝑥2

𝑗
} 

are obtained by minimising the sum of the least squares, SEj, over all the sampling points 

(𝑥1
𝑖 , 𝑥2

𝑖 ) defined by 
 

𝑆𝐸𝑗 = ∑𝑤𝑖𝑗 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3 𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
)
2

𝑛

𝑖=1
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where wij is the weight decay function between output point j and sample point i. The MLS 

coefficients are obtained by requiring that   
 

𝜕𝑆𝐸𝑗

𝜕𝑐1
=

𝜕𝑆𝐸𝑗

𝜕𝑐2
=

𝜕𝑆𝐸𝑗

𝜕𝑐3
=

𝜕𝑆𝐸𝑗

𝜕𝑐4
=

𝜕𝑆𝐸𝑗

𝜕𝑐5
=

𝜕𝑆𝐸𝑗

𝜕𝑐6
= 0. 

𝜕𝑆𝐸𝑗

𝜕𝑐1
= ∑−2𝑤𝑖𝑗 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

𝜕𝑆𝐸𝑗

𝜕𝑐2
= ∑−2𝑤𝑖𝑗𝑥1,𝑖 (𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

𝜕𝑆𝐸𝑗

𝜕𝑐3
= ∑−2𝑤𝑖𝑗𝑥2,𝑖 (𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

𝜕𝑆𝐸𝑗

𝜕𝑐4
= ∑−2𝑤𝑖𝑗𝑥1,𝑖

2 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

𝜕𝑆𝐸𝑗

𝜕𝑐5
= ∑−2𝑤𝑖𝑗𝑥1,𝑖𝑥2,𝑖 (𝑓

𝑖
𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

𝜕𝑆𝐸𝑗

𝜕𝑐6
= ∑−2𝑤𝑖𝑗𝑥2,𝑖

2 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖 )
2
) = 0 

𝑛

𝑖=1

 

 
Solve equations for c1, c2, c3, c4, c5 and c6 and obtain the MLSM approximation 
 

𝑓(𝑥𝑗) =  𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3𝑥2

𝑗
+ 𝑐4(𝑥1

𝑗
)
2
+ 𝑐5𝑥1

𝑗
𝑥2

𝑗
+ 𝑐6(𝑥2

𝑗
)
2
 

 

of f, at the output point {𝑥1
𝑗
} = {𝑥1

𝑗
,   𝑥2

𝑗
}. 

 
6.3.3. Higher Order Regression 
For higher order regression, the number of regression coefficients increases rapidly.  

e.g. with two design variables {𝑥} = {𝑥1,   𝑥2} the third order MLSM builds an approximation 

of the form: 

 

𝑓(𝑥𝑗) =  𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3𝑥2

𝑗
+ 𝑐4(𝑥1

𝑗
)
2
+ 𝑐5𝑥1

𝑗
𝑥2

𝑗
+ 𝑐6(𝑥2

𝑗
)
2
+ 𝑐7(𝑥1

𝑗
)
3
+ 𝑐8(𝑥1

𝑗
)
2
𝑥2

𝑗
+ 𝑐9𝑥1

𝑗
(𝑥2

𝑗
)
2

+ 𝑐10(𝑥2
𝑗
)
3
 

 

at the output point {𝑥1
𝑗
} = {𝑥1

𝑗
,   𝑥2

𝑗
}. c1-c10 are determined by minimising SE, summed over all 

n sampling points (𝑥1
𝑖 ,   𝑥2

𝑖 ): 
 

𝑆𝐸𝑗 =  ∑ (𝑛
𝑖=1  𝑓𝑖−𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖  −𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖  

−𝑐6(𝑥2
𝑖 )

2
− 𝑐7(𝑥1

𝑖)
3
− 𝑐8(𝑥1

𝑖)
2
𝑥2

𝑖 − 𝑐9𝑥1
𝑖(𝑥2

𝑖 )
2
− 𝑐10(𝑥2

𝑖 )
3
) 2

 

For two design variables {𝑥} = {𝑥1,   𝑥2} the fourth order MLSM builds an approximation of 

the form: 

 

𝑓(𝑥𝑗) =  𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3𝑥2

𝑗
+ 𝑐4(𝑥1

𝑗
)
2

 + 𝑐5𝑥1
𝑗
𝑥2

𝑗
+ 𝑐6(𝑥2

𝑗
)
2
+ 𝑐7(𝑥1

𝑗
)
3
+ 𝑐8(𝑥1

𝑗
)
2
𝑥2

𝑗
+ 𝑐9𝑥1

𝑗
(𝑥2

𝑗
)
2

+ 𝑐10(𝑥1
𝑗
)
3
+ 𝑐11(𝑥1

𝑗
)
4
+  𝑐12(𝑥1

𝑗
)
3
𝑥2

𝑗
+ 𝑐13(𝑥1

𝑗
)
2
(𝑥2

𝑗
)
2
+ 𝑐14𝑥1

𝑗
(𝑥2

𝑗
)
3
+ 𝑐15(𝑥2

𝑗
)
4
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at the output point {𝑥1
𝑗
} = {𝑥1

𝑗
,   𝑥2

𝑗
}. The regression coefficients c1-c15 are determined by 

minimising the Moving Least Squares expression, summed over the n sampling points 

(𝑥1
𝑖 ,   𝑥2

𝑖 ) etc. 

 

6.3.4. MLS surrogate modelling of the Six Hump Camel Back Function 
 
                          Analytical Function                                    20 DoE points, β=10.0 

 
 

 

 

 

 

 

 

 

 

 

 

 

                          Analytical Function                                    20 DoE points, β=20.0 
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                       Analytical Function                                    50 DoE points, β=20. 

 

                       Analytical Function                                    100 DoE points, β=60. 
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                       Analytical Function                                    100 DoE points, β=120. 

 

 

These show that the MLS method can represent the SHCB function accurately with ~50 DoE 

points and that the hyper-parameter β is also very influential. 

 

6.4 Radial Basis Functions 
 

In addition to surrogate modelling, radial basis functions (RBFs) are used in other areas, for 

example in computer graphics and mesh deformation. Initially requiring 𝑂(𝑛3) calculations, a 

further 𝑂(𝑛) calculations are required per prediction [113]. 

 

As discussed earlier, the RBF surrogate model uses the data at the Design of Experiment 

points to create an approximation that is accurate everywhere in the design space. If there 

are ndv design variables and a total of n DoE points {𝑥𝑖} = {𝑥1
𝑖 ,   𝑥2

𝑖 ,  … ,   𝑥𝑛𝑑𝑣
𝑖 },  for i=1,…,n at 

which the output response takes the values yi for i=1,…,n then the RBF approximation to yrbf 

at any point 𝑥 = {𝑥1, 𝑥2 … , 𝑥𝑛𝑑𝑣} with the design space is given by the RBF approximation 

 

𝑦𝑟𝑏𝑓(𝑥)  ≈  ∑λ𝑖 𝜓‖𝑥 − 𝑥𝑖‖ =

𝑛

𝑖=1

∑λ𝑖 𝜓(𝑟𝑖) =

𝑛

𝑖=1

 

 

where {𝑥𝑖} = {𝑥1
𝑖 ,   𝑥2

𝑖 ,  … ,   𝑥𝑛𝑑𝑣
𝑖 } is the ith DoE point. The norm 𝑟𝑖 = ‖𝑥 − 𝑥𝑖‖ is often taken to 

be the Cartesian distance between the points, given by  

 

𝑟𝑖 = √∑(𝑥𝑗 − 𝑥𝑗
𝑖)

2
𝑛𝑑𝑣

𝑗=1

 

 
where ndv is the number of design variables.  
 

RBF basis functions 𝜓 can take several different forms. Common examples include: 
 

𝜓(𝑟) = 𝑟;  𝜓(𝑟) = 𝑟3;  𝜓(𝑟) = 𝑟2 lnr  
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Gaussian: 𝜓(𝑟) = 𝑒𝑥𝑝(−𝛽𝑟2) 
 

Multi-quadratic: 𝜓(𝑟) = (𝑟2 + 𝛽2)1/2. 
 

Inverse multi-quadratic: 𝜓(𝑟) = (𝑟2 + 𝛽2)−1/2. 
 
where β is the single hyper-parameter. RBFs are normally used in interpolating mode which 

means that the weights λi are chosen so that the RBF approximation is exact at each of the 

DoE points, i.e. yrbf(𝑥𝑖) = yi for i=1,…,n. In this case, the λi are obtained by solving the linear 

matrix equation: 

 

λ =  ᴪ−1𝑦 
 

where ᴪ is the Gram matrix defined such that ᴪ𝑖,𝑗 =  𝜓‖𝑥𝑖 − 𝑥𝑗‖. If the Cartesian norm is 

used, then  

 

‖𝑥𝑖 − 𝑥𝑗‖ = 𝑟𝑖𝑗 = √∑(𝑥𝑘
𝑖 − 𝑥𝑘

𝑗
)
2

𝑛𝑑𝑣

𝑘=1

 

which is the Cartesian distance between the ith nd jth DoE point. 

 

Note: If the responses yi are corrupted by numerical noise, this may lead to overfitting of the 

data – this does not discriminate between the underpinning response and the noise. We can 

introduce a regularization parameter, r, added to the main diagonal of the Gram matrix: 

 

𝑤 = (ᴪ +  𝑟𝐼)−1𝑦 
 

where r is a (usually small) number and 𝐼 is the unit nxn matrix with 1s on the leading 
diagonal and zeros elsewhere. 
 

The following results illustrate RBF surrogate modelling of the Six Hump Camel Back function 

as a function of the number of DoE points. In each case the hyper-parameter β is obtained 

using LOOCV for 0.5 ≤ 𝛽 ≤ 10 and the global minimum is obtained using a Nelder-Mead 

simplex optimisation algorithm available in Python. The optima can be compared to the ‘true’ 

value of -1.031 obtained from the analytical form of the Six Hump Camel Back function. 
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Case 1: n=10 DoE points

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 2: n=20 DoE points 
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Case 3: n=50 DoE points 
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Analytical Function 
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The above results show that n=50 DoE points is sufficient to get a reasonable RBF 

representation of the functional surface and good agreement with the global optimum value. 

 

6.5 Random Forests 
 
Random Forests is a surrogate modelling method (also termed a supervised machine 

learning method) which clusters data points into functional groups. It is very effective for 

avoiding the problem of over-fitting the DoE data to the resultant surrogate model and is well 

suited to creating surrogate models for optimisation problems where the design variables are 

mixed continuous/categorical in nature. A categorical design might be for example, a 

particular manufacturing method or a metal being used, i.e. a variable which does not have a 

clear link to a numerical value. Random Forests are based on Decision Trees.  

 

6.5.1 Decision Trees 

In a Decision Tree the DoE dataset is split up according the values of the input variables into 

a series of smaller subsets whose output values have similar values. The similarity in the 

output variables if often measured in terms of a standard deviation/variance about the 

average output value in the subset. Each split in the input DoE data is like a branch in a tree 

and each data subset is called a leaf. The data are progressively split until some 

convergence condition is satisfied. The convergence criterion could be based on 

 The maximum number of splits that have been performed 

 The standard deviation in the output values of the subset is below a specified 

tolerance 

 The prediction from the Decision Tree for a specific set of input variables would then be 

based on the average value associated with the final leaf with which it is associated and 

which will not be split any further. The general idea can be explained by a simple example. 

 

6.5.2. Example 

Suppose that a Decision Tree is used to predict the corrosion rate of a metal in a corrosive 

liquid (in mm/year) as a function of 2 input variables – the pH and the temperature of the 

liquid in oC. A series of experiments are carried out and the experimental (DoE) data is given 

by the following table: 
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pH T (oC) Corrosion Rate 
(mm/year) 

4.1 45.2 6.8 

3.8 41.5 6.6 

4.8 32.5 3.9 

4.6 28.0 4.1 

5.1 36.0 3.2 

6.5 38.0 2.8 

6.3 33.0 1.2 

5.5 29.5 1.9 

 
The following figure shows two possible Decision Trees that could be used. Tree 1 uses the 

following splits. Data is split up first of all according to whether pH<5.0 or pH≥5.0 (the first 

branch in Tree 1) and then according to whether T<35oC or T≥35oC (the second branch). 

The leaf associated with the branches with pH<5.0 and T<35oC results in the leaf with 

corrosion rates (3.9,4.1). Hence for the specific case with pH=4.0 and T=29.0oC, the 

Decision Tree would predict the average of these two values: 4.0 mm/year. Other design 

variables would result in the other averages shown. 

 

Suppose now there is a second tree, Tree 2, where data is split up according to whether 

pH<4.5 or pH≥4.5 (the first branch in Tree 2) and then according to whether T<30oC or 

T≥30oC (the second branch). 

 

 

 

For the specific case with pH=4.0 and T=29.0oC, Tree 2 has only one output value, 4.1, in 

the associated leaf (obtained from the branches pH<4.5 and T<30oC) hence Tree 2 predicts 

the corrosion rate to be 4.1 mm/year. 

 

In practice, the power of the Random Forest method is based on using a number of trees 

where the branching criteria are specified randomly and then taking the averages over all 

these Decision Trees. This is an example of an Ensemble Learning method which uses the 

outcomes of many different models. If the results of Tree 1 and Tree 2 are combined into a 

Random Forest with these two Decision Trees, the corrosion rate prediction for the case with 

pH=4.0 and T=29.0oC would be given by the weighted sum of the two leaves. This would be 

the average of 3.9, 4.1 and 4.1 or 4.03 mm/year. 
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The Random Forest method has a number of hyper-parameters which have to be optimised 

during the training and validation process. These include the number of trees, the number of 

decision levels and the convergence criteria.  

 

Examples of using Random Forest surrogate modelling of the Six Hump Camel Back 

Function are given below. 

 

Six Hump Camel Back Function: Random Forests 
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Actual Function 
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It can be seen that 100 DoE points are needed for the Random Forest to generate a surface 

similar to that of the actual function. However, even for 100 DoE points, the optimal solution 

(-0.21) is very inaccurate compared to the actual optimum (-1.03). 

 

6.6 Gaussian Process Regression 

 

Gaussian Process Regression (GPR) models are widely used in surrogate modelling and 

machine learning due to their ability to represent complex, nonlinear relationships between 

input and output variables. Their assumption of Gaussian/Normal behaviour enables 

equations for quantifying uncertainty to be obtained in an easy to calculate form. The 

background to GPR models is rather mathematical but they are widely available in packages 

such as Matlab and Python.  

 

Regressions models formulate a function that represents observed data and uses this 

function to predict values at new data points. There are an infinite number of ways this 

function can be formulated and GPR models use a probability distribution over this infinite 

number of functions to determine which is the most likely given the DoE data provided. 

 

6.6.1. Gaussian/Normal distribution 

If a single random variable X is Gaussian – or normally – distributed with mean 𝜇 and 

variance 𝜎2, its probability density function (pdf) is given by 

 

𝑃𝑋(𝑠) =
1

√2𝜋𝜎
exp (−

(𝑠 − 𝜇)2

2𝜎2 ) 

 

This is the well-known bell-shaped curve. 
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This can be generalised to the Multivariate Normal Distribution (MVN) for several design 

variables 𝑥 = (𝑥1, … , 𝑥𝑛𝑑𝑣) 

 

𝑃𝑥(𝑠|𝜇, 𝛴) =
1

(2𝜋)𝑛𝑑𝑣/2|𝛴|1/2
exp (−

1

2
(𝑠 − 𝜇)𝑇𝛴−1(𝑠 − 𝜇)) 

 

where 𝜇 = 𝐸(𝑥) is the mean vector and 𝛴 is the (ndv x ndv) covariance matrix. The MVN pdf 

can be visualised for 2 design variables. An example is shown below 

 

 

 

6.6.2 Covariance Matrix/Kernels 

The covariance function between the design variables is also called the Kernel function and 

encapsulates prior knowledge about the functions we are trying to represent. The squared 
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exponential (SE) kernel, also known as the Gaussian or Radial Basis Function (RBF) kernel, 

is widely used 

 

𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑗) = 𝜎𝑓
2exp (−

𝑟𝑖𝑗
2

2𝑙
) 

 

where 𝑟𝑖𝑗 is the Cartesian distance between points xi and xj and 𝜎𝑓
2 and 𝑙 are hyper-

parameters of the Covariance matrix. The hyper-parameters in a GPR model are generally 

associated with the Correlation matrix/kernel function and with the noise levels in the data. 

The hyper-parameters are found be solving a separate optimisation problem that maximises 

the likelihood of obtaining the observed set of DoE data. 

 

The key limitations of GPR models are that: 

(i) The computational complexity is O(ndv3) where ndv is the number of design 

variables 

(ii) The memory requirements are O(ndv2) 

This means that GPR models are impractical for data sets with large numbers of design 

variables. In such cases, sparse GPR models are used instead. 

 

6.6.3 GPR Surrogate Modelling of Six Hump Camel Back Function 

Examples are given below. 
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It can be seen that the surrogate model and optimum value being predicted are accurate for 

N>50 DoE points. 

 

6.7 Neural Networks 
 

This section is based on the excellent book by Martins & Ning (2022) listed as one of the 

module’s recommended textbooks. Interest in Neural Networks (NNs) has exploded in 

recent years due to their ability to approximate highly non-linear relationships between input 

and output variables. In addition to their use in optimisation, NNs are used in a wide range of 

AI applications, including Large Language Models (LLMs), Machine Vision and medical 

diagnostic devices.  

 

NNs are simplified models based on the brain, with its enormous network of neurons and in 

NNs each neuron is a node that represents the value from a simple function. The power of 

the NN comes from its definition of chains of simple functions into composite functions which 

are able to model much more complex, non-linear behaviours. For example, if we have four 

simple functions f1, f2, f3 and f4, these can be chained together into the composite functions 

or network: 

𝑓(𝑥) = 𝑓4(𝑓3 (𝑓2(𝑓1(𝑥)))) 

the composite function 𝑓(𝑥) can model very complex behaviour.  
 
Most NNs are feedforward ones where information flows from the inputs x to the outputs 

𝑓(𝑥). Recurrent NNs also have important elements of feedback throughout the network. The 

figure below (due to Muhammad Raihan) shows a diagram of a NN, where each node 

represents neuron. The neurons are joined between consecutive layers to form the network.  
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The first layer is called the input layer and the last one is the output layer. The layers 

between these two are the hidden layers. The total number of layers is called the network’s 

depth. Deep Neural Networks have many layers, enabling very complex behaviour to be 

represented accurately. The first and last layers can be considered to be the inputs and 

outputs of the surrogate model. Each nodes in the hidden layers represents a function. 

The output from the NN can be represented by a vector, 𝑥. In the example above, the output 

is 

𝑥 = (

𝑦1

𝑦2

𝑦3

) 

 

More generally, the vector of values for layer k is 𝑥𝑘, the value for the ith neuron in layer k is 

𝑥𝑖
𝑘, there being 𝑛𝑘 neurons in layer k. A neuron in layer k is connected to many neurons from 

the previous layer, (k-1). We can select functions for each neuron in layer k that takes values 
from layer (k-1) as inputs. If only linear functions were used then all the functions would be 
linear and only linear relationships could be modelled. Hence, some layers have to use non-
linear functions. A common approach is to have hidden layers with a layer of linear functions 
followed by a layer with nonlinear functions. A neuron in the linear layer produces the 
intermediate value 
 

𝑧 = ∑ 𝑤𝑗𝑥𝑗
(𝑘−1)

𝑛𝑘−1

𝑗=1

+ 𝑏 

 

𝑥1 

 
𝑥2 

 
𝑥3 

 
𝑥4 

 
𝑥5 

 
𝑥6 

 

𝑓 

 
𝑓 

 

𝑓 

 

𝑓 

 

𝑓 

 

𝑓 

 

𝑓 

 

 

𝑓 

𝑓 

 

𝑓 

 

𝑓 

 

𝑓 

 

𝑓 

𝑓 

 
𝑓 

 

𝑦1 

 𝑦2 

 𝑦3 

 

𝑓 

 𝑓1 𝑓𝑛 
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where 𝑛𝑘−1 is the number of neurons in layer (k-1), 𝑤𝑗 are weights for layer (k-1) and 𝑏 is 

called the bias term which scales the significance of the overall output. 

This can be written more conveniently using vector notation as 

 

𝑧 = 𝑤𝑇𝑥(𝑘−1) + 𝑏 
 
which is a linear function of the neurons in the previous layer (k-1). The next key step is to 

pass the value 𝑧 through an activation function, 𝑎(𝑧). In the past one of the most common 

activation functions was the sigmoid function: 

 

𝑎(𝑧) =
1

1 + 𝑒−𝑧
 

 

 
This produces values between 0 and 1 so that large negative outputs are insignificant while 

large outputs results in values close to 1. 

 
The Rectified Linear Unit (ReLU) activation function is now much more common: 

 

𝑎(𝑧) = max (0, 𝑧) 
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As ReLU eliminates negative inputs, the bias term is a threshold defining what is a 

significant value. The output from the ith neuron is obtained by combining the linear function 

with the activation function: 

 

𝑥𝑖
𝑘 = 𝑎(𝑤𝑇𝑥(𝑘−1) + 𝑏𝑖) 

 
As a result of the above, the NN is now parametrised in terms of the weight and bias 

parameters. These are all hyper-parameters of the NN and like all surrogate models, a 

separate optimisation problem has to be solved to determine the optimal value of these 

parameters. This is called Training the Network. If we consider the NN in the figure above 

with 6 input values/neurons and then have the first hidden layer with 10 neurons, the second 

hidden layer with 8 neurons and 3 output neurons then there would be a total of (6x10 + 

10x8 + 8x3) weights and 10+8+3 bias parameters giving a total of 185 variables. Note this is 

a very small NN – large NNs, for example with Large Language Models, will have several 

million such variables.  

 
Since the optimisation problem that needs to be solved to train the network is very large, 

gradient-based optimisation methods are used. These require derivatives to be determined 

for all of the optimisation variables. These are obtained using reverse-mode algorithmic 

differentiation (AD) – also known as backpropagation. The derivatives are commonly used 

with specialist steepest descent methods which are referred to as stochastic gradient 

descent methods. In practical problems the goal is not to obtain the absolute minimum but to 

find a good enough solution quickly. The stochastic gradient descent method does not 

perform a line search. Instead a step-size, called the learning rate, is used and this is usually 

a pre-selected value. These algorithmic developments have been crucial in enabling NNs to 

be applied in increasing numbers of important AI and optimisation applications. 

 

6.7.1 NN Surrogate Modelling of Six Hump Camel Back Function 

Examples are given below. 
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It can be seen that the accuracy generally improves for larger values of DoE points, although 

the performance is not as good as seen for the GPR surrogate models. Note that NNs 

generally perform much better than GPRs for larger numbers of design variables and much 

bigger training datasets. The Six Hump Camel Back function is too small to demonstrate 

their capabilities fully. 
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6.8 Discussion and Engineering Example 

 

The future development of many different complex products and processes will be based on 

a systematic optimisation process where design optimisation methods are used extensively. 

The data used within these optimisation methods can come from a variety of sources, 

including experiments, simple mathematical models and/or physics-based computer 

simulations. The latter type of data, in particular, is increasingly being used to solve a wide 

variety of challenging design problems in science and industry. This approach is very well 

established for structural design problems and is now used routinely to minimise the weight 

of automotive components or design composite wings for aircraft. Although there have been 

comparatively few studies which have used Computational Fluid Dynamics (CFD) to 

optimise complex flow problems, interest in CFD-enabled design optimisation methods is 

now also growing rapidly.  

 

There has been rapid progress in reducing computational times for both gradient-free and 

gradient-based optimisation methods. Gradient-free optimisation methods can be very 

effective for up to 100 design variables, whereas for larger design problems, with > 100 

design variables, gradient-based methods, powered by rapid advances in adjoint methods, 

have solved problems where the number of design variables is in the 1000s or even millions. 

Other key improvements that have driven these advances include adaptive Design of 

Experiments methods, which can provide an appropriate balance between exploration and 

exploitation, and multi-fidelity modelling which enables most of the computational work to be 

done on cheaper, lower fidelity models. Both of these enable the number of expensive, high 

fidelity computer simulations used in the optimisation process to be kept to a minimum. 

Significant progress has also been made in multi-disciplinary design optimisation (MDO) 

methods which coordinate simulations of the individual disciplines affecting a design (e.g. 

fluid mechanics, structural mechanics, ...) toward a system design that is optimal as a whole, 

taking into account the competing objectives. 

 

There are several exciting research directions that will enable design optimisation methods 

to have even greater impact in the future. The ACARE Beyond 2020 Vision (European 

Commission, 2019), for example, predicts that effective MDO methods will be a key enabling 

technology for the future development of environment-friendly aircraft and that these aircraft 

will be designed virtually, using computer-based simulations, by 2050. For these and other 

safety-critical applications (in for example the nuclear industry), there will be increasing 

demands for the development of robust simulation-based optimisation methods that can 

ensure that product and/or process performance does not degrade significantly due to 

unavoidable variations in manufacturing tolerances, operating conditions, etc. It is also likely 

that the growing interest in using Machine Learning, for example to tune parameters in 

turbulence models, and the increasing trend of combining physics-based and data-driven 

flow simulations will widen the both the power and scope of simulation-based design 

optimisation methods in the very near future.  

 

6.8.1 Electronics Cooling using Heat Sinks 

This example is based on a recent research project which analysed the cooling potential of 
liquid cooled heat sinks for high-density electronics cooling. Heat sinks are used to take the 
heat away from the electronics as efficiently as possible while at the same time ensuring the 
energy required to pump the liquid through the heat sinks is minimal. The work is published 
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in the article: A.F. Al-Neama et al., ‘An experimental and numerical investigation of the use 
of liquid flow in serpentine microchannels for microelectronics cooling’, Applied Thermal 
Engineering, 116, 709-723, 2017. The following figure shows the physical design (top left), 
CAD model (bottom left); heat sink temperature distributions (top and bottom right). 

 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There are two objectives that need to be minimised for electronics cooling: the thermal 
resistance (which measures the resistance to dissipating heat from the electronics) and the 
pressure drop (which is directly related to energy losses in the system). Here we use the 
following data at 30 Design of Experiments data points: 
 

0.4 0.4 0.2269708 32295.88 
1 0.4 0.1862377 12553.08 
0.4 1 0.2472688 38679.57 
1 1 0.1618792 13867.9 
0.4 0.664 0.2334668 35215.58 
0.424 0.52 0.2195144 31543.47 
0.448 0.784 0.2176468 31986.3 
0.472 0.904 0.2128178 31044.3 
0.496 0.616 0.1995214 27282.88 
0.52 0.448 0.1951516 24729.56 
0.544 0.712 0.1902447 25240.69 
0.568 0.976 0.1894705 25538.35 
0.592 0.856 0.1832713 23768.87 
0.616 0.544 0.1800919 21209.4 
0.64 0.424 0.1825142 19769.97 
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0.664 0.952 0.1739714 21385.96 
0.688 0.76 0.1713519 19779.7 
0.712 0.64 0.1711744 18578.62 
0.736 0.496 0.1749193 17376.79 
0.76 0.88 0.1666564 18166.45 
0.784 0.736 0.1670559 17080.95 
0.808 0.4 0.1808273 15481.67 
0.832 1 0.1636113 16821.3 
0.856 0.592 0.1693082 15178.61 
0.88 0.808 0.1641188 15338.31 
0.904 0.472 0.176308 14047.45 
0.928 0.928 0.1625802 14806.84 
0.952 0.688 0.167041 13858.26 
0.976 0.568 0.1721966 13244.67 
1 0.832 0.1643945 13500.18 
 

Here the first two columns relate to two geometrical design parameters which are in the 

range 0.4 ≤ x1 ≤1.0 and 0.4 ≤ x2 ≤1.0, the third column is the thermal resistance and the 

fourth the pressure drop in Pascal. We will be focussing here on creating surrogate models 

for the thermal resistance in the heat sink system. 

 

The surrogate modelling is carried out using Gaussian Radial Basis Functions. For example, 

using the hyper-parameter β=2.0 creates the following surrogate model of the thermal 

resistance: 

 
Using Leave One Out Cross Validation for the thermal resistance leads to the following figures, 

with β=1.45 leading to the smallest RMSE. 
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Using Leave One Out Cross Validation for the pressure drop leads to the following figures, 

with β=0.88 leading to the smallest RMSE. 

 
 

 
 
The last figure shows the Pareto front that results from multi-objective optimisation of the 

thermal resistance and pressure drop (both suitably scaled). It shows the compromises that 

can be struck between minimising each of the objectives. For example. Reducing thermal 

resistance below 0.17 will results in pressure drops > 13,000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Page 160 
Copyright © 2024 University of Leeds UK. All rights reserved. 

REFERENCES for CHAPTERS 1-4  
1. Arora J., Introduction to Optimum Design, 3rd Ed. Elsevier (2011). 

2. Asghar Bhatti M., Practical Optimization Methods: With Mathematica® Applications, 

Springer; 2000 edition, (2012), DOI:  https://doi.org/10.1007/978-1-4612-0501-2, 

ISBN: 978-1-4612-6791-1. 

3. Charalambous C., Conn A.R., An efficient method to solve the minimax problem 

directly, SIAM J. Numer. Anal., 15 (1) (1978), pp. 162-187. 

4. Das, B. C., Effect of graphical method for solving mathematical programming problem. 

Daffodil International University Journal of Science and Technology, [S.l.], v. 5, n. 1, p. 

29-36, Feb. 2010. ISSN 2408-8498. doi: http://dx.doi.org/10.3329/diujst.v5i1.4379. 

5. Gürdal Z, Haftka R. T., Elements of Structural Optimization 3rd Ed., Solid Mechanics 

and its Applications, Volume 11  Series Editor: G. M. L. Gladwell,  ISBN 0-7923-1505-

7 .(1992). 

6. Hooke, R.; Jeeves, T.A. (1961). "Direct search" solution of numerical and statistical 

problems". Journal of the ACM. 8 (2): 212–229. doi:10.1145/321062.321069. 

7. Nelder, John A.; R. Mead (1965). "A simplex method for function minimization". 

Computer Journal. 7 (4): 308–313. doi:10.1093/comjnl/7.4.308. 

8. Olhoff N, Multicriterion structural optimization via bound formulation and mathematical 

programming, Structural optimization, 1, 11 – 17, (1989). 

9. Querin O.M., Victoria M., Alonso Gordoa C., Ansola R., Martí P., Topology Design 

Methods for Structural Optimization, Elsevier (2017), ISBN: 978-0-08-100916-1 

10. Rao S., Engineering Optimization: Theory and Practice, Fourth Edition, John Wiley & 

Sons, Inc. (2009) 

11. Spendley, W.; Hext, G. R.; Himsworth, F. R. (1962). "Sequential Application of Simplex 

Designs in Optimisation and Evolutionary Operation". Technometrics. 4 (4): 441–461. 

doi:10.1080/00401706.1962.10490033. 

12. Spillers W.R., MacBain K.M., Structural Optimization, Springer (2009), ISBN 978-0-

387-95864-4  

13. Xie Y. M., Steven G.P., Evolutionary Structural Optimization, Springer, 1997 

 

REFERENCES for CHAPTERS 5&6 
6) ANFD. SPREVAK, J. M. M. Introduction to Unconstrained Optimization. A Computer 

Illustrated Text. Institute of Physics Publishing, 1990. ISBN 0750300256. 

7) ANTONY, J. Taguchi or Classical Design of Experiments: A Perspective from a 

Practitioner. Sensor Review 26, 3 (2006), 123–160. 

11) AUDZE, P., AND EGLAIS, V. New Approach for Planning Out of Experiments. 

Problems of Dynamics and Strengths 35 (1977), 104 – 107. 

13) BATES, S. J., SIENZ, J., AND LANGLEY, D. S. Formulation of the Audze–Eglais 

Uniform Latin Hypercube Design of Experiments. Advances in Engineering Software 

34, 8 (2003), 493–506. 

https://doi.org/10.1007/978-1-4612-0501-2
http://dx.doi.org/10.3329/diujst.v5i1.4379


Page 161 
Copyright © 2024 University of Leeds UK. All rights reserved. 

14) BATES, S. J., SIENZ, J., AND TOROPOV, V. V. Formulation of the Optimal Latin 

Hypercube Design of Experiments Using a Permutation Genetic Algorithm. AIAA-

2004-2011 (2004). 

18) BLUE, G., AND LAUNSBY, R. Design for Six Sigma. McGraw Hill, 2003. ISBN 

0071413766. 

20) BOX, G. E. P., AND BEHNKEN, D. W. Some New Three Level Designs for the Study 

of Quantitative Variables. Technometrics 2, 4 (1960), 455–475. 

25) CHOI, K., YOUN, B., AND YANG, R. Moving Least Square Method for Reliability-

Based Design Optimization. The Fourth World Congress of Structural and 

Multidisciplinary Optimization (2001). 

26) CHUNG, H. S., AND ALONSO, J. J. Multiobjective Optimization Using Approximation 

Model-Based Genetic Algorithms. AIAA-2004-4325 (2004). 

28) CLARK, I. Practical Geostatistics. Ecosse, 1979. ISBN 0954891198. 

30) COX, D. R., AND REID, N. Theory of DoE. Chapman and Hall, 2000. ISBN 

158488195X. 

31) CRESSIE, N. A. C. Statistcs for Spatial Data. Wiley, 1993. ISBN 0471002550. 

42) FANG, K.-T., ZE LI, R., AND SUDJIANTO, A. Design and Modeling for Computer 

Experiments. Chapman & Hall, 2006. ISBN 1584885467. 

46) FORRESTER, A., SOBESTER, A., AND KEANE, A. Engineering Design Via Surrogate 

Modelling: A Practical Guide. WileyBlackwell, 2008. ISBN 0470060689. 

47) FORRESTER, A. I. J., KEANE, A. J., AND BRESSLOFF, N. W. Design and Analysis 

of “Noisy” Computer Experiments. AIAA Journal 44, 10 (2006), 2331–2339. 

48) GHOSH, S., AND RAO, C. R. Design and Analysis of Experiments. Handbook of 

Statistics, vol. 13. Elsevier, 1996. ISBN 0444820612. 

54) GUTMANN, H. M. A Radial Basis Function Method for Global Optmization. Journal of 

Global Optimization 19 (2001), 201–227. 

59) HOLLAND, J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis 

with Applications to Biology, Control, and Artificial Intelligence. University of Michigan 

Press, 1975. ISBN 0262581116. 

60) HOLLAND, J. H. Genetic Algorithms. 

www.econ.iastste.edu/tesfatsi/holland.GAIntro.htm, 2005. 

61) HUANG, D., ALLEN, T. T., NOTZ, W. I., AND ZHENG, N. Global Optimization of 

Stochastic Black-Box Systems via Sequential Kriging Meta-Models. 

69) JONES, D. R. A Taxonomy of Global Optimization Methods Based on Response 

Surfaces. Journal of Global Optimization 21 (2001), 345–383. 

70) JURECKA, F. Robust Design Optimization Based on Metamodeling Techniques. Ph.D. 

Thesis, Technique Universit¨at M¨uchen, 2007. 

72) KEANE, A. J. Wing Optimization Using Design of Experiment, Response Surface and 

Data Fusion Methods. Journal of Aircraft 40, 4 (2003), 741–750. 

73) KEANE, A. J., AND NAIR, P. B. Computational Approaches for Aerospace Design: 

The Pursuit of Excellence. J. Wiley, 2005. ISBN 0470855401. 

78) KITANIDIS, P. K. Introduction to Geostatistics. Cambridge University Press, 1997. 

ISBN 0521583128. 

79) [KOK, S., AND SANDROCK, C. Locating and Characterizing the Stationary Points of 

the Extended Rosenbrock Function. Evolutionary Computation 17, 3 (2009), 437 – 

453. 



Page 162 
Copyright © 2024 University of Leeds UK. All rights reserved. 

80) KRIGE, D. G. A Statistical Approach to Some Basic Mine Valuation Problems on the 

Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South 

Africa 52, 6 (1951), 119–139. 

81) KRIGE, D. G. Letter to the Editor. Mathematical Geology 18, 5 (1986), 501–502. 

82) KRISHNAMURTHY, T. Response Surface Approximation with Augmented and 

Compactly Supported Radial Basis Functions. In Proceedings of the 44th 

AIAA/ASME/ASCE/AHS/ASC Conference (2003). AIAA-2003-1748. 

84) LAVENUE, A. M., AND PICKENS, J. F. Application of a Coupled Adjoint Sensitivity 

and Kriging Approach to Calibrate a Groundwater Flow. Water Resources Research 

28, 6 (1992), 1543–1569. 

85) LEARY, S., BASKAR, A., AND KEANE, A. J. A Knowledge-based Approach to 

Response Surface Modelling in Multifidelity Optimization. Journal of Global 

Optimization 26 (2003), 297–319.  

86) LEARY, S., BASKAR, A., AND KEANE, A. J. Global Approximation and Optimization 

Using Adjoint Computational Fluid Dynamics Codes. AIAA Journal 42, 3 (2004), 631– 

641. 

87) LEE, K.-H., AND LANG, D.-H. Structural Optimization of an Automotive Door Using 

the Kriging Interpolation Method. Proc. IMechE Part D. Journal of Automobile 

Engineering. 221, 12 (2007), 1525–1534. 

88) LIEFVENDAHLA, M., AND STOCKIB, R. A study on Algorithms for Optimization of 

Latin Hypercubes. Journal of Statistical Planning and Inference 136 (2006), 3231 – 

3247. 

92) MASON, R. L., GUNST, R. F., AND HESS, J. L. Statistical Design and Analysis of 

Experiments, with Applications to Engineering and Science. John Wiley & Sons, 1989. 

http://www.itl.nist.gov/div898/handbook/. 

93) MATHERON, G. Trait´e de G´eostatistique appliqu´ee. Tome I: M´emores du Bureau 

de Recherches Gologiques et Mini´eres, 14 (1962). 

98) MYERS, D. E. Letter to the Editor. Mathematical Geology 18, 7 (1986), 699–700. 

102) NARAYANAN, A., TOROPOV, V., WOOD, A. S., AND CAMPEAN, I. F. Simultaneous 

Model Building and Validation with Uniform Designs of Experiments. Engineering 

Optimization 39, 5 (2007), 497–512. 

103) NIST/SEMATECH. e-Handbook of Statistical Methods. 2006. 

http://www.itl.nist.gov/div898/handbook/. 

106) PAPALAMBROS, P. Y., AND WILDE, D. J. Principles Of Optimal Design. Modeling 

and Computation., 2nd ed. Cambridge University Press, 2000. ISBN 0521627273. 

108) PARK, K., OH, P.-K., AND LIM, H.-J. The Application of the CFD and Kriging Method 

to an Optimization of Heat Sink. International Journal of Heat and Mass Transfer 49 

(2006), 3439–3447. 

111) PHILIP, G. M., AND WATSON, D. F. Matheronian Geostatistics - Quo Vadis? 

Mathematical Geology 18, 1 (1986), 93–117. 

113) PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. 

Numerical Recipes in C++ : The Art of Scientific Computing, 3 ed. Cambridge 

University Press, 2007. ISBN 9780521866088. 

123) SACKS, J., WELCH, W. J., MITCHELL, T. J., AND WYNN, H. P. Design and Analysis 

of Computer Experiments. Statistical Science 4, 4 (1989), 409–423. 

125) SANTNER, T. J., WILLIAMS, B. J., AND NOTZ, W. I. The Design and Analysis of 

Computer Experiments. Springer, 2003. ISBN 0387954201. 



Page 163 
Copyright © 2024 University of Leeds UK. All rights reserved. 

129) SHEPARD, D. A Two Dimensional Interpolation Function for Irregularly Spaced Data. 

In Proceedings of the 23rd National Conference, Association for Computing Machinery 

(1968), pp. 517–523. 

130) SIMPSON, T., LIN, D., AND CHEN, W. Sampling Strategies for Computer 

Experiments: Design and Analysis. International Journal of Reliability and Application 

2, 3 (2001), 209–240. 

131) SIMPSON, T. W., MAUERY, T. M., KORTE, J. J., AND MISTREE, F. Comparison of 

Response Surface and Kriging Models for Multidisciplinary Design Optimization. In 

Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary 

Analysis and Optimization (1998). AIAA-98-4755. 

132) SIMPSON, T. W., MAUERY, T. M., KORTE, J. J., AND MISTREE, F. Kriging Models 

for Global Approximation in Simulation-Based Multidisciplinary Design Optimization. 

AIAA Journal 39, 12 (2001), 2233–2241. 

142) STEIN, M. L. Interpolation of Spatial Data. Some Theory for Kriging. Springer, 1999. 

ISBN 0387986294. 

143) SUN, W., AND XIANG YUAN, Y. Optimization Theory and Methods: Nonlinear 

Programming. Springer, 2006. ISBN 0387249753. 

144) SWAN, A. R. H., AND SANDILANDS, M. Introduction to Geological Data Analysis. 

Blackwell Science, 1995. ISBN 0632032243. 

148) TANCO, M., VILES, E., AND POZUETA, L. Comparing Different Approaches for 

Design of Experiments. In Advances in Numerical Engineering and Computational 

Science. Lecture Notes in Electrical Engineering (2009), vol. 139, Springer, pp. 611–

621. ISBN 9789048123117. 

149) TORN, A., AND ZILINSKAS, A. Global Optmization. Springer, 1987. ISBN ? 

150) TOROPOV, V. V., BATES, S. J., AND QUERIN, O. M. Generation of Extended Uniform 

Latin Hypercube Design of Experiments. Submitted (2007). 

151) [151] TOROPOV, V. V., SCHRAMM, U., SAHAI, A., JONES, R. D., AND ZEGUER, T. 

Design Optimization and Stochastic Analysis based on the Moving Least Squares 

Method. 6th World Congress on Structural and Multidisciplanary Optimization (2005). 

157) WHITTINGHILL, D. C. A Note on the Robustness of Box-Behnken Designs to the 

Unavailability of Data. Metrika 48, 1 (1998), 305–325. 

 

 

 

 


