Numerical Modelling using Python

Harvey Thompson

Page 1
Copyright © 2024 University of Leeds UK. All rights reserved.

1. Initial value problems

The first part of the module will introduce you to the most popular numerical methods used to solve
initial value problems (IVP). IVPs consist of a differential equation that describes how some quantity
changes over time (see examples below) and a given initial value.

1.1 Examples

1.1.1 Carbon dating

Carbon dating relies on the radioactive decay of 14N, a radioactive carbon isotope. The
method was invented by Willard F. Libby in 1949 and in 1960 he was awarded a Nobel prize
for his work. The decay (i.e. the rate of change with time of the number of atoms) is
proportional to the number of C14 atoms in the sample

Cia= —ACy (12)

Throughout these notes, a dot over a quantity means a derivative with respect to time, that is

8C14

Cia= =, (1.2)
and

;- a%c

C14 = T;A- (13)

In return, one N14 atom is generated out of each Ci14 atom which decays. Therefore,
Ny, =21C, (1.4)
The decay constant A is related to the half-life t via

_ loge(2)
T=— (1.5)

that is the shorter the half-life, the greater the decay constant. The half-life of C14 is T=5730
years so that A = 0.000121. Equation (1.1) is probably the most simple example of an ordinary
differential equation (ordinary means it only contains derivatives with respect to one variable,
time t in this example) and we can simply guess its solution

C14(t) = C14(0)e™ (1.6)
Remark 1
The model can obviously lead to fractions of atoms being present. How does this limit the

applicability of the decay model?

Note that we need an initial value C14(0) to find the solution at time t.

Page 2
Copyright © 2024 University of Leeds UK. All rights reserved.

Carbon dating

Carbon dating relies on the fact in living plants and animals, C14 atoms are constantly
replenished, keeping the ratio between radioactive C14 and non-radioactive C12 roughly
constant. After a plant or animal dies, this process of replenishment stops and decaying C14
atoms are no longer replaced, slowly changing the ratio over time. We denote the ratio
between Ci14 and C12 atoms as r(t) and set t=0 as the time the plant/animal died - at this time,
the ratio is equal to the atmospheric ratio which is roughly

_ Cu(0) _ 15
r(0) = no S Tom (1.7)

Then, while C12 does not change, Ci4 decreases according to Equation (1.6) so that

_ Ci4(t) _ C14(0) _ ¢t
r() = C12(t) C12(0)e (1.8)

So after we determine the ratio r(t) in e.g. an archaeological sample, we can compute its age t.
Let us say we find a ratio of

— Ca(® _ -12
r(t) = 45 =05x10 (1.9)

then we can solve for the age t by

—_1 W) o 1 1 ~
t= log, (r(O)) N o log, (3) ~ 9047 years (1.10)

Self-study. Write a simple python function that takes a measured ratio r(t) of C14 to C12 and
returns the time t.

1.1.2 Chemical batch reactor

Consider a chemical reactor where two species A and B react to form a species C.

The reaction is

A+ B ->nC (1.112)

Page 3
Copyright © 2024 University of Leeds UK. All rights reserved.

Concentration
-
o
(=}

Time
Figure 1.1: Solution of (1.12) with Python’s odeint solver in simple_reaction.py.

with a reaction rate constant k. In terms of concentrations Ca, Cs and Cc this reaction can be
modelled as

CA = _kCACB (1123)
Cy = —kC4Cz (1.12b)
CC = kCACB (112C)

Note that C; + C. = 0 and Cg + C, = 0 which means that
Ca(t) + Cc(t) = C4(0) + Cc(0), Cg(t) + Cc(t) = Cp(0) + Cc(0) (1.13)
corresponding to the fact that the total number of atoms stays the same -- mass is conserved.

Remark 2
Obviously, concentrations have to remain positive to make any sense. Not all numerical
methods guarantee this, however.

Self-Study
Figure 1.1 shows a solution of (1.12) for Ca(0)=2, Cg=1.0 and Cc=0.0 computed with Python's
odeint solver in the program simple_reaction.py. This code is given below:

simple_reaction.py

wnn
Solves an initial value problem modelling a simple chemical reaction
A + B --> C, with rate constant k

wnn

import numpy as np
from scipy.integrate import odeint

define the rhs function, f
def f(u,t,rate_constant):
return [-rate constant*u[0]*u[l],-rate constant*u[0]*u[l],rate constant*u[0]*u[l]]

rate constant = 1.0
tend = 10.0
Page 4
Copyright © 2024 University of Leeds UK. All rights reserved.

o N
o O O

u0 = [A 0,B 0,C 0]
np.linspace (0, tend, 1000)
odeint (f,u0, t,args=(rate_constant,))

A = ul:,0]
B =ul:,1]
C =ul:,2]

plot out results

import matplotlib.pyplot as plt
plt.plot(t,A,'r")
plt.plot(t,B,'b")
plt.plot(t,C,"'g")
plt.x1im([0,10])
plt.ylim([0,2])

plt.xlabel ('Time"')

plt.ylabel ('Concentration')
plt.legend(['A','B','C'])
plt.savefig('simple reaction.jpg"')

Does the solution make sense to you? Modify it to plot Ca(t)+Cc(t) and Cg(t)+Cc(t) over time.
What would you expect to see and is this what happens?

1.1.3 Non-Hookean mass-spring system
We consider a mass-spring system where a bob of mass m is attached to a spring with a spring

constant k. However, instead of linear Hooke's law, we use Duffing's model where the
restoring force is

Fresto = —k(x(t) + Bx3(t)) (1.14)

where x(t) is the displacement of the bob from its equilibrium and B some model parameter.
Friction is assumed to be linear and modelled via

Frriction = —bx(t) (1.15)

Allowing for an external force Fext(t), Newton's second law then reads

m#(t) = —k(x(t) + Bx3()) — b (L) + Foxe (£) (1.16)
We can introduce velocity v = x(t) as a variable to eliminate the second order derivative

w(t) = v(e); v(t) = = (x(6) + fxP()) = =v(6) + —Fore(t) (L17a, 1.17b)

For B=0 and Fex=0, we recover the equations for unforced linear harmonic motion

() = v(t); v(t) = ——x(t) ——v(t) (1.18a, 1.18b)
or, eliminating v(t) again,

mi(t) + bx(t) + kx(t) =0 (1.19)

Page 5
Copyright © 2024 University of Leeds UK. All rights reserved.

For the case with b=0, we can derive the exact solution by making an educated guess®. Let

x(t) = Asin(at) + Bcos(at) (1.20)
for some parameters A, B and a. First, compute
x(t) = v(t) = Aa cos(at) — Ba sin(at) (1.21)

and then

v(t) = —Aa?sin(at) — Ba? cos(at) = —%x(t) = —%A sin(at) — % B cos(at)

From that we can conclude that

a?=Xora= \/E (1.23)
m m

(1.22)

We still need to fix parameters A and B. Let xo and vo be the initial values given at t=0. Then,

x(0) =B =x, (1.24a)

v(0) =Aa =v, (1.24b)

so that B=xo and A=vo/a fixes the parameters. Figure 1.2 shows the exact and numerical
solution with odeint to the linearised problem (1.18) and the numerical solution to the

nonlinear pendulum (1.17). This is obtained by running the following program, springmass.py:

springmass.py

won

import numpy as np

from scipy.integrate import odeint

define the rhs function, f
def f(u,t,k,m):
return [ul[l],-(k/m)*ul[0]]

define the rhs function, fnonlinear
def f nonlinear (u,t,k,m,beta):
return [u[l],-(k/m)* (u[0] + beta* (u[0]**3))]

T = 10.0 # final time until which we compute
N = 100 # number of time steps

taxis = np.linspace(0,T,N+1)

k =5.0

beta = 0.1

m=1.0

compute frequency alpha for linear (Hookean) solution
alpha = np.sqrt (k/m)

initial values for position and velocity
x0 1.0
vO0 0.0

! The case b>0 allows a similar derivation using the complex exponential function.

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 6

u0

#
B
A

[x0,v0]

compute parameter A and B of exact linear pendulum

x0
v0/alpha

compute exact solution for linear pendulum
xexact = A*np.sin(alpha*taxis) + B*np.cos(alpha*taxis)

c %

use odeint to solve

np.linspace (0, T,N+1)
odeint (f,u0,t,args=(k,m,))

_nonlinear = odeint (f nonlinear,u0,t,args=(k,m, beta,))

plot out results
import matplotlib.pyplot as plt

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

plot(t,ul:,0],'bo")

plot (t,xexact, 'k-")

plot(t,u nonlinear([:,0], 'rx-")

x1im([0,107])

ylim([-1.1,1.1])

xlabel ('Time")

ylabel (r'θ"')

legend(['odeint', 'Exact linear', 'odeint nonlinear'])
savefig ('springmass.jpg"')

Question.

Figure 1.2 below shows a noticeable difference between the linear and nonlinear system.
Does that make the linear model wrong? Changing which parameters would improve
agreement between linear and nonlinear model? Run springmass.py to explore this.

o 0.00 4

100
0.75 1

0.50 4

0.25 -
® odeint

- Exact linear
= odeint nonlinear

-0.25 -
-0.50 A

-0.75 A

-1.00 -

Time

Figure 1.2 Exact (black) and numerical (blue) solution of the Hookean spring-mass system as
well as numerical solution of the nonlinear Non-Hookean system (red), obtained using

springmass.py.

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 7

General initial value problems: notation
We can introduce a general compact way to write down initial value problems

u(t) = f(u(t),t) (1.25)

where u(t) is a time-dependent vector containing all components of the system while f is what
is referred to as the right-hand-side function. For Equation (1.1) we would have

u(t) = (Cr4(t)) (1.26)

and

f(u(®) = £(Cra(t)) = —2C1, () (1.27)

Note that in this case u is not really a vector because it has only a single component. This
changes for the chemical reaction given by Equation (1.11). Here,

Ca(t)
u(t) = <c;‘@) (1.28)
Cc(t)
while f is a function that takes a vector u as argument and returns the vector
Ca(t) —k C4(£)CR(D)
flui) =f (cﬁ(@) = (—k CA(t)CB(t)> (1.29)
Cc(t) k CA(£)Cp(E)

Finally, for the mass-spring system given by Equation (1.17), we have

— (x®)
u(t) = (v(t)) (1.30)
and
®
flut :< v > 1.31
(u®) (O ~EBx3 (1)~ 20(0) 4L e (0) (31

While this notation may seem abstract at first, it will allow us to write down numerical
methods more generally, using the same notation independent of the problem we will apply
them to later.

Forward and backward Euler method
Most initial value problems will be too complex to be solved by hand. Therefore, we use
numerical methods to compute approximate solutions. Consider now the IVP in generic form

u(t) =f(u®),t), u(0)=uy (1.32)

Page 8
Copyright © 2024 University of Leeds UK. All rights reserved.

Instead of trying to find a continuous function u(t) that solves the differential equation at
every time t in some interval [0, T], a numerical method will construct a finite number of
approximate values at selected pointsintime: 0 =to<ti1 <t2<..<tn=T. Here, Nis the
number of steps we use and, for the sake of simplicity, we will assume that the distance
between two points is always the same, that is

At = the1 —t, (1.33)

foranyn=0, ..., N-1. We will denote approximations at a point in time t, delivered by a
numerical method with a superscript n, that is u" is an approximation of the exact solution
u(tn). Further, we will denote the error made by this approximation as

e = |[u" —u(t,)l| (1.34)

To compute the error, we need to know the exact solution u(t) so this will only be possible
when testing our algorithms for simple problems. Finally, we define the global error as the
largest value of e, over all time steps, that is

— n
e = max e 1.35
global 0<n<N ()

With this notation, we can now write down the forward or explicit Euler algorithm for the
generic IVP (1.32) as

u™l =y + Atf(u™, t,) (1.36)
Note how starting from the initial value up this rule iteratively generates a series of
approximate solutions u?, u?,... The method is called explicit because computing u™?! from u"
requires only evaluating f(u",t,) but not solving any linear or nonlinear equations. It also often

called the forward Euler method. This is because it can be derived by using a (forward) Taylor
expansion of the solution u(t) around t=t,

. the1—tn)? ..
W(tnar) = W(t) + (b — tDT(E) + 2 i) + 0 (137)

We ignore all terms except the first two on the right hand side and use that tn+1-th, = At and
that, because u solves the differential equation, u(t,) = f(u(t,),t,) to get

U(tnir) = uty) + At fQu(ty),) (1.38)

Starting this procedure from u(0)=uo and naming the resulting approximations u, results in the
forward Euler method (1.36).

The other type of Euler method is backward or implicit Euler

u™l =y + At f(w™,t,,,). (1.39)

Page 9
Copyright © 2024 University of Leeds UK. All rights reserved.

Here, computing u™?! from u" requires the solution of
u™l — At f(u™ 1 t,) =u™ (1.40)

which, depending on f, can be a linear or nonlinear problem. Note that for the radioactive
decay equation (1.1) (where u=C14 and f(u)= -A Ci4) this becomes

C{l4_+1 + Ath{L‘:—l = C]‘I.‘I.4 (1.41)

which can easily be solved to give

Cn
Chl = T (142)

However, solving Equation (1.40) by hand is only possible for very simple problems. In most
cases you will have to use some numerical procedure for that. Python offers the numpy.linalg
function for linear problems and the scipy.optimize fsolve command for nonlinear problems.
We will see examples later.

Figure 1.3 shows the approximate solution obtained with forward and backward Euler as well
as the exact solution in black, for the case with A=2 and N=10 time steps. The code used in
carbon_euler.py given below:

wuon

carbon_euler.py

mwwn

import numpy as np

T = 0.5 # final time until which we compute
N = 10 # number of time steps

taxis = np.linspace(0,T,N+1)

dt = T/N # length of each time step

2.0 # decay constant

r0 = 1.0 # ratio at t=0 to 1.0

preallocate two arrays to store all values computed with explicit and
implicit Euler - this will save a bit of time compared to appending a
value in each step. The 1 is because the number of components in case of
the decay equations is one.

rexp = np.zeros (N+1)

rimp = np.zeros (N+1)

first entry is the initial value r0 for both
rexp[0] = r0
rimp[0] r0

forward euler
for i in range (N):
rexp[i+l] = rexp[i] -dt*lam*rexp[i]

backward euler
for i in range (N):
rimp[i+l] = rimp[i]/ (1 + dt*lam)

plot out results

import matplotlib.pyplot as plt

plotl = plt.figure(l)

plt.plot (taxis, rexp, 'ro')

plt.plot (taxis, rimp, 'bo")

plt.plot (taxis, rO*np.exp(-lam*taxis), 'k-")
plt.x1im([0,0.57])

plt.ylim([0.3,1.0])

Page 10
Copyright © 2024 University of Leeds UK. All rights reserved.

plt.xlabel ('Time"')

plt.ylabel ('Cl4")

plt.legend(['Explicit Euler', 'Implicit Euler', 'Exact solution'])
plt.savefig('carbon euler.jpg')

to compute the error, we have to figure out the exact solutions at all
time points - note that taxis is a row vector whereas rexp, rimp are

column vectors, so we need to transpose taxis to match

rexact = np.transpose (rO*np.exp (-lam*taxis))

now compute error of forward and backward Euler at each step
errorexp = np.abs (rexp-rexact)

errorimp = np.abs (rimp-rexact)

plot2 = plt.figure(2)
plt.semilogy(taxis,errorexp, 'r')
plt.semilogy(taxis,errorimp, 'b")
plt.x1im([0.05,0.571)

plt.xlabel ('Time"')

plt.ylabel ('Error"')

plt.legend(['Explicit Euler',6 'Implicit Euler'])
plt.savefig('carbon euler2.jpg')

10

0.9 1 >
0.8 4

0.7 -

C14

0.6 4

0.5 -

0.4 -

® Explicit Euler
Implicit Euler

- Exact solution

03 T T T
0.0 0.1 0.2 03

Time

Figure 1.3: Approximations to the exact solution (black) of the radioactive decay equation

computed with explicit Euler (red) and implicit Euler (blue) for A=2 and N=10 time steps,

obtained by running carbon_euler.py.

Both methods seem to do a reasonably good job in approximating the real solution. This
changes drastically if we increase the decay rate A. Figure 1.4 shows the same experiment but
now for a value of A=50 (note the different scaling of the y-axis). Running carbon_euler.py
shows that Backward Euler still seems to provide a reasonable approximation, even though it

is very difficult to tell given the scaling of the figure.

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 11

60 R
@ Explicit Euler
® Implicit Euler
40 { =—— Exact solution
@
20
<)
- @
or———g—o—o—o—o—o—
)
20 - e
-40 : : : . £
0.0 0.1 0.2 03 0.4 0.5
Time

Figure 1.4: Approximations to the exact solution (black) of the radioactive decay equation
computed with explicit Euler (red) and implicit Euler (blue) for A=50 and N=10 time steps.

Forward Euler, however, clearly gives a very wrong result: instead of decaying, the number of
Ci4 atoms increases over time. It also oscillates between increasingly large positive and
negative values. The provided numerical solution is clearly completely useless.

Euler methods for the mass-spring system
If we apply forward Euler to (1.17) with m=1, b=0 and no external force we get

(o) = () o r (). t0) = () + 8t i “hgenys) 293

or, when writing the components individually,

x™l =x" 4+ At v (1.44a)
v = p™ — At (kx™ 4+ kB(x™)3) (1.44b)

Given values x", v" from the previous time step, this is straightforward to compute.

Deriving the backward Euler will be a bit more complicated. First, we can write out the implicit
Euler equation (1.40) for the nonlinear mass-spring system

n+1

() = () + (L nen” kﬁ(xnﬂ)g) (1.45)

This is a system of two equations for the two unknowns x™* and v™*! and because of the (x"*1)3
term, this system of equations is nonlinear. For now, we use Python's fsolve function to do it

Page 12
Copyright © 2024 University of Leeds UK. All rights reserved.

for us. Because fsolve can only solve problems of the form F(u)=0, we have to rewrite our
problem as

xn+1 — At U"+1 —x"
F(un+1) =Up+1 — At f(un+1: tn+1) —U, = (vn+1 + At (kxn+1 + k,[?(x"“)?’) _ vn) =0

(1.46)

with u=(x"*1,v"*1) (be careful, f and F are different functions, albeit closely related). Figure 1.5
shows the solution for both methods by running the following program: springmass_euler.py.

wun

springmass_euler.py

Solves the equation for the nonlinear spring-mass system with forward and
backward Euler methods

import numpy as np

from scipy.integrate import odeint

from scipy.optimize import fsolve

define the rhs function, fnonlinear
def f nonlinear(u,t,k,m, beta):
return [ul[l],-(k/m)*(u[0] + beta* (u[0]**3))]

define the function which needs to be solved at each implicit time step
def F(u,t,dt,i,u init):

return u - dt*np.array(f nonlinear (u, (i+1)*dt,k,m,beta)) - u init
T = 10.0 # final time until which we compute
N = 200 # number of time steps
taxis = np.linspace (0,T,N+1)
dt = T/N
k =5.0
beta = 0.1
m=1.0

compute frequency alpha for linear (Hookean) solution
alpha = np.sqrt(k/m)

initial values for position and velocity

x0 = 1.0
v0 = 0.0
u0 = [x0,v0]

allocate vectors to store solution; note that for the pendulum the vector u
has two components
u exp = np.zeros ([N+1,2])

u exp[0,:] = ul

define right hand side function; assume u = [x, v] so that u[0]=x,
u[l]l=v. % Note that we allow for an argument t that we do not really need, so that
we can reuse f later for the odeint function.

simple Forward Euler first

for i in range (N):
dudt = np.array(f nonlinear (u exp[i,:], (i+1)*dt, k,m, beta))
u expli+l,:] = u expl[i,:] + dt*dudt

solve with odeint
u_nonlinear = odeint (f nonlinear,u0,taxis,args=(k,m, beta,))

now Backward Euler
u_imp = np.zeros([N+1,2])

u imp[0,:] = u0
for i in range(N):
u init = u imp[i,:]
val = fsolve(F,u init,args=((i+l)*dt,dt,i,u init))
u imp[i+1l,:] = fsolve(F,u init,args=((i+1l)*dt,dt,i,u init))

plot out results

Page 13
Copyright © 2024 University of Leeds UK. All rights reserved.

import matplotlib.pyplot as plt
plt.plot(taxis,u exp[:,0],'c")
plt.plot(taxis,u imp[:,0],'b")
plt.plot(taxis,u nonlinear([:,0],"'k-")
plt.x1lim([0,101)

plt.ylim([-2.5,2.5])

plt.xlabel ('Time"')

plt.ylabel ('x")
plt.legend(['Explicit', 'Implicit', 'odeint'])
plt.savefig('springmass euler.jpg"')

- Explicit
— |mplicit
— odeint

-2

0 2 a 6 8 10
Time

Figure 1.5: Solution of nonlinear pendulum equation with forward (red) and backward (blue)
Euler and odeint (black) for reference, obtained using springmass_euler.py.

Both are not very satisfactory: implicit Euler causes the amplitude of oscillations to gradually
decrease over time until eventually not much oscillation happens at all. In contrast to what
should happen, the system has essentially come to rest. Forward Euler does the opposite: the
amplitude of the oscillations steadily increases, corresponding to a system that swings faster
and faster. Since the example does not include any external forces, this essentially generates
kinetic energy out of nothing and is thus a clearly unphysical solution.

Euler methods for linear spring-mass system.

Let us see how both Euler methods behave for the slightly simpler linear system following
Hooke's law where B=0. For forward Euler, we can use almost the same code as for the
nonlinear pendulum, we only need to slightly change the definition of the function f. For
implicit Euler, we can theoretically do the same and rely again on the fsolve function, but that
turns out to be very inefficient. Instead, notice that for =0 we can write f as

1) =Ce 20 = Camp) 07

That means we can write f as a matrix-vector multiplication. We denote the matrix as

a=(0 1) e

With that, the equation (1.40) we need to solve for backward Euler becomes

Uy —AtAU, =u, (1.49)

Page 14
Copyright © 2024 University of Leeds UK. All rights reserved.

or
(I-AtA)u,,; =u, (1.50)
with | being the identity matrix. We can obtain un+1 by solving
Uy = (T —AtA) T, (1.51)

For a general matrix M, using the numpy.linalg function in Python will return the solution of
the linear system of equations

Mx=b (152)

Figure 1.6 shows the resulting approximations obtained by running the following program,
springmass_linear_euler.py:

springmass_linear euler.py

Solves the equation for the linear spring-mass system with forward and
backward Euler methods

mwwn

import numpy as np

from scipy.integrate import odeint

define the rhs function for linear spring mass case
def f(u,t,A):
return np.matmul (A, u)

T = 10.0 # final time until which we compute
N = 200 # number of time steps

taxis = np.linspace(0,T,N+1)

dt = T/N

k =5.0

b =0.0

beta = 0.1

m= 1.0

define the matrix A
A = np.array([[0, 1], [-k, -bll)

initial values for position and velocity

x0 = 1.0
v0O = 0.0
u0 = [x0,v0]

allocate vectors to store solution; note that for the pendulum the vector u
has two components
u exp = np.zeros ([N+1,2])

u exp[0,:] = ul

define right hand side function; assume u = [x, v] so that u[0]=x,
ulll=v. % Note that we allow for an argument t that we do not really need, so that
we can reuse f later for the odeint function.

simple Forward Euler first
for i in range (N):
u expli+l,:] = u expli,:] + dt*f(u_expli,:], (1+1)*dt,R)

now Backward Euler
u_imp = np.zeros([N+1,2])

u imp[0,:] = ul
M = np.identity(2) - dt*A
for i in range (N):
u imp[i+1,:] = np.linalg.solve(M,u_imp[i,:])

Page 15
Copyright © 2024 University of Leeds UK. All rights reserved.

solve with odeint
u_odeint = odeint (f,u0l,taxis,args=(A,))

plot out results

import matplotlib.pyplot as plt
plt.plot(taxis,u exp[:,0],'c")
plt.plot(taxis,u imp[:,0],'b")
plt.plot(taxis,u odeint([:,0],'k-")
plt.x1im([0,10])

plt.ylim([-2.5,2.5])

plt.xlabel ('Time"')

plt.ylabel ('x")
plt.legend(['Explicit', 'Implicit’', 'odeint'])
plt.savefig('springmass linear euler.jpg')

- Explicit
— |mplicit
—— odeint

-1

=2

0 2 3 6 8 10
Time

Figure 1.6: Solution of the linearised spring-mass system with explicit (red) and implicit (blue)
Euler and the exact solution (black) for comparison, obtained using
springmass_linear_euler.py

Figure 1.6 shows the resulting approximations. The same issues are present as for the
nonlinear pendulum: explicit Euler spuriously increases amplitudes while backward Euler
damps them.

1.2 Stability

When applied to the Carbon dating equation (1.1), forward Euler becomes
ChHl =l —AtACH = (1 —AtA) Cl, (1.53)
If we apply this recursively, for some given starting value Co we get
CihHl = (1 - At)™ ¢, (1.54)
We can see that if
|1 —AtA|>1 (1.55)
the number of Carbon atoms C7}, in the numerical solution does not decay (as the exact
solution (1.6) suggests it should) but explodes, that is C{4, = o0 asn — o -- this is clearly very
bad. This is an example of a numerical instability, that is a case where the real problem is

stable but the numerical solution is not. However, we can see that if the time step At is small
enough such that

Page 16
Copyright © 2024 University of Leeds UK. All rights reserved.

|1 —-AtA]| <1 (1.56)
we get,
€y > 0asn—->o0 (1.57)

correctly mirroring the exact and physical solution. That means we need to choose the time
step At such that it satisfies the condition

At < % (1.58)

Therefore, explicit Euler is said to be conditionally stable, meaning that it is stable but only if
the time step is small enough. In contrast, for backward Euler, we have

n+l _ rn _ n+1 n+1 _ 1 n _ 1 \"
it =Cl—AACH > C = ——Cl = () G (159)

Since both At and A are positive, we have 1 + At A > 1.0 and thus

<() <1 0

Therefore, independent of what value we use for At, backward Euler always guarantees that

€y > 0asn—-oo (1.61)

always mirroring the correct asymptotic behaviour. Implicit Euler is said to be unconditionally stable.
Note, however, that the solution provided will still be terribly inaccurate for very large At. Stability only
guarantees that the solution does not blow up, it does not say anything about its accuracy.

Self Study

Use the example codes carbon_euler.py (given above) and carbon_euler_accuracy.py from the
‘Figl_8’ directory which implements forward and backward Euler for the radioactive decay equation.
carbon_euler_accuracy.py is given below.

wnn

carbon_euler_accuracy.py
Solves the decay equation with forward and backward Euler for a range of
time steps to analyse how the error decreases as we make dt smaller

LLRIR1]

import numpy as np

exact solution
def u_exact(t,r0,lam):
return rO*np.exp(-lam*t)

forward euler function
def exp euler (u0,Tend,nsteps,lam):
dt = Tend/nsteps
u = np.zeros (nsteps+1)
u[0] = ul
for i in range (nsteps):
u[i+l] = u[i] - dt*lam*u[i]
return u

Page 17
Copyright © 2024 University of Leeds UK. All rights reserved.

backward euler function
def imp euler (u0,Tend,nsteps,lam):
dt = Tend/nsteps

u = np.zeros (nsteps+l)

u[0] = ul

for i in range (nsteps):

uf[i+l] = u[i]/(1 + dt*lam)

return u
set up problem parameters

T=1.0 # time up to which we compute
lam = 1.0 # decay constant

r0 = 1.0 # set ratio at t=0
N = [1000,750,500,250,100,75,50,10]

allocate vectors to store for every run
err_exp np.zeros (len(N))

err imp np.zeros (len(N))

dts = np.zeros(len(N))

exact solution
taxis = np.linspace(0,T,N[0])
out = u_exact(taxis,r0,lam)

for n in range(len(N)):
taxis = np.linspace(0,T,N[n]+1)
u_exp exp euler(r0,T,N[n],lam)
u_imp imp euler(r0,T,N[n],lam)

stor the time step dt for plotting
dts[n] = taxis[l] - taxis[O0]

now compute the errors
err_exp[n] = max(np.abs(u_exp-u_exact(taxis,r0,lam)))
err_imp[n] = max(np.abs(u_imp-u exact(taxis,r0,lam)))

we fit a line log(err) = p*log(N) + C through the data points for
reasons that will become clear later

build 6th order fit to build data

p_exp = np.polyfit(np.log(dts), np.log(err_exp),1)

p_imp = np.polyfit(np.log(dts), np.log(err_imp),b1)

plot out results

import matplotlib.pyplot as plt

plotl = plt.figure(l)
plt.loglog(dts,err_exp, 'ro')
plt.loglog(dts,np.exp (np.polyval (p_exp, np.log(dts))),'r'")
plt.xlim([dts[0] ,dts[len(N)-1]])
figtext='Slope p='+str(round(p_exp[0],2))
plt.text(le-2,1e-3, figtext)
plt.xlabel(r'Δt')

plt.ylabel ('Error')

plt.legend(['Explicit Eulwer', 'Linear Fit'])
plt.savefig('carbon_euler_ accuracyl.jpg')

plotl = plt.figure(2)

plt.loglog(dts,err_imp, 'bo')

plt.loglog(dts,np.exp (np.polyval (p_imp, np.log(dts))),'b'")
plt.xlim([dts[0] ,dts[len(N)-1]])

figtext='Slope p='+str (round(p_imp[0],2))
plt.text(le-2,1e-3,figtext)

plt.xlabel (r'Δt')

plt.ylabel ('Error')

plt.legend(['Implicit Eulwer', 'Linear Fit'])
plt.savefig('carbon_euler_accuracy2.jpg')

Confirm that the solution of backward Euler always goes to zero, independent of the time step.
Confirm also that the value At = 2/|A| is the threshold at which forward Euler becomes unstable. What
happens directly at the threshold?

Complex coefficients

Page 18
Copyright © 2024 University of Leeds UK. All rights reserved.

Even though the interpretation as an equation modelling radioactive decay is no longer valid in that
case, it is instructive to look at the equation

y(t) =iay(t), y(0) =y, (1.62)

This looks like the decay equation (1.1) but with y(t) instead of C14 and a complex decay rate ia instead
of -A. It is easy to verify that the solution to this initial value problem is

y(t) = yoe'® (1.63)
If we apply forward Euler to (1.62), we get
y™tl = y" + Atiay™ = (1 + Atia)y™ (1.64)
From that it follows that
ly™*1| = |1 + Atial||y™] = /12 + (Ata)?|y"| = V1 + At2a?|y"| = (\/1 + Atzaz)nlyol (1.65)
Because 1 + At%a? > 1, we have
(Vi+aZa?)" »wasn—>o (1.66)

independent of the time step At. This means that forward Euler applied to (1.62) is unconditionally
unstable because no matter what time step At > 0 we choose, we get a series of discrete
approximations y" with absolute values going toward infinity, that is

|y™| - oc0asn— o (1.67)
This very much resembles what we diagnosed for the energy when using forward Euler for the spring-
mass system and we will see that there is a very close relation. Using a similar argument with slightly
more complex arithmetic, one can show that the situation is reversed for backward Euler applied to
(1.62). Here, we get

ly"| > 0asn—- oo (1.68)

for any time step At > 0.
1.2.1. Stability of forward and backward Euler for the mass-spring system
We will first analyse the stability of the Euler methods for the linear, unforced, undamped mass-spring

systems by analysing how both methods deal with energy. First, note that for b=m=F.=0, equation
(1.17) simplifies to

x(t) = v(b); v(t) = —%x(t) (1.69a, 1.69b)
The kinetic energy of the system is given by

Exin(t) = 3mv*(t) (1.70)

Page 19
Copyright © 2024 University of Leeds UK. All rights reserved.

and its potential energy by
Epoc(t) = Skx?(t) (L.71)
Its total energy therefore is
E(t) = Exin(t) + Epoe(t) = smv2(t) +2kx?(t) (1.72)
Note that E(t) is conserved in the sense that
E(t) = mu(0)i(t) + kx()%(t) = my(6) (- (5) x(0) + kx(v(t) =0 (1.73)
That is, if o, Vo are the initial position and velocity, we have
E(t) = E(0) = smvg +>kx¢ (1.74)
at any time t. The advantage of energy is that we can quantify the energy error of a numerical solution
without having to have access to the exact solution. Let x", v" be the approximations to position and

velocity provided by some numerical scheme at time t,, as before. Then, we can define the discrete
energy as

EM = %k(x”)z + §m(un)2 (1.75)

Because x° = xo and v° = v (since a numerical scheme will always start from the provided initial values),
we have E°=E(0). We can then compute the energy error

_ |E"-E°]

eg%ergy = T go (1.76)

If a numerical scheme were to conserve energy exactly, we would get €"energy=0 forall 0 <n < N.
Figure 1.7 shows the energy and energy error for forward Euler, backward Euler and Python's odeint,
obtained by running oscillator.py, which is given below.

wun

oscillator.py

Solves the oscillator problem using forward and backward Euler methods
import numpy as np

from scipy.integrate import odeint

define the rhs function for linear oscillator
def f(u,t,b,k,m,F,Omega) :
return [u[l],-(1/m)* (k*u[0] + b*u[l]) + F*np.cos(Omega*t)]

forward euler function

def forward euler(f,x0,Tend,nsteps,b,k,m,F,Omega) :
dt = Tend/nsteps
y = np.zeros ([nsteps+1,2])

y[0,:] = %0
for i in range (nsteps):
t = i*dt

y[i+l,:] = y[i,:] + dt*np.array(f(y[i,:],t,b,k,m,F,Omega))
return y

backward euler function

Page 20
Copyright © 2024 University of Leeds UK. All rights reserved.

def backward euler (f,x0,Tend,nsteps,b,k,m,F,Omega) :

define the matrix for the oscillator problem in vector form
define the matrix A
dt = Tend/nsteps
A = np.array([[0, 1], [-k/m, -b/m]])
M = np.identity(2) - dt*A
y = np.zeros ([nsteps+1,2])
y[0,:] = x0
for i in range (nsteps):
y[i+l,:] = np.linalg.solve(M,y[i,:])

return y
physical properties of the oscillator
k=1.0 # spring constant
b=20.0 # damping
m=1.0 # mass
F=0.0 # amplitude of cosine forcing
Omega = 0.5 # frequency of cosine forcing

initial values for position and velocity
x0 = 1.0

v0 = 0.0

u0 = [x0,v0]

final time and number of time steps
Tend = 50.0 # final time until which we compute
nsteps = 1000

taxis = np.linspace(0,Tend,nsteps+1l)
dt = Tend/nsteps

initial values for position and velocity
x0 = 1.0

v0 = 0.0

u0 = [x0,v0]

solve with odeint
y_odeint = odeint(f,u0,taxis,args=(b,k,m,F,Omega,))

solve with backward euler
y_ie = backward euler (f,u0,Tend,nsteps,b,k,m,F,Omega)

solve with forward euler
y_ee = forward euler(f,u0,Tend,nsteps,b,k,m,F,Omega)

plot out positions for all solutions
import matplotlib.pyplot as plt

plotl = plt.figure(l)

plt.plot(taxis,y ee[:,0],'xr")
plt.plot(taxis,y ie[:,0],'b")
plt.plot(taxis,y_odeint[:,0],'k-")
plt.x1im([0,50])

plt.ylim([-4,4])

plt.xlabel ('Time"')

plt.ylabel('x"')
plt.legend(['Explicit', 'Implicit', 'odeint'])
plt.savefig('oscillatorl. jpg')

compute the total, potential and kinetic energy over time
E pot = 0.5*y odeint[:,0]**2

E kin 0.5*y_odeint[:,1]**2

E_tot E pot + E_kin

plot2 = plt.figure(2)
plt.plot(taxis,E_pot,'r')
plt.plot(taxis,E_kin,'b'")
plt.plot(taxis,E_tot, 'k-")

plt.x1im([0,50])

plt.ylim([0,0.6])
plt.legend(['Potential’', 'Kinetic', 'Energy'])

plot out the energy over time
E ie = 0.5*k*y ie[:,0]1**2 + 0.5*m*y _ie[:,1]**2
E ee = 0.5*k*y ee[:,0]**2 + 0.5*m*y ee[:,1]**2

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 21

plot3 = plt.figure(3)

plt.plot(taxis,E_pot+E_kin, 'k-")
plt.plot(taxis,E_ie,'b')

plt.plot(taxis,E ee,'r-")

plt.x1im([0,50])

plt.ylim([0,7])

plt.legend(['odeint', 'Implicit Euler', 'Forward Euler'])

— pdeint
& 4 = Implicit Euler
— Forward Euler

D T T T T
0 10 20 30 a0 50

Figure 1.7: Energy for the linear mass-spring system for forward Euler, backward Euler and Python's
odeint solver, obtained using oscillator.py.

In line with the results we saw previously, forward Euler does indeed artificially generate energy out of
nothing. Its energy error grows rapidly and without bound. In contrast, backward Euler continuously
loses energy. Note that its energy error remains bounded because eventually the numerical solution
will approach the resting state with zero energy, at which point the energy error

0—E°
e;lnergy = | 7O | =1 (1.77)

We can back up this observation with mathematical analysis. Forward Euler applied to system (1.69)
reads, in components,

x™ = x™ 4 At v
Atk

= p — X"
m

vn+1

Using definition (1.75) of the discrete energy, we can compute

2ENt1 — m(vn+1)2 + k(xn+1)2
2
=m (v" - At(%)x”) + k(x™ + Atv™)?
(Atkx™)? ny2 no,n ny2
T+ k(x™)“ + 2kAtx™v™ + k(Atv™)

+ k(v")z) > 2E™

=m@w")? — 2kAtv™x™ +
— n 2 ((kx™)?
= 2E™ + (At) (=

Page 22
Copyright © 2024 University of Leeds UK. All rights reserved.

That is, instead of conserving energy from time step to time step, forward Euler adds (because C">0) a
small amount of energy in every time step. While we recover energy conservation in the limit At -> 0,
for any finite time step At > 0, energy will always increase over time. When applied to the mass-spring
system, forward Euler is unconditionally unstable.

To analyse backward Euler, we need to use the matrix representation

6 D-ae(%) =) we

where we set k = m = 1 for simplicity. The matrix in the system has the inverse

-1

(Alt _1At) :1+(1At)2(_1At Alt) (1.79)

so that

()= (Che) a0

Written in components, this becomes

x™1 = ﬁ (x™ + Atv™) (1.81)
pn+l = 1+(1M)2 (v — Atx™) (1.82)

We can now compute the discrete energy again.

2EN+1 — (xn+1)2 + (vn+1)2

= —(1+(A1t)2)2 [(x™ + Atv™)? + (v™ — Atx™)?]

B m (™2 + 288 xmvm + (Atv™)? + (V)2 - 288 X" + (Atx™)? |

= oo [2E™ + (At)?E™]
— n
1+(At)?

Because in every numerical simulation we have At > 0, we have 1/(1+(At)?) < 1 so that for every step
E"1 <E™ (1.83)

As seen in the numerical experiment, backward Euler continuously loses energy. While we get E™!=E"
in the limit At->0, in every real simulation with a finite time step, backward Euler does not conserve
energy. Therefore, as for the decay equation, backward Euler is unconditionally stable when applied to
the mass-spring system. As seen, however, it is in a sense too stable: the loss of energy means that it
will only provide useful numerical approximations over a relatively short time window.

1.2.2 Stability and eigenvalues
We can link the instability of forward Euler for the mass-spring system to the instability for the
imaginary test problem. As we saw above, we can write the linear mass-spring system as

Page 23
Copyright © 2024 University of Leeds UK. All rights reserved.

a(t) = Au(t) (1.84)

with the matrix A defined in (1.48). By finding its eigenvalues and eigenvectors, we can compute the
eigendecomposition

A=0rQ ' (1.85)

with
0= (iw/m/k —iw/m/k> (1.86)
1 1
and

s = <_i” kfm 0 > (1.87)
0 ivk/m

Using this, the linear mass-spring system becomes
Q lu(t) =xQ tu(t) (1.88)
after multiplication with Q1. Define the transformed solution in eigencoordinates as
z() = Q7 tv(t) (1.89)
It satisfies the differential equation
z(t) = Zz(t) (1.90)

or, written in components z(t)=(z1(t),z2(t)),

Zl = _l\/ézl(t) (1913)

We can make two observations: first, in eigencoordinates the equations for both components are
decoupled. z;(t) evolves independently of z;(t) and vice versa. For both components, the resulting
equations have the form of the complex scalar test equation (1.62) for which we know forward Euler to
be unstable. Therefore, we can explain the instability of forward Euler for the linear mass-spring
system by the fact that the matrix A has imaginary eigenvalues which gives rise to equations (1.91) in
eigencoordinates for which we know forward Euler to be unstable.

1.3 Accuracy

Stability helps us to see if a method fails catastrophically, like forward Euler for the oscillator.
However, even a stable method does not necessarily guarantee accurate results. Therefore, we will
now investigate how the global error, e, of a method decreases as we make the time step smaller.

Page 24
Copyright © 2024 University of Leeds UK. All rights reserved.

Of course, any reasonable numerical method should retrieve the correct solution in the limit At->0.
Because very small time steps will translate into high computational cost, using an arbitrarily small step
is not an efficient strategy.

1.3.1 Error and order of accuracy

The order of accuracy p of a time stepping method describes how the error is reduced as the time step
At is made smaller. Here, error denotes how far from the exact solution the approximate solution
provided by the method is. For example, for the radioactive decay problem, the exact solution was

C(t) = Coe? (1.92)

If C1 = C(At), C; = C(2At) etc. be approximations of the exact solution produced e.g. by a forward Euler
method. The error at the end of the simulation would then be

eglobal(At) = nLnlaXNlclnzl — C14(tn)| (1.93)

compare for (1.35). Note that we make the dependence of egonal ONn At explicit now, because we will
study systemically how it changes with time step length. Figure 1.8 shows the error from explicit Euler
(left) and implicit Euler (right) when applied to the decay equation with N time steps, that is a time
step At=1/N. Note that both the x- and y-axis are scaled logarithmically. Figure 1.8 is generated by
running carbon_euler_accuracy.py, given below.

® Implicit Eulwer
—— Linear Fit

® Explicit Eulwer
—— Linear Fit

102

Error
Error

10-3 Slope p=1.01 103 Slope p=0.99

Figure 1.8: Error of forward Euler (left) and backward Euler (right) depending on the number N of time
steps, obtained using carbon_euler_accuracy.py.

wnn

carbon_euler_accuracy.py
Solves the decay equation with forward and backward Euler for a range of
time steps to analyse how the error decreases as we make dt smaller

wnn

import numpy as np

exact solution
def u_exact(t,r0,lam):
return rO*np.exp(-lam*t)

forward euler function
def exp euler (u0,Tend,nsteps,lam):
dt = Tend/nsteps
u = np.zeros (nsteps+1)
u[0] = ul
for i in range (nsteps):
u[i+l] = u[i] - dt*lam*u[i]
return u

Page 25
Copyright © 2024 University of Leeds UK. All rights reserved.

backward euler function
def imp euler (u0,Tend,nsteps,lam):
dt = Tend/nsteps
u = np.zeros (nsteps+l)
u[0] = ul
for i in range (nsteps):
u[i+l] = u[i]/(1 + dt*lam)
return u

up problem parameters
time up to which we compute
.0 # decay constant
=1.0 # set ratio at t=0
= [1000,750,500,250,100,75,50,10]

[l =]

allocate vectors to store for every run
err_exp = np.zeros (len(N))

err _imp = np.zeros(len(N))

dts = np.zeros(len(N))

exact solution
taxis = np.linspace(0,T,N[0])
out = u_exact(taxis,r0,lam)

for n in range(len(N)):
taxis = np.linspace(0,T,N[n]+1)
u_exp exp euler(r0,T,N[n],lam)
u_imp imp_euler (r0,T,N[n],lam)

stor the time step dt for plotting
dts[n] = taxis[l] - taxis[0]

now compute the errors
err _exp[n] = max(np.abs(u_exp-u_ exact(taxis,r0,lam)))
err_imp[n] = max(np.abs(u_imp-u_ exact(taxis,r0,lam)))

we fit a line log(err) = p*log(N) + C through the data points for
reasons that will become clear later

build 6th order fit to build data

p_exp = np.polyfit(np.log(dts), np.log(err_exp), 1)

p_imp = np.polyfit(np.log(dts), np.log(err_imp),b1)

plot out results

import matplotlib.pyplot as plt

plotl = plt.figure(l)
plt.loglog(dts,err_exp, 'ro')
plt.loglog(dts,np.exp (np.polyval (p_exp, np.log(dts))),'r")
plt.xlim([dts[0] ,dts[len(N)-1]])
figtext='Slope p='+str (round(p_exp[0],2))
plt.text(le-2,1e-3, figtext)

plt.xlabel (r'Δt')

plt.ylabel ('Error')

plt.legend(['Explicit Eulwer', 'Linear Fit'])
plt.savefig('carbon_euler_ accuracyl.jpg')

plotl = plt.figure(2)

plt.loglog(dts,err_imp, 'bo')

plt.loglog(dts,np.exp (np.polyval (p_imp, np.log(dts))),'b')
plt.xlim([dts[0] ,dts[len(N)-1]1])

figtext='Slope p='+str (round(p_imp[0],2))
plt.text(le-2,1le-3,figtext)

plt.xlabel (r'Δt')

plt.ylabel ('Error')

plt.legend(['Implicit Eulwer', 'Linear Fit'])
plt.savefig('carbon_euler_accuracy2.jpg')

Self-study
Use carbon_euler_accuracy.py and redo the plots without the logarithmic axes scaling. Why is this not
a particularly useful way to visualise the error?

For comparison, a straight line

Page 26
Copyright © 2024 University of Leeds UK. All rights reserved.

loge (eglobal(At)) =Pp loge(At) t+a (1-94)

is fitted through the data, using Python's numpy polyfit function. Clearly, the obtained data points line
up excellently with the fit which has a slope of approximately p=1. Applying the exponential function
on both sides yields

elo!]e(eglobal(At)) = (eloge(At))pea (195)

or
egiobar (At) = C (AL)P (1.96)

with C = e®>0.

Remark 3.

Using carbon_euler_accuracy.py to produce a plot like the ones in Figure 1.8 to verify that a method
gives the expected order of accuracy is one good way to validate that a method has been correctly
implemented.

This motivates the following definition.

Definition 1
A numerical method is said to be of order p if its error is proportional to (At)®?, that is

€global (At) < C(At)p (1.97)

for some positive number C>0 that does not depend on At. From our observation above, we can
conclude that both Euler methods are first order accurate, that is they satisfy (1.97) with p=1. Note
that for a method of order p, reducing the time step by half results in

At (At)P
€global (7) ~C 2D

1
=~ z_peglobal(At) (198)

Therefore, for a first order method with p=1, halving the time step will also reduce the error by half.
For a second order method with p=2, halving At will reduce the error by a factor of 4. For p=3, it will
reduce the error by a factor of 8 and so on.

A simple method with order better than one is Heun's method. It relies on a forward Euler predictor
step

UM =yt + At f(utt,) (1.99)
but then follows that up with a second step
u™tt =yt + 2 (Fut ty) + F(E b)) (1.100)

In terms of computational cost, Heun's method is roughly twice as expensive as a forward Euler step,
because it has to evaluate the right hand side function f twice whereas Euler has to evaluate it only

Page 27
Copyright © 2024 University of Leeds UK. All rights reserved.

once. However, because the error decays much faster as At becomes small because of the higher
order, Heun's method can be more efficient than forward Euler.

Using carbon_euler_heun_workprecision.py, given below, Figure 1.9 shows the error achieved by
forward Euler and Heun's method depending on the total number of evaluations of f required.

10-2 - -&~ Explicit Euler
—&— Heun's method

10-3 4 Slope p=-1.01
1074 +

3

v
1072 +
10-5 . Slope p=-2.01
1077 5

10! 10? 10°

Workload
Figure 1.9: Error versus number of evaluations of the right hand side function f for forward Euler and
Heun’s method, obtained using carbon_euler_heun_workprecision.py.

Note that the x-axis now shows total computational work measured in how often the method has to
evaluate the right hand side function f.

carbon_euler_heun_workprecision.py

wnn

carbon_euler heun workprecision.py
Solves the decay equation with forward and backward Euler for a range of
time steps to analyse how the error decreases as we make dt smaller

wnn

import numpy as np

FHEHA A AR A AR AR ES A AR AR AR A A
Functions
FHEH AR H AR AR A A R A
exact solution
def u exact(t,r0,lam):

return rO*np.exp (-lam*t)

forward euler function

def exp euler (u0,Tend, nsteps,lam) :
dt = Tend/nsteps
u = np.zeros (nsteps+l)

ul0] = u0
for i in range (nsteps):
uli+l] = uli] - dt*lam*u[i]

return u

backward euler function

def imp euler (u0,Tend, nsteps,lam) :
dt = Tend/nsteps
u = np.zeros (nsteps+l)

uf0] = u0
for i in range (nsteps):
uli+l] = uli]l/ (1 + dt*lam)

return u

Page 28
Copyright © 2024 University of Leeds UK. All rights reserved.

function definition of time derivative
def f(u,lam):
return -lam*u

heun's method
def heun (u0, Tend,nsteps, lam) :
dt = Tend/nsteps
u = np.zeros (nsteps+l)
uf0] = u0
for i in range (nsteps):
utemp = u[i] + dt*f(u[i],lam)
uli+l] = ufi] + 0.5*dt*(f(uli],lam) + f(utemp,lam))

return u
5 i

set up problem parameters

= 1.0 # time up to which we compute
am = 1.0 # decay constant

0=1.0 # set ratio at t=0

= [1l000,750,500,250,100,75,50,10]

allocate vectors to store for every run
err exp = np.zeros(len(N))
err heun = np.zeros(len(N))

Instead of dt, we now store the workload, measured in the number of times
that a method has to evaluate the right hand side function

workload exp = np.zeros (len(N))

workload heun = np.zeros(len(N))

for n in range(len(N)):
taxis = np.linspace(0,T,N[n]+1) # add +1 to account for t=0
u_exp = exp_euler(r0,T,N[n],lam)
u_heun = heun(r0,T,N[n],lam)

stor the time step dt for plotting
workload exp[n] = N[n]
workload heun[n] = 2*N[n]

now compute the errors
err exp[n] = max(np.abs(u exp-u exact (taxis,r0,lam)))
err heun[n] = max(np.abs(u _heun-u exact (taxis,r0,lam)))

Find slope of lines for Euler and Heun's method
p_exp = np.polyfit(np.log(workload exp), np.log(err exp),1)
p_heun = np.polyfit (np.log(workload heun), np.log(err heun),1)

plot out results

import matplotlib.pyplot as plt

plotl = plt.figure(l)
plt.loglog(workload exp,err exp, 'ro-'")
plt.loglog(workload heun,err heun, 'go-')
txt exp='Slope p='+str(round(p_expl[0],2))
plt.text(7e2,1le-3,txt exp)

txt heun='Slope p='+str (round(p_heun[0],2))
plt.text (7e2,1le-6,txt heun)

plt.xlabel ('Workload')

plt.ylabel ('Error')

plt.legend(['Explicit Euler', 'Heun\'s method'])
plt.savefig('carbon euler precision.jpg')

However, because workload grows as time step At shrinks, the lines are now sloping in the opposite
direction compared to Fig 1.8 and values for p are now negative. The first important observation is that
Heun's method does indeed provide a line with a slope of p=2, in contrast to forward Euler with p=1.
This confirms that it is indeed second order accurate. Furthermore, Heun's method is clearly more
efficient than forward Euler. If, say, a precision of egobal(At) < 10 were required, Heun's method can
deliver this with 20 evaluations of f whereas forward Euler would need around 200, that is ten times
more. This motivates the search for methods that have a higher order of accuracy.

Page 29
Copyright © 2024 University of Leeds UK. All rights reserved.

1.4 Modelling Homogeneous Chemical Reactions in CO2 pipeline corrosion

Dissolved CO; in pipeline systems leads to corrosive attack of the pipeline due to formation of Carbonic
Acid and associated reactions.

NOTE: The reaction rate constants below are not all expressed in terms of the Sl units, so when these
equations are finally solved, these have been converted for concentrations written in terms of the SI
units, mol/m3. In the code example, all reaction rate constants are taken from the paper: S. Nordsveen,
S. Nesic, R. Nyborg, A. Stangeland. A mechanistic model for carbon dioxide corrosion of mild steel in the
presence of protective iron carbonate films — part 1: theory and validation, Corrosion, vol. 59(5), 2003,
443-456, table 2, p 447.

The reactions are summarised by the following steps.

Step 1: Dissolution of CO»

The dissolution of CO2 in water is represented by the reaction:
C0,(g) © CO, (aq) (1.101)

The partial pressure of CO2 enables the initial concentration of CO2 (aq) to be calculated via:

C
Kep = % (1.102)
2

where c¢, is the concentration of dissolved CO: in moles/litre and pcoz is the partial pressure of CO: in bar. There
are numerous possible expressions that can be used for Ksol but here the following expression is used for Ksol with
units moles/(litre. bar):

14.5
1.00258

Koo = 10°*P where exp = —(2.27 + 0.00565T; — 8.06 x 10~°T? + 0.075I) (1.103)

where Tris the temperature in degrees Fahrenheit and | is the ionic strength in moles/litre.

The ionic strength, |, of the electric field in a solution, is equal to the sum of the molarities of each type of ion
present multiplied by the square of the charges.
1 n
I = EZ ciziz
i=1

where ci= molar concentration of ion i (mol/litre) and zi = charge number of ion i.

Example: To calculate the ionic strength of 0.05M Na>S04 and 0.02M KCI solution:

/[Na2504] X (#Na ions) x (charge of Na ion)? +\
- 1f [Na,S0,] x (#S0, ions) x (charge of SO, ion)*

2 + [KCI] x (#K ions) X (charge of K ion)? +

\ [KCl] x (#Clions) x (charge of Clion)?)

0.05 x2x 1%+

1[0.05 x1x (=2)2
I == =017M
21 +0.02 x1x1%+

0.02 x1x(-1)2
In the code example solved here 1=0.1711 and Ts=68°F.

Combining the above equations yields an estimate for the initial concentration of CO3, cy,¢o,, in Sl units:

Page 30
Copyright © 2024 University of Leeds UK. All rights reserved.

CC02 = 1000 KSOlpCOZ (1104)

Step 2: Carbonic Acid Hydration

The carbonic acid hydration reaction is given by:
€0, + H,0 & H,CO4 (1.105)

The rate of production of carbonic acid, H2COs3, is given by the following differential equation:

d
Ry,co, = E(CHZCO;;,) = K hyCco,Cry0 — Ko ny Chyco, (1.106)

In terms of the forward reaction rate Kiny and backward reaction rate, Kuny. In practice, carbonic acid never
represents more than 1% of the total dissolved CO2 as Kpny >> Kihy. Here, we assume that

Kpy = % = 0.00258 (1.107)

b,hy
is independent of temperature. The forward reaction rate constant, Ky p,,, is given by

14.5
1.00258

10°% where exp = (329.85 — 110.541l0g,o(Ty) — (”265'4)) (1.108)

Kf,hy = Ty

Combining the latter two equations yields the following estimate of the initial value of ¢y, o, (in Sl units) is given
by:

CHyco; = 1000 Kpy Ksoipco, (1.109)

In the code example solved here Tk=293.15K.

Step 3: Carbonic Acid Dissociation

The carbonic acid dissociation reaction is given by:
H,CO; & HY +HCO; (1.110)

In terms of the forward reaction rate Ksca, and the backward reaction rate Ky,ca the rate of production of H,COs is
given by:

d
Ry,co, = 5(CHZCO3) = —(Kf.ca Chyc0; — KbcaCu+Chcos) (1.111)
Here we use the expressions:
Kica= 10°° s, where exp=5.71+0.0526Tc-2.94x10*T2+7.91x107 TS (1.112)

in terms of the temperature in degrees Celsius, Tc. The steady-state value is taken to be

Koq = -2 = 387.6 x 10~ molar (1.113)
Kb,ca

where exp=(6.41-1.594x103T¢++8.52x10°T2-3.07x10°p-0.47721°5-0.118l) in terms of pressure p (in psi), ionic
strength | in molar and T, the temperature in degrees Fahrenheit.

In the code example solved here Tc=20°C, p=14.9 psi, 1=0.1711 and Ts=68°F.

Step 4: Bicarbonate lon Dissociation

Page 31
Copyright © 2024 University of Leeds UK. All rights reserved.

This reaction is given by:
HCO; & H™+C03~ (1.114)
and leads to the differential equation
Rucoy = % (cucoy) = —(Kfpi Cucoy — Kppicu+ccoz-) (1.115)
in terms of the forward reaction rate Kspi, and backward reaction rate Ky,»i. Here,

Ky = Xrbi — 10°% molar (1.116)
Kbp,bi

where
exp=-(10.61-4.97x103T¢+1.331x105T-2.624x105p-1.1661°5+0.34661). (1.117)
The forward reaction rate: Krpi=10°s is assumed to be independent of temperature.

In the code example solved here p=14.9 psi, 1=0.1711 and T=68°F.

Step 5: Water Dissociation

The water dissociation reaction is given by:
H,0 & H*+OH~ (1.118)

The rate of production of H,0 is given by

d
Ry,0 = E(CHZO) = —(KrwaCh,0 = KpwaCu+Con-) (1.119)

In terms of the forward reaction rate constant, K rwa, and the backward reaction rate constant K pwa. The rate of
production of H* ions, R4*, and OH" ions, Row’, from this reaction are given by

Ry+ = Roy- = —Rp,o. (1.120)
K,,, = 107%*? molar?, where exp =(29.3868-0.0737549Tx+7.47881x10° T¢?)
in terms of the absolute temperature in Kelvin, Tk.

The backward reaction rate constant, Kuwa is independent of temperature and takes the value Kpwa=7.85x10°M1s"
1. This enables the forward reaction rate constant, Krwa to be determined from

Krwa = Kwa X Kpywe (1.121)

In the code example solved here Tx=293.15K.

Step 6: Charge Balance

The final relationship is obtained by the assumption of charge balance throughout the bulk liquid hence
CH+ = CHCO?,_ + ZCCOP%_ + COH_ (1.122)

The final set of equations are obtained by adding up all the reaction rates across all the reaction equations.

Total Reaction Rate of CO:

Page 32
Copyright © 2024 University of Leeds UK. All rights reserved.

COzoniy reacts via carbon dioxide hydration, hence

d
Rco, = —Ry,co, = E(Ccoz) = (Kpny Cuyco; — Kfny€co,Chy0) (1.123)

Total Reaction Rate of H.CO3

H2COs reacts via carbon dioxide hydration and carbonic acid dissociation. Hence,

dc
__HzCO03 __
RH2c03 =——= Koy Cuyco; — KrnyCco,C0) = (Krca Cryco5 — KpeaCu+Crcoy) (1.124)

Total Reaction Rate of HCO3 ions

HCO3 ions are created by carbonic acid dissociation and bicarbonate ion dissociation. Hence,

dcycogz
- 3 —
Ryco; = Py (Kf,ca CH,cO53 — Kb,caCH‘fCHcog) = (K¢ pi Ccoy; — KppiCh+Cooz-) (1.125)

Total Reaction Rate of CO3™ ions

CO%~ ions are only created by bicarbonate ion dissociation. Hence,

dcco%_

dt

Reoz- = = (Kf i Cuco; — Kppicu+ccoz-) (1.126)

Total Reaction Rate of OH ions

OH~™ ions are only created by water dissociation. Hence,

dCOH—
Rop- =
OH dt

= _RHZO = Kf,waCHzO — KpwaCu+Con- (1.127)

Total Reaction Rate of H* ions

H* ions are created by carbonic acid dissociation, bicarbonate ion dissociation and water dissociation. Hence,

dc +
— HY _
Ry+=——= (Kfca Crico, — Kb caCutCrcos) + (Kf,bi Chco; — Kb,szH+Cco§—) + (KrwaCuyo0 —

KﬁwaCH+COH_) (1128)

Numerical Solution of the Chemical Equations
Introducing the chemical concentrations in Sl units (mol/m3):

X1 = Ccoyr X2 = CHyc050 X3 = CHCO3» X4 = Cco2- X5 = Cop=rXe = Cy+
and

—K - K K _ _Kb,ca - K _ Kb,bi - K
C1 = Rpny, C2 = —Bfpy, C3 = Kfcq, Cq = 1000 »C5 = —Ryppi, Ce = m'ﬁ = Bf pis

Page 33
Copyright © 2024 University of Leeds UK. All rights reserved.

_Kme

1000

s = _Kb"”,c9 = 1000 K; g, C10 =
1000 fwa

gives the following system of coupled first order odes for the concentrations in Sl units:

% =cx, +cx; (1.129)

% = —C1Xy — CpX1—C3X,—ChX3Xg (1.130)
‘% = 03Xy + C4X3X6 + CsX3 + CeXyXg (1.131)
dd% = X3 + CgXaxg (1.132)

% = Cg + CroXsXe (1.133)

Xe = Xg + 2x4 + x5 (1.134)
These should be integrated subject to the initial conditions, at t=0:
X1 = 1000 KSOlPCOz’xz = 1000 KhyKSOlpCOZ’ X3 = X4 = xs == x6 =0 (1.135)

The coupled system of odes (1.129)-(1.134) are solved subject to the initial conditions (1.135) using the
Python programs in the main, driver program, vihomogeneous chemistry.py using the functions
contained in chemical_functions.py. These are available under the Figl_10 directory.
vlhomogeneous_chemistry.py

Program to calculate homogeneous chemistry based on theory developed by Nesic

and co-workers. Theory being used from following references:

Nordsveen et al. Corrosion 59(5), 443-456.

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

from chemical functions import set chemistry, dxdt 5 pHvariable
define chemistry data dictionary
chemparam = set chemistry ()

cFe = 0.0 # Fe2+ concentration = 0 in bulk solution

define arrays for solution of chemical equations

ndim = 5 # number of independent chemical reactions

create constants for use in the implicit solution scheme

cl = chemparam['cl']
c2 = chemparam['c2']
c3 = chemparam['c3']

Page 34
Copyright © 2024 University of Leeds UK. All rights reserved.

c4 = chemparam['c4']
c5 = chemparam['c5"']
c6 = chemparam['c6']
c7 = chemparam['c7"']
c8 = chemparam['c8"']
c9 = chemparam['c9']

cl0 = chemparam['cl0']

def f(y, t):
x1 = y[0] # concentration of c02 (mol/m3)
x2 = y[1] # concentration of H2CO3 (mol/m3)
x3 = y[2] # concentration of HCO3- (mol/m3)
x4 = y[3] # concentration of C0O32- (mol/m3)
x5 = y[4] # concentration of OH- (mol/m3)

[£0,£f1,£2,£3,f4]= dxdt 5 pHvariable(x1l,x2,x3,x4,x5,chemparam,0.0)

return [£0, f1, £2, £3, f4]

initialise the concentrations CO2, H2CO3, HCO3-, CO32- and COH-. in practice the

solutions are not found to be sensitive to these specific values

xb0 = 10**-4

cCO2_init = chemparam['cCO2 init']

y0 = [cCO2_init, xb0, xb0, xb0, xb0]

t = np.linspace(0,1) # time grid

t = np.linspace(0,1.0,101) # time grid

solve the time dependent chemical equations using PYTHON functions

soln = odeint (f, yO0, t)

cCO02 = soln[:, 0] # concentration of CO2 at ith time step
cH2CO3 = soln[:, 1] # concentration of H2CO3 at ith time step
cHCO3 = soln[:, 2] # concentration of HCO3- at ith time step
cCO3 = soln[:, 3] # concentration of C0O32- at ith time step
cOH = soln[:, 4] # concentration of OH-- at ith time step

calculate concentration of H+ by charge balance equation
cH = np.zeros(len(cOH),dtype=float)

for j in range(len(cOH)) :

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 35

cH[j] = cHCO3[j] + 2*cCO3[j] + cOH[]]

set steady state concentrations in bulk

cCO02 steady = cCO2[-1]

cH2CO3 steady = cH2CO3[-1]

cHCO3 steady = cHCO3[-1]

cCO3_steady = cCO3[-1]

cOH_steady = cOH[-1]

cH steady = cH[-1]

pH steady = -np.loglO(cH steady/1000)

print ("cCO2 steady = {0:10.5e}".format (cCO2_steady))
print ("cH2CO3 steady = {0:10.5e}".format (cH2CO3 steady))
print ("CHCO3 steady = {0:10.5e}".format (cHCO3 steady))
print ("cCO3 steady = {0:10.5e}".format (cCO3_steady))
print ("cOH steady = {0:10.5e}".format (cOH_steady))
print ("cH steady = {0:10.5e}".format (cH steady))

print ("pH steady = {0:10.5e}".format (pH steady))

plot out chemical concentrations

plt.ion()

fig=plt.figure ()

plt.semilogy(t,cCO2, 'k-"',markersize=5, label="C02")
plt.semilogy (t, cH2CO3, 'b-"',markersize=5, label="H2C0O3")
plt.semilogy (t, cHCO3, 'r-',markersize=5,label="HC03-")
plt.semilogy(t,cCO3, 'g-',markersize=5, label="C032-")
plt.semilogy(t,cOH, 'm-',markersize=5, label="0H-")

plt.semilogy(t,cH, 'y-',markersize=5, label="H+")

plt.legend(loc="best')
plt.xlabel ('time (secs)',style='italic')

plt.ylabel ('Species concentrations (mol/m3)',style='italic')

chemical_functions.py
functions used to set us equations for homoegeneous chemical reactions
import numpy as np

def dxdt 5 pHvariable (x1,x2,x3,x4,x5,chemparam, cFe) :

set parameters from dictionary

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 36

cl = chemparam['cl']
c2 = chemparam['c2"']
c3 = chemparam['c3"']

c4 = chemparam['c4']

c5 = chemparam['c5"']

c6 chemparam|['c6']
c7 = chemparam['c7"']

c8 = chemparam['c8"']

c9

chemparam|['c9']

cl0 = chemparam['cl0']

x6 = x3 + 2*x4 + x5 - 2*cFe # cH

rate of change of CO2

dxldt = cl*x2 + c2*xl

rate of change of H2CO3

dx2dt = -dxldt -c3*x2 -c4*x3*x6

rate of change of HCO3-

dx3dt = c3*x2 + c4*x3*x6 + c5*x3 + c6*x4*x6
rate of change of CO032-

dx4dt = c7*x3+c8*x4*x6

rate of change of OH-

dx5dt = c9 + cl0*x5*x6

return [dxldt,dx2dt,dx3dt,dx4dt,dx5dt]

function to set chemical parameters needed in solutions of chemical equations

def set chemistry():

pH not specified but determined from chemical reaction equations
set ionic strength

I=0.1711 # value for 1% NaCl

Tc=20

pCO2=1 # 1 bar

total pressure P = PH20 + PCO2
PH20 calculated using steam tables at Tc. E.g. 250C, PH20 = 0.0313 Atm
P=14.8 # total pressure expressed in p.s.i.

PH=4 # specify pH and hence H+ concentration

Page 37
Copyright © 2024 University of Leeds UK. All rights reserved.

T=Tc+273.15 # Kelvin
Tf=Tc*9/5 +32 # Fahrenheit

Tk=Tc+273.15 # Kelvin

Calculate steady state chemistry in bulk solution
#***

#CO2 aqueous. Ksol taken from Nordsveen et al (2003), Table 2, p 447.
Ksol= (14.5/1.00258)*10**=(2.274+0.00565*Tf-8.06* (LO**=6) * (T£**2)

+0.075*I)

#dissociation of water. Reaction constants taken from Nordsveen et al (2003),
table 2, p 447.

Kwa= 10**-(29.3868-0.0737549*Tk+7.47881* (10**-5) *Tk**2)

Kbwa= 7.85* 10**10 * (Tc/Tc)

Kfwa=Kwa*Kbwa

#hydration of H2CO3. Reaction constants taken from Nordsveen et al (2003),
table 2, p 447.

Khy=2.58* (10**-3) *(Tc/Tc)
Kfhy=10**(329.85-110.541*np.1ogl0(Tk)-(17265.4/Tk))

Kbhy=Kfhy/Khy

#dissociation of H2CO3. Reaction constants taken from Nordsveen et al (2003),
table 2, p 447.

Kca=387.6*10**-(6.41-1.594* (10** (-3)) *Tf

+(8.52* 10**(-6) *Tf**(2))-3.07*10** (-5)*P-0.4772* (I**0.5)+0.118*1I)

Kfca= 10**(5.71+0.0526*Tc-2.94*10**-4 *Tc**2 +7.91*10**-T7*Tc**3)

Kbca= (Kfca/Kca)

#dissociation of HCO3- (matched depends on variables). Reaction constants

taken from Nordsveen et al (2003), table 2, p 447.

Kbi = 10**-(10.61-4.97* (10**=3)*Tf+1.331* (10**=5)* (Tf**2)-2.624* (10**-5) *P—
1.166* (I**0.5)+0.3466*1)

Kfbi=10**9 * (Tc/Tc)

Kbbi= Kfbi/Kbi

calculate steady state concentrations of C02, H2CO3 in mol/m3

Page 38
Copyright © 2024 University of Leeds UK. All rights reserved.

cCO2_init = pCO2*Ksol*1000

cH2CO3_init = pCO2*Ksol*Khy*1000

create constants for use in the implicit solution scheme

cl = Kbhy
c2 = -Kfhy
c3 = Kfca

c4 = -Kbca*0.001
c5 = -Kfbi

c6 = Kbbi*0.001
c7 = Kfbi

c8 = -Kbbi*0.001
c9 = Kfwa*1000

cl0 = -Kbwa*0.001

set chemistry dictionary values

chemparam = dict([('I',I), ('Tc',Tc), ('pcO2',pCO2), ('P',P), ('T',T), ('Tf',TEf),
("Tk',Tk), ('cCO2_init',cCO2 init), ('cH2CO3 init',cH2CO3 init),
('cl',cl), ('c2',c2),('c3',c3),('c4"',c4),('c5',c5),('c6',c6),
('c7',c7),('c8',c8),('c9',c9), ('cl0',cl0)])

return chemparam

This results in the following figure, showing the evolution of each of the chemical species towards a
steady state.

Page 39
Copyright © 2024 University of Leeds UK. All rights reserved.

e

E 107 1

=]

E

LA

E 10-2 -

m

o |

T

IEI ll}—: - — I:'::I.E

S — H2C03

fi — HC03-

D 10- — (032-

U109 A

@ k —— (OH-

e H+

0.0 0.2 0.4 0.6 0.8 10

time {secs)

Figure 1.10: Evolution of the chemical species during the homogeneous chemical reactions during CO»
corrosion, obtained using vlhomogeneous_chemistry.py and chemical_functions.py.
1.5 Modelling of Flow-Induced Vibration (FIV)

1.5.1 Introduction

Pipelines conveying fluids play a significant role in modern industry, including chemical processing,
power generation and the transportation of commodities such as oil and gas. These are safety critical
since system failures can lead to the spillage of fluids which are detrimental to human health and the
environment. They are also of enormous economic significance too, so there is clearly a need to identify
and address the root causes of failure in pipeline systems. Flow-induced vibration fatigue and failure is
one of the most common causes of failure in pipeline systems, accounting for more than 15% of all
pipeline failures in Western Europe, Mpofu (2023).

In many practical applications, the operators aim to operate at the highest possible flow velocities to
maximise production and profits, however these are associated with more severe vibrations and
therefore higher pipe failure rates, Paidoussis (2008). Hence it is very important to be able to identify
the safe and optimal operating ranges for a piping system. Studies show that vibration of pipelines results
from interactions between a fluid and a structural component, and are thereby influenced by the
physical and structural properties of both the fluid and the pipe. The support conditions for the pipes
are also found to be very important too. The most stable case is the clamped-clamped condition where
the ends of the pipes are rigidly attached to physical supports, whereas the least stable support method
is the simply supported-simply supported condition, where the pipe simply lies on top of a support
structure but is not rigidly attached to it. The precise form of support method has a large influence on
key aspects of pipeline stability, such as the critical flow velocity above which the pipeline becomes
unstable and is therefore prone to large FIV and failure.

This section aims to give a brief introduction to mathematical and computational methods that can be
used to analyse FIV and covers key areas of model development including model validation and
verification.

Page 40
Copyright © 2024 University of Leeds UK. All rights reserved.

1.5.2. Mathematical Modelling
A general equation of motion for the vibration of a pipe which is supported for 0<x<L is given by
EI 2+m fVZ >+ meV

2z 4+ (my +my)22=0 (1136)

0x0t at2

where y(x,t) is the lateral displacement of the pipe at position x and time t, E is the Young’s modulus of
the pipe material (Pa), | is the moment of area of the pipe (m*), m, is the mass of the pipe per unit
length (kg/m), mg is the mass of the fluid per unit length (kg/m), V is the mean velocity of the fluid flow
inside the pipe (m/s).

The first term EI — represents the flexural restorlng force. The second term, me2 >, centrifugal
force due to flow in the curved pipe, the third, meV the Coriolis force arising from the relative

motion of the pipe and the fluid and the final term, (mf + mp) the inertial force of the pipe and

at?’
fluid system.

This mathematical model is based on the assumptions that:

1. The pipe behaves like a perfectly elastic beam so that the Young’s modulus is constant
The pipe is slender which implies that the amplitude of vibration is small compared to the
length

3. The fluid flow is fully developed

4. The fluid is incompressible

Although the fluid is not idealised as inviscid, the equation does not have any term with a viscosity
coefficient. It has been shown by Paidoussis (2008) that fluid viscosity does not have a significant effect
on the motion.

A further key simplifying assumption is that the Coriolis force term meV— can be neglected in

comparison with the other three terms in the equation of motion. This can be justified since many
previous studies have neglected the Coriolis term from the equation of motion, e.g. Udoetek (2018)
and Yi-min et al (2010), and have found that this leads to an error typically less than 3% in the
prediction of natural frequencies that are needed to predict the onset of FIV instabilities.

The next section will consider the simply supported-simply supported condition.

In your assignment, you will develop the equivalent mathematical model and Python programs for
clamped-clamped conditions.

1.5.2. Mathematical Modelling of the Simply Supported-Simply Supported Case
The boundary conditions are obtained from the nature of the end supports. The case considered here
is with a simply supported-simply supported pipe as shown in Figure 1.11.

Page 41
Copyright © 2024 University of Leeds UK. All rights reserved.

> X
‘ Simple supports ‘
dy? ay?
¥(0,8) = ay?(o, £)=0 y(IL,t) = # Lt)=0

Fig 1.11: A simply supported-simply supported pipe system.
0%y
dx2
second derivative condition indicates that the bending moment=0 at the simply-supported ends.

The boundary conditions to be applied in this case are: y = = 0 at the ends x=0, x=L. Note the

Finite Difference Discretisation

The finite difference method was used to represent the continuous pipe system as a discrete system. A
uniform discretisation was used for the time and spatial domains, as shown in Figure 1.12. Finite
Difference approximations were applied at these discrete nodes.

LN B R] ¢ o 9 0
Ax Ax _—— - —

Fig 1.12: Uniform spatial discretisation of a simply-supported pipe system.
Second order discretisations for the second and fourth order derivative terms are used:

A’y Yi-1=2YitYis (1.137)

dx? (Ax)?
d*y i p—4Yi 1 +6Yi—4Yis1+Yis2
— = 1.138
dx* (Ax)* ()

where y; represents the value of y at the ith node x=x; and Ax is the grid spacing. The same second
order expression is used for the second order time derivative.

Computation of the Natural Frequency

Since the equation of motion varies in both space and time, the method of separation of variables can
be used to obtain an equation in space from which the natural frequency was then computed using the
finite difference method. This approach has been used successfully in similar beam models, Rao (2011).
The solution y(x, t) is written as

y(,t) =Y(x)T(t) (1.139)
The equation of motion then becomes

Page 42
Copyright © 2024 University of Leeds UK. All rights reserved.

a*y azy d?T
El =T +mV? =T+ (mp+m,) 5V =0 (1.140)

This can be re-written as

d*y 2d%Y\ _ 1d*T _ _
(EI@T +m;V E) = — gz = constant = A (1.141)

1
(mp+mp)Y

Hence

4 2 42
BLAY A _dy=0 (1.142)

Meot dx* Meot dx?

where my,; = my + m,, is the total mass of the pipe and fluid per unit length.

Applying a uniform spatial discretisation leads to:

EI (Yi_z—4Yi_1+6Yi—4Yi+1+Yi+2) mgV? (yi_l—zyiwm) Y. =0 (1.143)
l - .

Mot (Ax)* Meot (Ax)?
_ EI _ myV? TP .)
Leta = —TToTS and b = e —TYor and simplifying the equation leads to:

aYi_, + (b —4a)Y;_1 + (6a—2b—A)Y; + (b —4a)Y;; +a¥i, =0 (1.144)
Putting C; = a,C, = b — 4a, C3 = 6a — 2b, C, = b — 4a, C5 = a this equation can be rewritten as
Y2+ GYig + (G = DY+ CYiiq + G5Yiyp =0 (1.145)
This was then applied to the internal nodes i=2 to i=N-1, giving the following linear equations:
For i=2: CiYo +CY1 4+ (C3— V)Y, +C Y3+ CsY, =0 (1.146)
For i=3: CiY1+CYo +(C3—A)Y3+CY, +CsYs =0 (1.147)
Fori=4 to i= N-3:
CiYi2 + Y1 + (G5 — DY+ CuYiyg + G52 =0 (1.148)
For i=N-2
CiYn_ga +CoYy_ 3+ (C3—V)Yy_y + C4Yy_1 +CsYy =0 (1.149)
For i=N-1
Ci¥y_3+Co¥y_o +(C3—A)Yy_1 + C4¥y +C5Yyy1 =0 (1.150)

We can now simplify these using the boundary conditions, which are: Y; = Yy = 0. The second
condition is that the bending moment is zero at both simply-supported ends, leading to the second

- - da?y
derivative boundary condition that z= 0 at the clamped ends leads to:

Y,—2Y; +Y,

oA = 0 => Yz = _YO (1151)

YN41—2YN+YN_q

A% = 0 => YN+1 = _YN—l (1.152)

The equations and boundary conditions can then be expressed in the following matrix form:

Cs-Ci1-A C4 Cs 0 e .- 0 ‘ Y2 ‘ 0

Page 43
Copyright © 2024 University of Leeds UK. All rights reserved.

C: Cs-A Cs Cs 0 Y3 0
C: Cz Cs-A Cs Cs 0 Ya 0
0 Ys 0
= 0

0 C1 C2 Cs-A Cs Cs Yn-3 0

. . 0 C1 C Cs-A Cas Yn-2 0
0 0 C1 C2 C3-Cs-A YnN-1 0

This is a sparse pentadiagonal matrix of size (N-2)x(N-2) which can be expressed in the form M — Al
where | is the identify matrix and M is an (N-2)x(N-2) matrix given by:

Cs-C1 Ca Cs 0 .. . 0
Cz Cs Cs Cs 0
Ci Cz Cs Ca Cs 0
0
0 Ci1 Cz Cs Cs Cs
... . 0 Ci Cz Cs Ca
0 . . 0 Ci1 C2 Cs-Cs

It can be observed that the constant 1 is the eigenvalue which is equal to w?, where w is the natural
frequency. The natural frequencies are found by solving the eigenvalue problem [M — AI| = 0 so that

w;=+4 (1.153)

NOTE: The critical velocity at which the pipe loses stability is computed by the condition that one of
natural frequencies becomes zero.

A Python program was developed to determine the 1°t and 2" natural frequencies.

Verification and Validation of the Finite Difference Solver

The effect of grid density on the computed natural frequency for an experimental case due to Dodds &
Runyan (1965), also reported in Dangal & Ghimire (2019), of an aluminium pipe with L=3.048m, E=68.9
GPa. 1=8.73x107° (kgm?), m=0.38 kg/m, mi»=0.715 kg/m, V=13.10 m/s. The grid convergence study in
Figure 1.13 showed the effect of the number of nodes on the calculated natural frequency. This is
obtained by running the Python program gridconvergence_FIV_natural_frequency fdm.py in the
Fig1_13 directory.

gridconvergence_FIV_natural_frequency_fdm.py
FIV_natural frequency fdm.py
Carries of grid convergence studies for the natural frequencies in a

FIV system with simply supported-simply supported ends

Page 44
Copyright © 2024 University of Leeds UK. All rights reserved.

import numpy as np

FHAEA AR AR R R R R R R R R R R R

def gridconv natural frequencies(E,L,I,mtot,mf,V,Nx):

FHAF A AR A A AR AR A AR AFF R A A AR A AR A F SRR F A
discretisation of pipe

deltax = L/ (Nx-1) # spatial grid spacing

FHEEA AR R R R R R R R R R R R R

defining the constants for the set of linear finite difference eugations

a = (E*I)/ (mtot* (deltax) **4)

b = (mf* (V**2))/ (mtot* (deltax) **2)
Cl = a

C2 = b-4*a

C3 = 6*a-2*b
C4 = C2

C5 =C1

creation of FDM matrix M
n = Nx-2
M = np.zeros([n,n])

M[0] [0]=C3-C1

M[0] [1]=C4
M[0] [2]=C5
M[1][0]=C2
M[1][1]=C3
M[1][2]=C4
M[1][3]=C5

for k in range(2,n-2):
M[k] [k-2]=C1

M[k] [k-1]=C2

Page 45
Copyright © 2024 University of Leeds UK. All rights reserved.

M[n-2] [n-4]=Cl
M[n-2] [n-3]=C2
M[n-2] [n-2]=C3
M[n-2] [n-1]=C4
M[n-1][n-3]=C1
M[n-1][n-2]=C2

M[n-1][n-1]=C3-C5

calculate natural frequencies from the real parts of the first two eigenvalues of M

evals, evecs = np.linalg.eig (M)
omega natural = np.sqgrt(evals)
omega 1 = omega natural[n-1].real

omega 2 = omega natural[n-2].real

return omega_ 1,omega 2

problem parameters from Dangal & Ghimire

steel pipe = 1; aluminium pipe = 2; CPVC pipe = 3
material = 2

v = 13.1

if (material == steel pipe):

Steel pipe

E = 207e9 # Young's modules of pipe (Pa)
L = 3.048 # pipe clamp spacing (m)
I = 8.73e-9 # moment of area of pipe (m"4)
mtot = 1.386 # total mass of pipe and fluid per unit length
mf = 0.38 # mass of fluid per unit length
elif (material == aluminium pipe) :

Aluminium pipe

E = 68.9e9 # Young's modules of pipe (Pa)
L = 3.048 # pipe clamp spacing (m)
I = 8.73e-9 # moment of area of pipe (m"4)
mtot = 0.715 # total mass of pipe and fluid per unit length
mf = 0.38 # mass of fluid per unit length
elif (material == CPVC pipe):

CPVC pipe

=
I

2.9e9 # Young's modules of pipe (Pa)

L = 3.048 # pipe clamp spacing (m)

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 46

I = 8.73e-9 # moment of area of pipe (m"4)
mtot = 0.574 # total mass of pipe and fluid per unit length (kg/m)

mf = 0.38 # mass of fluid per unit length (kg/m)

FHAF AR A A AR AR A A AR A AR A A AR A A AR A A F SR FF A
discretisation of pipe

Nx = [10,20,30,40,50,60,70]

allocate vectors to store errors for every run

omega 1 = np.zeros (len(Nx))

for n in range(len (Nx)) :
om 1,om 2 = gridconv_natural frequencies(E,L,I,mtot,mf,V,Nx[n])
omega 1[n] = om 1

print ('Fine grid natural frequency= {0:6.3f}'.format (omega 1[len (Nx)-1]))

plot out results

import matplotlib.pyplot as plt

plotl = plt.figure(l)

plt.plot (Nx,omega 1, 'b-0")

plt.xlabel ('Number of nodes along the pipe')
plt.ylabel ('Natural frequency (rad/s)"')

plt.text(20,29.05, " 'fine grid frequency={0:6.2f}"'.format (omega 1[len (Nx)-1]))

plt.title('Natural Frequencies of a simply-supported aluminium pipe, V=13.10m/s')

plt.savefig('al gridconvergence FIV natural frequency fdm.jpg')

Calculation of the order of accuracy of the method

Nxcoarse = 40; Nxmedium = 80; Nxfine = 160; r = 0.5;

omega_coarse,om_2 = gridconv_natural frequencies(E,L,I,mtot,mf,V,Nxcoarse)
omega medium,om 2 = gridconv_natural frequencies(E,L,I,mtot,mf,V,Nxmedium)
omega fine,om 2 = gridconv_natural frequencies(E,L,I,mtot,mf,V,Nxfine)

p = np.log((omega fine-omega medium)/ (omega medium-omega coarse))/np.log(r)

print ('Estimate of order of convergence, p = {0:6.3f}"'.format (p))

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 47

Natural Frequencies of a simply-supported aluminium pipe, V=13.10m/
29.20 A

—— 9

29.15 -

29.10 -

29 05 - fine grid frequency= 29.19

29.00 -

28.95 A

Natural frequency (rad/s)

28.90

T T L L] L | L

10 20 30 40 50 60 70
Number of nodes along the pipe

Figure 1.13: Effect of grid density on the natural frequency of a simply supported-simply supported
Aluminium pipe considered by Dodds & Runyan (1965).

It can be seen that the solutions have converged for Nx>50.

The computed fine grid natural frequency of 29.19 rad/s compares with the experimental value of
Dodds & Runyan (1965) of 26.10 rad/s: an error of 11.8%. The other experimental cases considered by
Dodds & Runyan (1965) are for:

e VV=23.485 m/s, the predicted value of 25.25 rad/s compares with the experimental value of
24.11 rad/s —a 4.7% error

e VV=29.722 m/s, the predicted value of 21.22 rad/s compares with the average experimental
value of 19.93 rad/s — a 6.5% error.

These can be summarised in the following table, which also includes the numerical predictions of
Dangal & Ghimire (2019) who used a Finite Element method. Table 1 shows that the numerical method
is generally reasonably accurate and compares well with previous relevant studies.

Flow velocity m/s Experiment (Dodds & Finite Element (Dangal & Finite Difference
Runyan (1965) rad/s Ghimire (2019) rad/s model rad/s
13.10 26.10 29.00 29.19
23.485 24,11 24.73 25.25
29.722 19.93 20.47 21.11

Table 1: Validation of effect of flow velocity on natural frequency for a simply supported-simply
supported pipe.

Order of Accuracy of the Numerical Method

Page 48
Copyright © 2024 University of Leeds UK. All rights reserved.

The order of accuracy of the numerical method can be estimated as follows. If Wfine, Wmedivm and
Weoarse refer to the natural frequencies calculated using three different grid levels with the same node
spacing reduction rate, r, such that the respective grid spacings are Axf,, = %A coarser DXmedivm =
T AXcoarse, then if wgqruq1 is the actual value of the natural frequency then

Wrine — Wmedium _ ((‘)fine - wactual) - (wmedium - (‘)actual)

Wmedium — Weoarse (wmedium - wactual) - (wcoarse - wactual)
C(TZAxcoarse)p - C(rAxcoarse)p er —rP

= =D
C(rdxcoarse)? — C(AXcoqrse)? rP —1

Hence, taking logarithms of both sides, gives

ln(Wrine — Wmedium)
Wmedium — Wcoarse
Inr

p:

Comparing the errors using 40, 80 and 160 nodes for the coarse, medium and fine grids, gives an
estimate of p=2.04 => indicating it is second order accurate, as expected since these are based on
second order finite difference approximations.

Critical Velocities

As the velocity of the fluid in the pipe increases, the natural frequency decreases. The critical velocity
for instability is the velocity for which the natural frequency first becomes equal to zero. The analysis
for predicting the natural frequency described above can then be used to predict the critical velocity.

Effect of velocity on stability of Flow Induced Vibration in a steel pipe

500
n
o
e
N 01 critical velocity= 71.07
o
=
5
o —500 4
u
o
=
o —1000 -
z
—1500 -

1 1 T

50 &0 70 80 90 100
Fluid velocity

Figure 1.14: Effect of flow velocity on the natural frequency of a simply supported-simply supported

steel pipe considered by Dangal & Ghimire (2019).

Page 49
Copyright © 2024 University of Leeds UK. All rights reserved.

The following table compares the predictions of critical velocities for the simply-supported simply-
supported case, using the present Finite Difference model with Nx=60 nodes (implemented in the
Python program criticalvelocity FIV_fdm.py on the Figl_14 directory) against the Finite Element
predictions of Dangal & Ghimire (2019).

Critical velocity Finite Element (Dangal & Finite Difference
m/s Ghimire (2019) model
Steel pipe 70.72 71.07
Aluminium pipe 41.25 41.00
CPVC pipe 8.46 8.41

Table 2: Comparison of the predictions of critical velocities for simply supported-simply supported
steel, aluminium and CPVC pipes, with Nx=60 against the FE predictions of Dangal & Ghimire (2019).

Again, the agreement between the two methods is very good.
criticalvelocity_FIV_fdm.py

FIV natural frequency fdm.py
Calculates the critical velocity for instability of a

FIV system with clamped-clamped ends

import numpy as np

s sssiasiiissasiiasaiiianiiiaaniiisaaRiiaaaRii Rttt R ntRtdni

def natural frequencies(E,L,I,mtot,mf,V,Nx):

R
discretisation of pipe

deltax = L/ (Nx-1) # spatial grid spacing

FHEHAFHH AR R R R R R R R R R R

defining the constants for the set of linear finite difference eugations

a = (E*I)/(mtot* (deltax)**4)

b = (mf* (V*¥*2))/ (mtot* (deltax) **2)
Cl = a

C2 = b-4*a

C3 = 6*a-2*b

c4 = C2

C5 = C1

creation of FDM matrix M

n = Nx-2

Page 50
Copyright © 2024 University of Leeds UK. All rights reserved.

M = np.zeros([n,n])

M[0] [0]=C3-C1

M[O] [1]=C4
M[0] [2]=C5
M[1][0]=C2
M[1][1]=C3
M[1][2]=C4
M[1][3]=C5

for k in range(2,n-2):
M[k] [k-2]=C1

M[k] [k-1]=C2

M[n-2] [n-4]=C1
M[n-2] [n-3]=C2
M[n-2] [n-2]=C3
M[n-2] [n-1]=C4
M[n-1] [n-3]=C1
M[n-1] [n-2]=C2

M[n-1] [n-1]1=C3-C5

calculate natural frequencies from the real parts of the first two eigenvalues of M
evals, evecs = np.linalg.eig (M)

omega_squared = evals[n-1]

omega_ natural = np.sqgrt (evals)
omega_ 1 = omega natural[n-1].real
omega 2 = omega natural[n-2].real

return omega_ 1,omega 2,omega_ squared

problem parameters from Dangal & Ghimire
steel pipe = 1; aluminium pipe = 2; CPVC pipe = 3
material = 1;

if (material == steel pipe):

Page 51
Copyright © 2024 University of Leeds UK. All rights reserved.

Steel pipe

E = 207e9 # Young's modules of pipe (Pa)
L = 3.048 # pipe clamp spacing (m)
I = 8.73e-9 # moment of area of pipe (m"4)
mtot = 1.386 # total mass of pipe and fluid per unit length (kg/m)
mf = 0.38 # mass of fluid per unit length (kg/m)
elif (material == aluminium pipe):

Aluminium pipe

E = 68.9e9 # Young's modules of pipe (Pa)
L = 3.048 # pipe clamp spacing (m)
I = 8.73e-9 # moment of area of pipe (m"4)
mtot = 0.715 # total mass of pipe and fluid per unit length (kg/m)
mf = 0.38 # mass of fluid per unit length (kg/m)
elif (material == CPVC pipe):

CPVC pipe

E = 2.9e9 # Young's modules of pipe (Pa)

L = 3.048 # pipe clamp spacing (m)

I = 8.73e-9 # moment of area of pipe (m"4)

mtot = 0.574 # total mass of pipe and fluid per unit length (kg/m)
mf = 0.38 # mass of fluid per unit length (kg/m)

S
discretisation of pipe

Nx = 60

allocate vectors to store errors for every run
Npts = 101
omega_squared = np.zeros (Npts)

V = np.linspace (50,100, Npts)

for n in range (Npts) :
om 1,om 2,om squared = natural frequencies(E,L,I,mtot,mf,V[n],Nx)

omega_squared[n] = om_squared

find velocity where square of natural frequency becomes negative
oml = omega squared[0]
crit velocity = 0

for n in range (Npts-1):

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 52

product = omega_ squared[n]*omega_ squared[n+1]

if (product < 0): # use linear interpolation for greater accuracy
facl = np.abs (omega_squared[n])
fac2 = np.abs (omega squared[n+1])
critical velocity = (fac2*V[n]+facl*V[n+1])/ (facl+fac2)

break

plot out results

import matplotlib.pyplot as plt

plotl = plt.figure(l)

plt.plot (V,omega squared, 'b-")

plt.xlabel ('Fluid velocity')

plt.ylabel ('Natural frequency”2 (rad/s)')

plt.title('Effect of velocity on stability of Flow Induced Vibration in a steel pipe')
plt.text (50,-100, 'critical velocity={0:6.2f}"'.format (critical velocity))

plt.savefig('steel velocity stability fdm.jpg')

YOUR NUMERICAL MODELLING ASSIGNMENT: THE CLAMPED-CLAMPED CASE

To test your understanding of the numerical modelling concepts introduced above, and to give you
some experience of developing your own Python programs, we would like you to extend the analysis
and programs for the Simply Supported-Simply Supported Case to the case where the pipe is clamped
at both ends — referred to as Clamped-Clamped conditions.

The boundary conditions are obtained from the nature of the end supports. The clamped-clamped case
considered here is with fixed ends as shown in Figure 1.15.

Pipe Clamp Y Pipe Clamp
- =
] L :
y(0,6)=0 y(L,t) =
dy(0,t) dy(L,t)
dx dx

Fig 1.15: Pipe with clamped ends showing the boundary conditions at the clamps, Mpofu (2023).

Finite Difference Discretisation

The finite difference method was used to represent the continuous pipe system as a discrete system.
Once again a uniform discretisation was used for the spatial domain, as shown in Figure 1.16. Finite
Difference approximations were applied at these discrete nodes as described in the simply supported-
simply supported case described above.

Page 53
Copyright © 2024 University of Leeds UK. All rights reserved.

Pipe Clamp Pipe Clamp

Fig 1.16: Uniform spatial discretisation of the clamped pipe system, Mpofu (2023).

The analysis proceeds as for the simply supported-simply supported case but with different boundary
conditions. Using the boundary conditions, which are: Y; = Yy = 0. The derivative boundary condition

dy
that == 0 at the clamped ends leads to:

Y, -1,
2Ax 0=>1=Y

YN+1 - YN—l

2 Ax =0=> Yy41 =¥y

For the clamped-clamped case, your tasks are to:

e Derive the matrix form of the finite difference equations

o Write a Python program that plots out the natural frequency for between 10 and 70 nodes
along the pipe

o Write a Python program that shows the effect of flow velocity on the natural frequency of the
clamped-clamped steep pipe considered by Dangal & Ghimire (2019)

o Write a Python program that determines the critical velocity for the steel, Aluminimu and CPVC
pipe considered by Dangal & Ghimire (2019)

References

Dangal, M, Ghimire, S.K. Modeling and Analysis of Flow Induced Vibration in Pipes using Finite Element
Approach, Proceedings of IOE Graduate Conference, 6, 725-32, 2019.

Dodds, H.L., Runyan, H.L. Effect of high velocity fluid flow on the bending vibrations and static
divergence of a simply-supported pipe, NASA, 1965.

Mpofu, B. Computational Modelling and Analysis of Flow Induced Vibrations in Piping, MSc project
report, School of Mechanical Engineering, University of Leeds, 2023.

Paidoussis, M.P., The canonical problem of the fluid-conveying pipe and radiation of the knowledge
gained to other dynamics problems across Applied Mechanics. Journal of Sound and Vibration, 310(3),
462-92, 2008.

Rao, SS Mechanical Vibrations, 5" edition, Prentice Hall, 2011.

Udoetek, E.S. Internal fluid flow induced vibration of pipes. Journal of Mechanical Design and
Vibration, 6(1), 1-8, 2018.

Yi-min, H., Yong-shou, L., Bao-hui, L., Yan-jiang, L., Zhu-feng, Y. Natural frequency analysis of fluid
conveying pipeline with different boundary conditions, Nuclear Engineering and Design, 240(3), 461-7,
2010.

Page 54
Copyright © 2024 University of Leeds UK. All rights reserved.

Zhang, Y.L., Gorman, D.G., Reese, J.M. Analysis of the Vibration of Pipes Conveying Fluid, Proc. Instn.
Mech. Engrs, 213, 849-860, 1999.

Page 55
Copyright © 2024 University of Leeds UK. All rights reserved.

