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Chapter 1
Introduction to Design Optimization

1.0 Introduction

The process of design and manufacture has developed over the centuries. Complex systems
such as: buildings, bridges, cars, aircraft, space vehicles, are an excellent demonstration of
the design process. However, the evolution of these systems has been slow.

The entire process is time-consuming and costly, requiring substantial human and material
resources. Therefore, the procedure has been to design, manufacture and use a system,
regardless of whether it is the best one. Improvements to these systems have been made only
after a substantial investment has been recovered. The thing to appreciate is that several
systems can usually accomplish the same task, and that some systems are better than others.

For example: The purpose of a bridge is to provide movement of people or vehicles from one
side of a river or road to the other. Different types of bridges can serve this purpose. However,
to analyse and design all possibilities can be time-consuming and costly. Usually one type is
selected based on some preliminary analyses and then it is designed in detail.

Figures 1.1 to 1.

5 show different solutions to the task of designing a foot bridge.
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Figurel.l: BP Pedestrian Bridge: concealed box girde footbridge Chicago, USA
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Figure 1.3: Gateshead Millennium Bridge on Newcastle upon Tyne
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Figure 1.5: Pedestrian otbridge based on Leonardo da Vinci’s single span bridge near
the town of As in Norway

In order to describe optimization concepts and methods, it is necessary to generate a

mathematical statement for the optimum design problem. Such a mathematical model is
defined as the minimization of a cost function while satisfying all equality and inequality
constraints. This is the standard design optimization model used throughout this course.
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1.1 Standard Design Optimization Model

The standard design optimization model, requires determining the values of a vector of n

design variables = (X1, X2, . . ., Xn) in order to:
Minimize:
the cost function: f(X)z f(xl, xz,---,xn) (1.1)
Subject to:
m inequality constraints: g, (x)=g,(X,, X,,---,X,)<0; i =1to m (1.2)
and  p equality constraints: hj(X)= h, (X, X,0,%,)=0; j=1top (1.3)

Note that the limits on the design variables X; = O orx, <x; <X, where xi. and xu are the

lower and higher limits for x;, are included as inequality constraints. So, in its simplest form, a
standard optimization problem is given by (1.4).

Minimize: f(x)
Subjectto: g;(x)<0; i=1to m
_ (1.4)
h(x)=0; j=1top
where: X, <X <X, or X, 20;i=1ton

1.1.1 How to Treat Maximization Problems

The general design model treats only minimization problems. This is not a problem, since
the maximization of a function F(x) is the same as minimization of the transformed function
f(x)= —F(x). Considering the plot of Figure 1.6, of a function of 1 variable, with a maximum
at x*, this is the same as the minimum of the negative of the function to maximise.
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Figure 1.6: Plot of function of 1 variable: a) normal function showing the maximum at x*, b) the negative
of the same function showing now the minimum at x*
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1.1.2 Greater Than ( 2 ) Constraints

The standard design optimization model only treats “Less Than ( £)” types of inequality
constraints. But it is equally as likely for an optimization problem to have “Greater Than 2”
type inequality constraints. It is relatively easy to convert from a “greater than” to “less than”
type of inequality constraint.

So, if (1.5) is a greater than type of inequality constraint, all that is required, is to multiply
(1.5) by -1, to convert it to the less than inequality constraint of (2.6).

G,(x)20 (1.5)
g,(x)=-G;(x)<0 (1.6)

1.1.3 Issues about the Standard Optimization Model

The following 6 issues need to be understood about the standard optimization model:
1. All functions f(x), hj(x), and gi(x) must depend on some or all of the design variables.
Functions not depend on design variables can be ignored!
2. The number of equality constraints must be less than, or at the most equal to, the
number of design variablesp <n. If p > n, the system is overdetermined and some of

the equality constraints are either redundant or inconsistent.
a. If redundant: Constraints can be deleted until p < n, so that a solution is
possible.
b. If inconsistent: the design problem doesn’t have a solution and the problem
formulation needs to be re-examined. This means that two or more equations
require different values for the same design variables, for example:

1
X, =X,, and X, =—
X2
c. If p=n, no optimization of the system is necessary because the roots of the
equality constraints are the only solution to the optimum design.

3. No restriction on number of inequality constraints. At the optimum, the total number
of active constraints must be less than or at the most equal to the number of design
variables.

4. Unconstrained problems: Some design problems may not have any constraints.

5. Linear programming problems: If all of the functions f(x), hj(x), and gi(x) are linear
with respect to the design variables x, then the problem is called a linear
programming problem (LP). If any of these functions is nonlinear, the problem is
called a nonlinear programming problem (NLP).

6. Scaling of problem functions: The cost function can be scaled by multiplying it with a
positive constant. This has no effect on the optimum design. However, the optimum
cost function value will change. Constants can also be added to the cost function
without affecting the optimum design. Similarly, the inequality constraints can be
scaled by any positive constant and the equalities by any constant.
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1.1.4 Discrete and Integer Design Variables

Design variables xi can have any numerical value within the feasible region. However,
sometimes, these values may need to be discrete or integer, depending on the problem. So
both need to be defined:

a) Discrete Design Variables: are those whose value must be selected from a given
finite set of values. For example: A plate thickness must be one that is available
commercially: 1/8”, 1/4", 3/8”, 1/2", 5/8”, 3/4", 1”, etc.

b) Integer Design Variables: Must have an integer value. For example: the number of
bolts used, the number of coils in a spring, the number of items to be shipped, the
number of pistons in an engine, etc. Problems with these design variables are called
discrete and integer programming problems.

1.1.5 Types of Optimization Problems

The standard design optimization model can represent many different problem types. It can
be used to represent unconstrained, constrained, linear programming, and nonlinear
programming optimization problems.

It is also important to know other optimization problems encountered in practical
applications. Many times, these problems can be transformed into the standard model and
solved by the optimization methods presented.

There are a couple more types of optimization problems that need to be considered:
1. Continuous/Discrete-Variable Optimization Problems

2. Smooth/Non-smooth Optimization Problems.

1.1.5.1 Continuous/Discrete-Variable Optimization Problems

When the design variables can have any numerical value within their allowable range, the
problem is called a continuous-variable optimization problem. When the problem has only
discrete/integer variables, it is called a discrete/integer-variable optimization problem. When
the problem has both continuous and discrete variables, it is called a mixed variable
optimization problem.

1.1.5.2 Smooth/Non-smooth Optimization Problems

When the functions are continuous and differentiable, the problem is referred to as smooth
(differentiable). There are also many practical applications where the problem functions are
not differentiable or even discontinuous. Such problems are called nonsmooth
(nondifferentiable). Numerical methods to solve these two classes of problems can be
different. Theory and numerical methods for smooth problems are well developed.
Therefore, it is most desirable to formulate the problem with continuous and differentiable
functions as far as possible.
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1.2 Example of Structural Optimization Design Problem

Consider the design of the cross-sectional dimensions of the rectangular beam of Figure 1.7
in order to minimize the area. At the same time it is desired to minimize the maximum shear
stress in the beam corresponding to a unit shear force. Based on some physical constraints,
the two variables, w and h, which are the width and height of the cross-section are limited to
be in the range 0.5 <w, h <30 mm.

1

Figure 1.7: Beam cross-section to be minimised

The equation for the area and maximum shear stress are given by

f(w,h)=w xh (1.7)
3v
f,(w,h)= o (1.8)

Assume for this problem that we have an applied load which produces a shear force of V =
1000N. The contour lines for both objective functions are given by Figures 1.8 and 1.9.

30
25

20 Decreasing f,

0
0 5 10 15 20 25 30

w (mm)

Figure 1.8: Design of beam cross-section for minimum area

The individual minima for the two functions are at the opposite corners of the design space,
with the following values, w, =h; =0.5mm for minimum area and w, = h;, = 30 mm

for minimum shear stress with the associated function values of f; (wlhl) =0.25mm’* and

f, (W2 hz) =1.667 MPa respectively.
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Figure 1.9: Design of beam cross-section for minimum shear stress

One way to solve this problem is to use the weighted objective function approach with equal
weights for both objective functions, which results in the minimization of function (1.9).

Fw,h)=wxh+ (1.9)

2w x h
Since design variables w and h appear everywhere in the form of a product, we can treat this

product as a single variable (x1), changing this equation into (1.10). The contour line for the
new objective function is given in Figure 1.10.

v
F(x,)= Kt o (1.10)

Differentiating (1.10) and solving for the minimum gives:

F(Xl)le—i_ﬂ

1
d 3V
L F(x)=1->Y -0
dx, () 2x2
xf:%

) K\
"Xl: 7

For V = 1000N,

3V
F(xl)=x1+2—x1

X, = \/% - \/@ - /1500 = 38.73mm’

Which gives that w* = h* = 6.22mm , with objective function values of f, = 38.78 mm?
and f, = 38.78 MPa
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Figure 1.10: Design of beam cross-section for minimum equal weighted objective function

Alternatively, it may be more desirable to minimize the Euclidean norm between the

individual minima and the final value. Which means minimising function (1.11).
2

3V
2 | ——-1.667
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The product wh, can again be treated as a single value to give (1.12). The contour line for
the new objective function zoomed into the minimum region is given in Figure 1.11.

2

3V
095V | 2%~ 1.667
X, —U. X
Fx,)=(Xe=025Y) 12X, (L.12)
0.25 1.667
20000
18000
16000
14000
12000
§1 0000
[T
8000
6000
4000
2000
0
0 5 10 15 20 25 30 35 40
%z (mm?)

Figure 1.11: Design of beam cross-section for minimum Euclidean norm between the
individual minima
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Graphically, the optimum is found at X, =15mm? which gives that w* =h*=3.87mm ,

with the objective function values of f, =15mm? and f, =100MPa .

Both of these designs are appropriate and optimal, but in different ways. Later on, when we
look at Pareto Optimality, this will make more sense. Everything depends on how the
optimization problem is formulated, which is what we are going to look at next.

1.3 Formulation of the Optimum Design Problem

To properly define and formulate an optimization problem, it takes approximately 50% of the
total effort required to solve it. It is therefore necessary to follow a well-defined procedure for
formulating the design optimization problems. Remember that the optimum solution will be
only as good as the formulation. For example:
a. If a critical constraint is not included, then it will most probably be violated.
b. If there are too many constraints, or if they are inconsistent, then a solution may not
be possible.

However, once the problem is properly formulated, good software is usually available to deal
with it. For most design optimization problems, the formulation procedure requires the
following 6 steps:

Project/problem description

Data and information collection

Definition of design variables

Optimization criterion

Formulation of constraints

Formulate the optimization problem

S o

1.3.1 Project/Problem Description

The formulation process begins by developing a descriptive statement for the project/
problem, usually by the project’'s owner/sponsor. The statement describes the overall
objectives of the project and the requirements to be met. This is also called the statement of
work.

1.3.2 Data and Information Collection

To develop a mathematical formulation for the problem, it is necessary to obtain all available
information on the: material properties, performance requirements, resource limits, cost of
raw materials, etc. It is also necessary to determine how to analyse the designs. Therefore,
the analysis procedures and tools must also be identified at this stage. For example: the
finite-element analysis is commonly used for structural analysis, so the relevant software tool
available needs to be identified. In many cases, the project statement is vague, and
assumptions about modelling of the problem need to be made in order to formulate and
solve it.
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1.3.3 Definition of Design Variables

Identify a set of variables that describe the system, called the design variables. These are
the optimization variables and are free so that any value can be assigned to them. The
number of independent design variables gives the design degrees of freedom for the
problem.

Design variables should be independent of each other as far as possible. If they are not,
there must be some equality constraints between them. There must be a minimum number
of design variables to properly formulate a design optimization problem. A numerical value
should be given to each identified design variable to determine if a trial design of the system
is specified.

1.3.4 Optimization Criterion

The optimization criterion is a scalar function which produces a numerical value once a
design is specified; i.e. when the design variable vector x is substituted into it. This criterion
is called the objective function for the optimum design problem, and it needs to be
maximized or minimized depending on the problem. The selection of a proper objective
function is an important decision in the design process. Some objective functions are: Cost
(minimized); Profit (maximized), Weight (minimized), Energy expenditure (minimized),
Vehicle ride quality (maximized).

1.3.5 Formulation of Constraints

All restrictions on the design are called constraints. It is necessary to identify all constraints
and develop expressions for them. Most realistic systems must be designed and
manufactured with the given resources and must meet performance requirements. For
example:
a. Structural members should not fail under normal operating loads.
b. Structural vibration frequencies must be different from the operating frequency of the
machine it supports; otherwise, resonance can occur and cause catastrophic failure.
c. Members must fit into the available space.
d. These constraints must depend on the design variables.
A meaningful constraint must be a function of at least one design variable.

1.3.6 Formulate the Optimization Problem

This is where everything from steps 2, 3, 4 and 5 are put together to formulate the
optimization problem in the form of (1.4).

Minimize: f(x)
Subjectto: @;(x)<0; i=1to m (1.4)
h(x)=0; j=1top
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Chapter 2

Graphical Method of Optimization

2.0 Introduction

Optimization problems having only two design variables can be solved by observing how they
are graphically represented. All constraint functions are plotted, and a set of feasible designs
(the feasible set) for the problem is identified. Objective function contours are then drawn, and
the optimum design is determined by visual inspection. In this section, the graphical solution
process will be introduced as well as several concepts related to optimum design problems.
The method will be introduced using a simple example of profit maximisation followed by a
further example.

2.1 Defining a Profit Maximization Example

Step 1: Project Description

A company manufactures two machines, A and B. Using available resources, either 28 A or
14 B can be manufactured daily. The sales department can sell up to 14 A machines or 24 B
machines. The shipping facility can handle no more than 16 machines per day. The company
makes a profit of £400 on each A machine and £600 on each B machine. How many A and B
machines should the company manufacture every day to maximize its profit?

STEP 2: Data and information collection
Is all the information available to solve the problem? Data and information are defined in the
project statement.

STEP 3: Definition of design variables

The following two design variables are identified in the problem statement:
x1i=Number of A machines made each day
x2=Number of B machines made each day

STEP4: Optimization criterion:
The objective is to maximize daily profit, which can be expressed in terms of design variables
as (2.1)

P = 400x, + 600X, (2.1)
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STEP 5: Formulation of constraints

Design constraints are placed on manufacturing capacity, on sales personnel and on shipping
and handling facility. The constraint on the shipping and handling facility is quite
straightforward and is given by (2.2).

Shipping and Handling Constraints
X, + X, <16 (2.2)

Constraints on manufacturing and sales facilities are a bit tricky. First, consider the
manufacturing limitation. It is assumed that if the company is manufacturing x; A machines
per day, then the remaining resources and equipment can be proportionately used to
manufacture x. B machines, and vice versa. Therefore, noting that xi/28 is the fraction of
resources used to produce A and x»/14 is the fraction used to produce B, the constraint is
expressed as (2.3).

Manufacturing Constraint

X X

L +2<1 (2.3)

28 14
Similarly, the constraint on sales department resources is given as (2.4).

Sales limitation

X X2 o9 2.4)
14 24

Finally, the design variables must be non-negative, given in (2.5).

X, X, =20 (2.5)

Note that for this problem, the formulation remains valid even when a design variable has zero
value. The problem has two design variables and five inequality constraints. All functions of
the problem are linear in variables x1 and x.. Therefore, it is a linear programming problem.
Note also that for a meaningful solution, both design variables must have integer values at the
optimum point.

2.2 Step by Step Graphical Solution Procedure

STEP 1: Coordinate system set-up

The first step in the solution process is to set up an origin for the x-y coordinate system and
scales along the x- and y-axes. By looking at the constraint functions, a coordinate system for
the profit maximization problem can be set up using a range of 0 to 25 along both the x and y
axes, Figure 2.1 In some cases, the scale may need to be adjusted after the problem has
been graphed because the original scale may provide too small or too large a graph for the
problem.
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Figure 2.1: x-y coordinate system with the range of 0 to 25 along both the x and y axes.

STEP 2: Inequality constraint boundary plot
To illustrate the graphing of a constraint, let us consider the inequality X, + X, <16 given

in (2.2). To represent the constraint graphically, we first need to plot the constraint boundary;
that is, the points that satisfy the constraint as an equality X, + X, =16 . This is a linear
function of the variables x; and x,. To plot such a function, we need two points that satisfy the
equation X, + X, =16 . Let these points be calculated as (16, 0) and (0, 16). Locating them
on the graph and joining them by a straight line produces the line F-J, as shown in Figure 2.2.
Line F-J then represents the boundary of the feasible region for the inequality constraint
X, + X, <16 . Points on one side of this line violate the constraint, while those on the other
side satisfy it.

X2
25 [

20/

L 1y,
0 5 10 15 20 25

Figure 2.2: Constraint boundary for the inequality X, + X, <16 in the profit
maximization problem.
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STEP 3: Identification of the feasible region for an inequality
The next task is to determine which side of constraint boundary F-J is feasible for the constraint
X; + X, <16 . To accomplish this, we select a point on either side of F-J and evaluate the

constraint function there. For example, at point (0,0), the left side of the constraint has a value
of 0. Because the value is less than 16, the constraint is satisfied and the region below F-J is
feasible. We can test the constraint at another point on the opposite side of F-J, say at point
(10, 10). At this point the constraint is violated because the left side of the constraint function
is 20, which is larger than 16. Therefore, the region above F-J is infeasible with respect to the
constraint, as shown in Figure 2.3. The infeasible region is “shaded-out,” a convention that is
used throughout this text. Note that if this were an equality constraint X, + X, =16, the

feasible region for it would only be the points on line F-J. Although there are infinite points on
F-J, the feasible region for the equality constraint is much smaller than that for the same
constraint written as an inequality. This shows the importance of properly formulating all the
constraints of the problem.

X2
251

20/

Infeasible
Xy + x> 16

°
10,10

X1+ X =16
Feasible

X+ X< 16

ole 00 N .

Figure 2.3: Feasible/infeasible side for the inequality xX; + X, <16 in the profit
maximization problem.

STEP 4: Identification of the feasible region By following the procedure that is described in
step 3, all inequalities are plotted on the graph and the feasible side of each one is identified
(if equality constraints were present, they would also be plotted at this stage). Note that the

constraints X,, X, = O restrict the feasible region to the first quadrant of the coordinate

system. The intersection of feasible regions for all constraints provides the feasible region for
the profit maximization problem, indicated as ABCDE in Figure 2.4. Any point in this region or
on its boundary provides a feasible solution to the problem.

STEP 5: Plotting of objective function contour
The next task is to plot the objective function on the graph and locate its optimum points. For

the present problem, the objective is to maximize the profit P = 400 x; + 600 X,, , which

involves three variables: P, xi1, and x,. The function needs to be represented on the graph so
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that the value of P can be compared for different feasible designs to locate the best design.
However, because there are infinite feasible points, it is not possible to evaluate the objective
function at every point. One way of overcoming this impasse is to plot the contours of the
objective function.

X2

25

g3

20

Feasible

0 5 10 15 20 25

Figure 2.4: Feasible region for the profit maximization problem.

A contour is a curve on the graph that connects all points having the same objective function
value. A collection of points on a contour is also called the level set. If the objective function is
to be minimized, the contours are also called isocost curves. To plot a contour through the
feasible region, we need to assign it a value. To obtain this value, consider a point in the
feasible region and evaluate the profit function there. For example, at point (6,4), P is
P =400x6+600x4=4800. To plot the P=4800 contour, we plot the function

400x, + 600x, = 4800 .This contour is a straight line, as shown in Figure 2.5.

STEP 6: Identification of the optimum solution

To locate an optimum point for the objective function, we need at least two contours that pass
through the feasible region. We can then observe trends for the values of the objective function
at different feasible points to locate the best solution point. Contours for P=2400, 4800, and
7200 are plotted in Figure 2.6. We now observe the following trend: As the contours move up
toward point D, feasible designs can be found with larger values for P. It is clear from
observation that point D has the largest value for P in the feasible region. We now simply read
the coordinates of point D (4, 12) to obtain the optimum design, having a maximum value for
the profit function as P=8800. Thus, the best strategy for the company is to manufacture 4 A
and 12 B machines to maximize its daily profit. The inequality constraints in (2.2) and (2.3) are
active at the optimum; that is, they are satisfied at equality. These represent limitations on
shipping and handling facilities, and on manufacturing. The company can think about relaxing
these constraints to improve its profit. All other inequalities are strictly satisfied and therefore
inactive. Note that in this example the design variables must have integer values. Note also
that for this example all functions are linear in design variables. Therefore, all curves in Figures
2.2 through 2.6 are straight lines. In general, the functions of a design problem may not be
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linear, in which case curves must be plotted to identify the feasible region, and contours or
isocost curves must be drawn to identify the optimum design. To plot a nonlinear function, a
table of numerical values for x;and x, must be generated. These points must be then plotted
on a graph and connected by a smooth curve.

X3
25+

201
151

101

O-"""""'"""""""‘X]
V] b 10 15 20 25

Figure 2.5: Plot of P=4800 objective function contour for the profit maximization problem.

X2

251

20

| B J H
0 5 10 15 20 25

Figure 2.6: Graphical solution to the profit maximization problem: optimum point D = (4,
12); maximum profit, P = 8800.

2.3 Design Problem with Multiple Solutions

A situation can arise in which a constraint is parallel to the cost function. If the constraint is
active at the optimum, there are multiple solutions to the problem. To illustrate this situation,
consider the design problem of (2.6).

Minimize: f(x)=—x, —0.5x, (2.6)
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Subject to: 2X; +3x, <12
2X, + X, <8

where: 0 < Xx;;0=<x,

In this problem, the second constraint is parallel to the cost function. Therefore, there is a
possibility of multiple optimum designs. Figure 2.7 provides a graphical solution to the
problem. It is seen that any point on the line B-C gives an optimum design, giving the
problem infinite optimum solutions.

X2
A
8 p—
6 —
D
4 —
2)(1 + 3)'(2 =12
2— Optimum solution
- line B-C
A\
\2
» X
I I I !
A 2 4 6

Figure 2.7: Example problem with multiple solutions

24 Design Problem with Unbounded Solutions

Some design problems may not have a bounded solution. This situation can arise if we forget
a constraint or incorrectly formulate the problem. To illustrate such a situation, consider the
design problem of (2.7).
Minimize: f(x)= —x, + 2x,
Subjectto: —2X%; +X, <0
(2.7)
—2X, +3X%X, <6

where: 0 =<Xx,;;0=<Xx,

The feasible set for the problem is shown in Figure 2.8 with several cost function contours.

It is seen that the feasible set is unbounded. Therefore, there is no finite optimum solution,
and we must re-examine the way the problem was formulated to correct the situation.

Figure 2.8 shows that the problem is underconstrained.
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Figure 2.8: Example problem with unbounded solutions

2.5 Design Problem with Infeasible Solutions

If we are not careful in formulating it, a design problem may not have a solution, which happens
when there are conflicting requirements or inconsistent constraint equations. There may also
be no solution when we put too many constraints on the system; that is, the constraints are so
restrictive that no feasible solution is possible. These are called infeasible problems. To
illustrate them, consider the design problem of (2.8).

Minimize: f(x)=x, +2x,
Subjectto: 3x; +2X, <6
2X, +3X, 212

where: X, <5; X, <5; X,>0; x, >0

(2.8)

Constraints for the problem are plotted in Figure 2.9 and their infeasible side is shaded out.
It is evident that there is no region within the design space that satisfies all constraints; that is,
there is no feasible region for the problem. Thus, the problem is infeasible. Basically, the first
two constraints impose conflicting requirements. The first requires the feasible design to be
below the line A-G, whereas the second requires it to be above the line C-F. Since the two
lines do not intersect in the first quadrant, the problem has no feasible region.
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Figure 2.9: Example problem with infeasible solutions

2.6 Summary of Steps to Solve an Optimization Problem Graphically

The 6 steps outlined in section 2.2, related to solving the problem defined in section 2.1,
which consisted of only inequality constraints. However, as optimization problems can have
both equality and inequality constraints, the steps in solving a graphical optimization problem
are best summarised as follow:

1) Select a suitable coordinate system, and choose an appropriate range for the
optimization variables.

2) Plot a contour for each equality and inequality constraint function to define the
boundaries of the design domain. If required, adjust the range of values to plot for the
design variables.

3) ldentify the feasible region for each inequality constraint function plotted.

4) Identify the feasible design domain region.

5) Plot several contours of the objective function, for different decreasing (if
minimization) or increasing (if maximization) values of the objective function.

6) Identity the optimal solution. Read from the graph, or manipulate the constraint
equations and the objective function to obtain the optimal solution.

2.7 Example

Solve the optimization problem of (2.9) graphically.

Minimize: f(XX,)=4x7 —5X,X, + X}
Subject to:  g(X,X%,)=X; —X, +2<0 (2.9)

h(X,X%,)=% +X, —6=0
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Following the 6 steps outlined in section 2.6, the solution to this problem is as follows:
1) Select a suitable coordinate system.

In looking at the objective function and constraints, all are a function of design variables x;
and x2. Consequently in solving this graphically, it is customary to place the design variable x
on the vertical axis, and the variable x; on the horizontal axis.

Note that: There are no limits placed on the design variables. Therefore, they could both be
either positive or negative and have any value from -« to +«. However, let’s start by defining
a plausible range for xi, then substitute into the constraint as if they were all equality
constraints to define a range for x..

Let’'s assume the range for x; to be: -10 < x, <10. Now, rearrange the equality and inequality
constraint equations, to calculate x. from the range of xi.
g(X,%,) =% =X, +2<0= X%, - X, +2=0
Xy =X2 42 (@)
h(X,X,)=% +X,-6=0

SoXy = 6- X, (b)

Now substitute the limits of x3, into (a) and (b) to solve for the limits of xa.

At x; =-10
X, =X +2;
X, =-10° +2 =102
X, =6-X,;
X, =6--10=16
At x; =10
X, =X +2;

X, =10° +2=102
X, =6-X;
X,=6-10=-4

Which then means that the range of values for xz is: -4 < x, <102

And the design domain area is then that given by Figure 2.10, where these limits have been
rounded to the nearest 10, so from -10 up to 110.

Page 22
Copyright © 2024 University of Leeds UK. All rights reserved.



110 ¢
X |
90 |
70

50

30 +

-10 -8 -6 -4 -2 B 2
-10

Figure 2.10: Coordinate system for problem (2.9).

2) Plot a contour for each equality and inequality constraint function

4

With the rearranged equations (a) and (b), now calculate values of x. in the range for x; of

-10<x, <10.

Table 2.1: Calculated values of x2

from range of x1

g h

X1 X2 (9) X2 (h)
-10 102.0 16
-9 83.0 15
-8 66.0 14
-7 51.0 13
-6 38.0 12
-5 27.0 11
-4 18.0 10
-3 11.0 9
-2 6.0 8
-1 3.0 7
0 2.0 6
1 3.0 5
2 6.0 4
3 11.0 3
4 18.0 2
5 27.0 1
6 38.0 0
7 51.0 -1
8 66.0 -2
9 83.0 -3
10 102.0 -4

The values from table 2.1 are then plotted in Figure 2.11 to show the contours of the equality
and inequality constraint. In looking at this figure, since the solution to the optimization
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problem must lie on the equality constraint, it is easy to see, that the range of values for both
design variables needs to be changed.

110

X

x2 (g)

%0 - %2 (h)

70

50 r

30 r

10

-10 -8 -6 -4 -2 :] 2 4 6 8 X4 I0
-10 -

Figure 2.11: Coordinate system for problem (2.9).
The range to plot is therefore now changed to be-3<x,<2,and 0<x, <10.

10 -

X2

X2 (g)
8 + x2 (h)

3 -2.5 -2 -15 -1 -0.5 0 0.5 1 15 X1 2

Figure 2.12: Coordinate system for problem (2.9) with new range for the design variables.

In looking at Figure 2.12, the plot of the constraint equations is not very smooth, so more
points are required. Instead of the gap between each point set at 1, a new set of values was
calculated with a gap between values of 0.1, to generate the smoother plot of Figure 2.13.

3) Identify the feasible region for each inequality constraint.

Now that the equality and inequality constraints have been plotted, we can identify the
feasible region of the inequality constraint. To do this, we need to rearrange the inequality
constraint to determine which values of x» are in the feasible domain.
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g(XuX,) =%, =X, +2<0
= X2 +2<X,
. 2
Xy 2 Xy 42 (c)

10
X3

x2 (g)
8 r x2 (h)

...............................................

-3 -2.5 -2 -15 -1 -0.5 0 0.5 1 15 X4 2

Figure 2.13: Coordinate system for problem (2.9) with smoother plot than Figure 2.12.

From equation (c) we can see that all values of x,, greater than or equal to the boundary for
the plot of x. in Figure 2.13, corresponds with the feasible domain for this inequality
constraint. This is now shown in Figure 2.14 with a shaded area for the infeasible domain.

10

X2

x2 (g)
8 x2 (h)

Feasible

Infeasible 3

-3 -2.5 -2 -15 -1 -0.5 0 0.5 1 15 X1 2
Figure 2.14: Plot of constraint equations showing the feasible region for the inequality
constraint equation.
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4) Identify the feasible design domain region.

Since the feasible region is above the plot of equation (a), and since the problem has an
equality constraint, then the feasible design domain is that part of the plot of equation (b)

within the feasible region. Figure 2.15, shows the feasible resign region.

10

X2

Feasible region x2 (g)

Infeasible

3 -2.5 -2 -15 -1 -0.5 0 0.5 1 15 X1 2

Figure 2.15: Plot of constraint equations showing the feasible region for the inequality

constraint equation.

5) Plot several contours of the objective function

In order to plot contours of the objective function, it needs to be manipulated so that we can
calculate values of x, as a function of values of xi1. So, rearranging the objective function

gives:
f (XX, ) =4x7 —=5X,X, + X5
Ax? —5x,X, + X2 —f =0
X2 —5x,X, +4xZ —f =0
X5 =(5%) %, +(4x] ) =0

Equation (d) is in the form of a quadratic equation of the form of equation (e).

ax; +bx, +c=0
where:
a=1b=-5x,c=4x—f

and where the solution to equation (e) is found using equation (g)

_ bz Vb? —4ac

2a

X,
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Now substituting (f) into (g) gives equation (h), which will allow for the calculation of x», at
different values of xi, for different objective function values of f. Thus allowing for the
generation of contour plots for different values of f.

B —bi ,bZ —4aC B —(—5X1)i\/(—5xl)2 —4x1x (4Xf —f)

X,

2a 2x1
5X, + /252 + 4f —16X?
X, = 5
= 5X, + /9% + 4f (h)
X, =
2

When equation (h) is plotted, for different values of f, the plot of Figure 2.17 is generated. To
begin with, different values of f were tried until the plots of the contours started to appear
within the feasible domain. Then only plots for values of f = 100, 50, 10, 0 and -5 were

plotted.
10 X2 (e)
Feasible line region Xz x2 (h)
9 f+=100
f-=100
/ f+=50
8 ——1f-=50
f+=10
—1f=10
7 f+=0
Decreasing value of f —; =0
+=-5

—f =35

Infeasible

NA

—‘3‘ B I2‘5I - ‘—2 -1.5 -1 -0.5 0 0.5 1 15 Xy 2
Figure 2.17: Contour plots of the objective function using equation (h).

As can clearly be seen from Figure 2.17, the contour of the objective function decrease in
value as they get closer to the intersection of both constraints on the right hand quadrant of
plot. Such that the contour for f = -5 is the lowest value which is within the feasible line

region.
6) Identity the optimal solution

From Figure 2.17, we can see that the optimum value is at the intersection of both
constraints on the right hand quadrant of plot. If both constraint equations (a) and (b) are
now solved, we can find the values of x1, X2 and f, which will be the optimum value for this

problem.
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As (a) and (b) are both equal to x», both equations are therefore equal to each other, which
gives:

X, =X2+2=6-X,

X2 +X%+2-6=0

X2+ %, —-4=0 0)

Solving the quadratic equation (i) gives:
X2+ % —4=0

-1+ \/12 —4x1x(-4) _—1+1+16

X =
! 2x1 2
—1++/ -1+
X, = 1—2 17 _ 1—‘;‘1231}2.5616 or 1.5616 0
|

And from Figure 2.17, since x; has to be positive, then the value of x; is 1.5616, substituting
into (b), and then into the objective function gives that the optimal values for the design
variables and the optimum value for the objective function are:

x, =1.5616
x, = 4.4384
f =-5.20125

These are then plotted onto Figure 2.18 to show the optimal solution to this problem

10

) . . —x2(g)
Feasible line region X5 x2 (h)

9 f+= 100
f-=100
f+=50

8 —f =50

f+=10
—f=10

5

Optimum valye

Infeasible

-3 -2.5 -2 -15 -1 -0.5 0 0.5 1 15 X1 2
Figure 2.18: Contour plots of the objective function showing the optimal solution
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Chapter 3

Unconstrained Optimization Methods

3.0 Introduction

This chapter looks at some methods for solving unconstrained nonlinear optimization
problems.

3.1 The Bisector Method

In the interval halving method, exactly one-half of the current interval of uncertainty is
deleted in every stage. It requires three experiments in the first stage and two experiments in
each subsequent stage. The procedure can be described by the following four steps:

1. Divide the initial interval [a,b] of uncertainty L, =b—a into four equal parts
AX = (b —a)/4 and label the middle point X, = a + 2Ax and the quarter-interval points
X, =a+AXand X, =a+3AX.

2. Evaluate the function f (x) at the three interior points to obtain f, = f(Xl), fo :f(xo), and
f, =f(x,).
3. There are then 3 cases to consider corresponding with Figure 3.1, these are:
a) If f2 >f0 > fl as shown in Figure 3.1(a), delete the interval (xo, b), label x1 and xo as
the new X and b, respectively, and go to step 4.
b) If f2 <f0 <f1 as shown in Figure 3.1(b), delete the interval (a, Xo), label x> and xo as
the new X and a, respectively, and go to step 4.
c) If fl > fo and f2 => fo as shown in Figure 3.1(c), delete both the intervals (a, x1)

and (xz, b), label x, and x. as the new a and b, respectively, and go to step 4.
4. Test whether the new interval of uncertainty, L = b —a, satisfies the convergence
criterion L < €, where ¢ is a small quantity. If the convergence criterion is satisfied, stop

the procedure. Otherwise, set the new I—o =L and go to step 1.

Remarks:
1. In this method, the function value at the middle point of the interval of uncertainty, £, will

be available in all the stages except the first stage.
2. The interval of uncertainty remaining at the end of n experiments (n =2 3 and odd) is given
by (3.1).
(n-1)

] :[E) "L (3.1)
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Figure 3.1: Possibilities in the interval halving method: (a) f, >f, >f,; (b) f, <f, <f,; (C)

f,>f,and f, > f, .

Bisector Example Problem 1: Problem 45 in Worked Examples
Minimize f(x) = 7x% — 20x + 22 for —2 < x < 4 with Bisector Search Parameters: xmin=-2,

xmax=4, convergence tolerance = 0.01. Calculations:

iteration 1 of bisector search, domain length = 6.00000

a=-2.000 f(a)=90.000

x1=-0.500 f(x1)=33.750

x0=1.000 f(x0)= 9.000

x2=2.500 f(x2)=15.750

b= 4.000 f(b)=54.000

iteration 2 of bisector search, domain length = 3.00000
=-0.500 f(a)=33.750

x1= 0.250 f(x1)=17.438

x0= 1.000 f(x0)= 9.000

x2=1.750 f(x2)= 8.438

b= 2.500 f(b)=15.750

iteration 3 of bisector search, domain length = 1.50000

a= 1.000 f(a)= 9.000

x1=1.375 f(x1)=7.734

x0=1.750 f(x0)= 8.438

x2=2.125 f(x2)=11.109

b= 2.500 f(b)=15.750

iteration 4 of bisector search, domain length = 0.75000

a= 1.000 f(a)= 9.000

x1=1.188 f(x1)= 8.121

x0=1.375 f(x0)= 7.734

x2=1.563 f(x2)= 7.840

b= 1.750 f(b)= 8.438

iteration 5 of bisector search, domain length = 0.37500

a=1.188 f(a)=8.121

x1=1.281 f(x1)= 7.866

x0= 1.375 f(x0)= 7.734

x2=1.469 f(x2)= 7.726

b= 1.563 f(b)= 7.840

iteration 6 of bisector search, domain length = 0.18750

a= 1.375f(a)=7.734

x1=1.422 f(x1)= 7.715

x0=1.469 f(x0)= 7.726
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x2=1.516 f(x2)= 7.767

b=1.563 f(b)= 7.840

iteration 7 of bisector search, domain length = 0.09375
a= 1.375f(a)=7.734

x1=1.398 f(x1)= 7.721

x0=1.422 f(x0)= 7.715

x2=1.445 f(x2)= 7.716

b= 1.469 f(b)= 7.726

iteration 8 of bisector search, domain length = 0.04688
a= 1.398 f(a)=7.721

x1=1.410 f(x1)= 7.717

x0=1.422 f(x0)= 7.715

x2=1.434 f(x2)=7.714

b= 1.445 f(b)= 7.716

iteration 9 of bisector search, domain length = 0.02344
a=1.422 f(a)=7.715

x1=1.428 f(x1)=7.714

x0=1.434 f(x0)= 7.714

x2=1.439 f(x2)= 7.715

b= 1.445 f(b)= 7.716

iteration 10 of bisector search, domain length = 0.01172
a= 1.422 f(a)= 7.715

x1= 1.425 f(x1)= 7.714

x0= 1.428 f(x0)= 7.714

x2= 1.431 f(x2)= 7.714

b= 1.434 f(b)=7.714

search completed after 10 iterations xmin= 1.42773 fmin= 7.71429

90
80 \
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7x2-20x+22
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-2 -1 0 1 2 3 4
Bisector Example Problem 2: Problem 46 in Worked Examples
Minimize f(x) = x3 + x? — x — 2 for —1 < x < 2 with Bisector Search Parameters: xmin=-1,
xmax=2, convergence tolerance = 0.01. Calculations:

iteration 1 of bisector search, domain length = 3.00000
a=-1.000 f(a)=-1.000

x1=-0.250 f(x1)=-1.703

x0=0.500 f(x0)=-2.125

x2=1.250 f(x2)= 0.266

b= 2.000 f(b)= 8.000

iteration 2 of bisector search, domain length = 1.50000
a=-0.250 f(a)=-1.703

x1=0.125 f(x1)=-2.107

x0=0.500 f(x0)=-2.125

x2=0.875 f(x2)=-1.439

b= 1.250 f(b)= 0.266

iteration 3 of bisector search, domain length = 0.75000
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a= 0.125 f(a)=-2.107

x1=0.313 f(x1)=-2.184

x0= 0.500 f(x0)=-2.125

x2=0.688 f(x2)=-1.890

b= 0.875 f(b)=-1.439

iteration 4 of bisector search, domain length =
a= 0.125 f(a)=-2.107

x1=0.219 f(x1)=-2.160

x0=0.313 f(x0)=-2.184

x2=0.406 f(x2)=-2.174

b= 0.500 f(b)=-2.125

iteration 5 of bisector search, domain length =
a=0.219 f(a)=-2.160

x1=0.266 f(x1)=-2.176

x0=0.313 f(x0)=-2.184

x2=0.359 f(x2)=-2.184

b= 0.406 f(b)=-2.174

iteration 6 of bisector search, domain length =
a= 0.266 f(a)=-2.176

x1=0.289 f(x1)=-2.181

x0=0.313 f(x0)=-2.184

x2=0.336 f(x2)=-2.185

b= 0.359 f(b)=-2.184

iteration 7 of bisector search, domain length =
a=0.313f(a)=-2.184

x1=0.324 f(x1)=-2.185

x0= 0.336 f(x0)=-2.185

x2=0.348 f(x2)=-2.185

b= 0.359 f(b)=-2.184

iteration 8 of bisector search, domain length =
a= 0.324 f(a)=-2.185

x1=0.330 f(x1)=-2.185

x0= 0.336 f(x0)=-2.185

x2=0.342 f(x2)=-2.185

b= 0.348 f(b)=-2.185

iteration 9 of bisector search, domain length =
a= 0.330 f(a)=-2.185

x1=0.333 f(x1)=-2.185

x0=0.336 f(x0)=-2.185

x2=0.339 f(x2)=-2.185

b= 0.342 f(b)=-2.185

search completed after 9 iterations xmin=0.33301 fmin= -2.18518
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3.2 The Golden Section Method

The Golden Section Method is one of the better methods in the class of interval-reducing
methods. The basic idea of the method is as follows: Evaluate the function at predetermined
points, compare them to find the minimum. Then converge on the minimum point by
systematically reducing the interval of uncertainty. The method uses fewer function
evaluations to reach the minimum point compared with other similar methods.

The different steps of the Golden Search Algorithm used for the minimization of a single
value function in the interval [a,b]are as follow:

1) Ifthis is the first iteration define the search interval [a,,b, Jto be the specified interval in
which to search for the minimum, given by (3.2).

[a, =a,b, =b] (3.2)

2) Calculate two intermediate points [a,, b, | in the interval [a,,b, ], using (5.3) and (5.4):
2y =3, + plby —a) (3.3)
b, =b, _p(bo _ao) (3.4)

mEm:p=§%¥§:03m97

3) Evaluate the function at the two intermediate points [a,, b, |to obtain f(a,) and f(b,):

4) Determine the new search limit by the following comparisons:
a) If (3.5) is satisfied, the minimum point lies between ap and b1, so the new search interval
is then given by becomes (3.6). Go to step 5.
fa)<f(b,) (3.5)

[ao = ambo = bl] (3.6)

b) If (3.7) is satisfied, the minimum point lies between a; and bo, then the new search
interval becomes (5.8). Go to step 5.

f(a,)>f(b,) (3.7)
la, =a,,b, =1y, (3.8)
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c) If (3.9) is satisfied, the minimum point lies between a; and b, then the new search

interval becomes (3.10). Go to step 5
f(a,)="1(b,)

[ao = a11bo = bl]

5) Calculate the Interval of Uncertainty (1), using (3.11).

(3.9)
(3.10)

(3.11)

6) Check limit to stop algorithm. If (I) is equal to, or smaller than the specified minimum
range (3.12), using (3.13) calculate the optimal functional value and stop, else go to

step 2.
| < Range

X

Golden Search Example Problem 1: Problem 45 in Worked Examples

Optimum —

(3.12)
(3.13)

Minimize f(x) = 7x? — 20x + 22 for —2 < x < 4 with Golden Search Parameters: xmin=-2,

xmax=4, tol=0.01. Calculations:

iteration 1 of golden section, domain length =

a0=-2.000 f(a0)=90.000
al=0.292 f(a1)=16.760
bl= 1.708 f(bl)= 8.262
bO= 4.000 f(b0)=54.000

iteration 2 of golden section, domain length =

a0= 0.292 f(a0)=16.760
al=1.708 f(al)= 8.262
bl= 2.584 f(b1)=17.053
b0= 4.000 f(b0)=54.000

iteration 3 of golden section, domain length =

a0= 0.292 f(a0)=16.760
al= 1.167 f(al)= 8.193
bl= 1.708 f(b1)= 8.262
b0= 2.584 f(b0)=17.053

iteration 4 of golden section, domain length =

a0= 0.292 f(a0)=16.760
al= 0.833 f(a1)=10.199
bl=1.167 f(b1)= 8.193
bO= 1.708 f(bo)= 8.262

iteration 5 of golden section, domain length =

a0= 0.833 f(a0)=10.199
al= 1.167 f(al)= 8.193
bl= 1.374 f(bl)= 7.735
bO= 1.708 f(bo)= 8.262

iteration 6 of golden section, domain length =

a0= 1.167 f(a0)= 8.193
al=1.374f(al)= 7.735
bl= 1.502 f(b1)= 7.752
bO= 1.708 f(bo)= 8.262

iteration 7 of golden section, domain length =

a0= 1.167 f(a0)= 8.193
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al=1.295 f(al)= 7.839
bl=1.374 f(b1)= 7.735
b0= 1.502 f(bo)= 7.752

iteration 8 of golden section, domain length =

a0= 1.295 f(a0)= 7.839
al=1.374 f(al)= 7.735
bl= 1.423 f(bl)= 7.715
b0= 1.502 f(bo)= 7.752

iteration 9 of golden section, domain length =

a0= 1.374 f(a0)= 7.735
al=1.423 f(al)= 7.715
bl= 1.453 f(b1)= 7.718
b0= 1.502 f(bo)= 7.752

iteration 10 of golden section, domain length =

a0= 1.374 f(a0)= 7.735
al= 1.404 f(al)= 7.719
bl= 1.423 f(bl)= 7.715
bO= 1.453 f(bo)= 7.718

iteration 11 of golden section, domain length =

a0= 1.404 f(a0)= 7.719
al=1.423 f(al)= 7.715
bl= 1.434 f(bl)= 7.715
bO= 1.453 f(bo)= 7.718

iteration 12 of golden section, domain length =

a0= 1.423 f(a0)= 7.715
al= 1.434 f(al)= 7.715
bl= 1.441 f(bl)= 7.715
bO= 1.453 f(bo)= 7.718

iteration 13 of golden section, domain length =

a0= 1.423 f(a0)= 7.715
al= 1.430 f(al)= 7.714
bl= 1.434 f(bl)= 7.715
bO= 1.441 f(bo)= 7.715

iteration 14 of golden section, domain length =

a0=1.423 f(a0)=7.715
al=1.427 f(al)=7.714
bl=1.430 f(b1)=7.714
b0=1.434 f(bo)=7.715
Golden section completed after
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0.01863
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1.43058 fmin=

7.71431
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Golden Search Example Problem 2: Problem 46 in Worked Examples

Minimize f(x) = x3 + x? — x — 2 for —1 < x < 2 with Golden Search Parameters: xmin=-1,

Xmax=2, convergence tolerance = 0.01. Calculations:
iteration 1 of golden section, domain length =

a0=-1.000 f(a0)=-1.000
al= 0.146 f(al)=-2.122
bl= 0.854 f(b1)=-1.502
bO= 2.000 f(bo)= 8.000

iteration 2 of golden section, domain length =

a0=-1.000 f(a0)=-1.000
a1=-0.292 f(al)=-1.648
bl= 0.146 f(b1)=-2.122
b0= 0.854 f(b0)=-1.502

iteration 3 of golden section, domain length =

a0=-0.292 f(a0)=-1.648
al= 0.146 f(al)=-2.122
bl= 0.416 f(b1)=-2.171
b0O= 0.854 f(b0)=-1.502

iteration 4 of golden section, domain length =

a0= 0.146 f(a0)=-2.122
al=0.416 f(al)=-2.171
bl= 0.584 f(b1)=-2.044
b0= 0.854 (b0)=-1.502

iteration 5 of golden section, domain length =

a0= 0.146 f(a0)=-2.122
al=0.313 f(al)=-2.184
bl= 0.416 f(b1)=-2.171
b0= 0.584 f(b0)=-2.044

iteration 6 of golden section, domain length =

a0= 0.146 f(a0)=-2.122
al= 0.249 f(al)=-2.172
bl=0.313 f(b1)=-2.184
b0= 0.416 f(b0)=-2.171

iteration 7 of golden section, domain length =

a0= 0.249 f(a0)=-2.172
al=0.313 f(al)=-2.184
bl= 0.353 f(b1)=-2.184
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b0=0.416 f(bo)=-2.171

iteration 8 of golden section, domain length = 0.10333
a0=0.313 f(a0)=-2.184

al=0.353 f(al)=-2.184

b1=0.377 f(b1)=-2.181

b0=0.416 f(bo)=-2.171

iteration 9 of golden section, domain length = 0.06386
a0=0.313 f(a0)=-2.184

al=0.337 f(al)=-2.185

b1=0.353 f(b1)=-2.184

b0=0.377 f(bo)=-2.181

iteration 10 of golden section, domain length = 0.03947
a0=0.313 f(a0)=-2.184

al=0.328 f(al)=-2.185

b1=0.337 f(b1)=-2.185

b0O= 0.353 f(bo)=-2.184

iteration 11 of golden section, domain length = 0.02439
a0=0.328 f(a0)=-2.185

al=0.337 f(al)=-2.185

b1=0.343 f(b1)=-2.185

b0= 0.353 f(bo)=-2.184

iteration 12 of golden section, domain length = 0.01507
a0=0.328 f(a0)=-2.185

al=0.334 f(al)=-2.185

b1=0.337 f(b1)=-2.185

b0= 0.343 f(bo)=-2.185

Golden section completed after 12 iterations xmin= 0.33282 fmin= -2.18518

8

XCx?x-2
N

L L L L L
-1 0.5 0 0.5 1 15 2!

3.3 Fibonacci Search Method
The Fibonacci sequence Fi1, F2, Fs,...,Fn is defined as follows. Starting with the following two
values: F, =0 and F, =1

Then for values of k >0 we have that (3.14) defined the Fibonacci sequence:
F.=FR+F (3.14)

The first 10 values of the Fibonacci sequence are then given in Table 5.1.
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Table 5.1: Fibonacci Sequence

k Fx
-1 0
0 1
1 1
2 2
3 3
4 5
5 8
6 13
7 21
8 34
9 55
10 89

Instead of using the a constant value of p(=0.38197), as was the case for the Golden search

method, for the Fibonacci search, the value of p, changes with iteration number and is given

by the sequence of (3.15). Note that the sequence of p, is in reverse order to the Fibonacci
number sequence, and that you always need one more Fibonacci sequence number than the

number of iterations required!!

F
py=1-—"
I:N+1
F
p — 1_ N-1
2 FN
F
pk — 1 N-k+1
l:N—k-¢—2
F
—1-1L
PN F,

Fibonacci Search Example Problem 1: Problem 45 in Worked Examples

(3.15)

Minimize f(x) = 7x? — 20x + 22 for —2 < x < 4 with Fibonacci Search Parameters: N=8

Fibonacci terms (i.e. 7 Fibonacci iterations), xmin=-2, xmax=4. Calculations:
iteration 1 of fibonacci, rho = 0.38182 domain length = 6.00000
a0=-2.000 f(a0)=90.000
al=0.291 f(al)=16.774
b1=1.709 f(b1)= 8.265
b0=4.000 f(bo)=54.000
iteration 2 of fibonacci, rho = 0.38235 domain length = 3.70909
a0=0.291 f(a0)=16.774
al=1.709 f(al)= 8.265
bl=2.582 f(b1)=17.024
b0=4.000 f(bo)=54.000
iteration 3 of fibonacci, rho = 0.38095 domain length = 2.29091
a0=0.291 f(a0)=16.774
al=1.164 f(al)= 8.206
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b1=1.709 f(b1l)= 8.265

b0=2.582 f(b0)=17.024

iteration 4 of fibonacci, rho = 0.38462 domain length = 1.41818
a0=0.291 f(a0)=16.774

al=0.836 f(a1)=10.169

bl=1.164 f(b1)= 8.206

b0=1.709 f(bo)= 8.265

iteration 5 of fibonacci, rho = 0.37500 domain length = 0.87273
a0=0.836 f(a0)=10.169

al=1.164 f(al)= 8.206

b1=1.382 f(b1l)=7.730

b0=1.709 f(bo)= 8.265

iteration 6 of fibonacci, rho = 0.40000 domain length = 0.54545
a0=1.164 f(a0)= 8.206

al=1.382 f(al)="7.730

bl=1.491 f(b1)= 7.741

b0=1.709 f(bo)= 8.265

iteration 7 of fibonacci, rho = 0.33333 domain length = 0.32727
a0=1.164 f(a0)= 8.206

al=1.273f(al)= 7.884

b1=1.382 f(b1)=7.730

b0= 1.491 f(bo)= 7.741

Fibonacci search completed with xmin= 1.38182 fmin= 7.72959

90
80\
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7x2-20x+22
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Fibonacci Search Example Problem 2: Problem 46 in Worked Examples
Minimize f(x) = x3 + x? — x — 2 for —1 < x < 2 with with Fibonacci Search Parameters: N=8
Fibonacci terms (i.e. 7 Fibonacci iterations), xmin=-2, xmax=4. Calculations:
iteration 1 of fibonacci, rho = 0.38182 domain length = 3.00000
a0=-1.000 f(a0)=-1.000

al=0.145 f(al)=-2.121

b1=0.855 f(b1)=-1.500

b0=2.000 f(bo)= 8.000

iteration 2 of fibonacci, rho = 0.38235 domain length = 1.85455
a0=-1.000 f(a0)=-1.000

al=-0.291 f(al)=-1.649

b1=0.145 f(b1)=-2.121

Page 39
Copyright © 2024 University of Leeds UK. All rights reserved.



b0= 0.855 f(b0)=-1.500

iteration

3 of fibonacci, rho =

a0=-0.291 f(a0)=-1.649
al= 0.145 f(al)=-2.121
bl= 0.418 f(b1)=-2.170
b0= 0.855 f(b0)=-1.500

iteration

4 of fibonacci, rho =

a0= 0.145 f(a0)=-2.121
al= 0.418 f(al)=-2.170
bl= 0.582 f(b1)=-2.046
b0= 0.855 f(bo)=-1.500

iteration

5 of fibonacci, rho =

a0= 0.145 f(a0)=-2.121
al=0.309 f(al)=-2.184
bl= 0.418 f(b1)=-2.170
b0= 0.582 f(b0)=-2.046

iteration

6 of fibonacci, rho =

a0= 0.145 f(a0)=-2.121
al= 0.255 f(al)=-2.173
bl= 0.309 f(b1)=-2.184
b0= 0.418 f(b0)=-2.170

iteration

7 of fibonacci, rho =

a0= 0.255 f(a0)=-2.173
al=0.309 f(al)=-2.184
bl= 0.364 f(b1)=-2.183
b0= 0.418 f(b0)=-2.170

iteration

8 of fibonacci, rho =

a0= 0.255 f(a0)=-2.173
al=0.309 f(al)=-2.184
b1=0.309 f(b1)=-2.184
b0O= 0.364 f(bo)=-2.183
Fibonacci completed with xmin=

3.4

8

0.38095 domain length =

0.38462 domain length =

0.37500 domain length =

0.40000 domain length =

0.33333 domain length =

0.50000 domain length =

0.33636 fmin= -2.18517

1.14545

0.70909

0.43636

0.27273

0.16364

0.10909

X+ x-2
A%

4 :
-1 0.5

Steepest-Descent Method

The steepest-descent method is the simplest numerical method for unconstrained
optimization. The aim of the method is to find the direction d, at the current iteration, in which
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the cost function f(x) decreases most rapidly, at least locally. The steepest-descent method is
a first-order method since only the gradient of the cost function is calculated and used to
evaluate the search direction.

The gradient of a scalar function f(x1, X2, . . ., Xn) as the column vector is given by (3.16).
of of of |
c=Vf=| -2 ... 2 (3.16)
OX, OX,  OX,
The vector c is used to represent the gradient of the cost function f(x); represented by (3.17).
C = il 3.17
LoX, (3.17)

The point xx at which this vector is then calculated is represented by (3.18).

o) — c(x(")): {%(I())}T (3.18)

The gradient at a point x points is the direction of maximum increase in the cost function. Thus
the direction of maximum decrease is opposite to that, that is, negative of the gradient vector.
Any small move in the negative gradient direction will result in the maximum local rate of
decrease in the cost function. The negative gradient vector thus represents a direction of
steepest descent for the cost function and is represented by (3.19).

of .
d=-c,ord =—Cc =——,i=1to n _
i i P (3.19)

Since d = - ¢, the descent condition of inequality is always satisfied due to (5.20).
2
(ced)=—c| <0 (3.20)
The Steepest-Descent Algorithm is then given by the following 6 steps:

Step 1: Estimate a starting design x©and set the iteration counter k =0. Select a
convergence parameter¢ > 0.

Step 2: Calculate the gradient of f(x) at the current point x®) as c® — vf (X(k))_

Step 3: Calculate the length of C(k)as HC(")H. If Hc(k)“ < &, then stop the iterative process
because x* = x*is a local minimum point. Otherwise, continue.

Step 4:  Let the search direction at the current point x*) be d® = —¢®).

Step5:  Calculate a step size ¢, that minimizes f(a)= f(x(k) + ad(k)) in the directiond )
Any one-dimensional search algorithm may be used to determine , .

Step 6: Update the design using x® = x4 5d®) . setk =k +1and go to Step 2.
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The basic idea of the steepest-descent method is quite simple. We start with an initial estimate
for the minimum design. The direction of steepest descent is computed at that point. If the
direction is nonzero, we move as far as possible along it to reduce the cost function. At the
new design point, we calculate the steepest-descent direction again and repeat the entire
process.

3.5 What is a Simplex

The simplex can be thought of as a polygon with n + 1 vertices. Where n is the number of
design variables. So, if there are 2 design variables, n = 2, the simplex has 3 vertices and is
a triangle, Figure 3.2.

X3
X
| >
Figure 3.2: A Simplex which represents 2 design variables consists of 3 points and is a
triangle.

If there are 3 design variables, then n = 3 and the simplex has 4 vertices and is how a
tetrahedron, Figure 3.3.

Xs

:(/1 X2\

Figure 3.3: A Simplex which represents 3 design variables consists of 4 points and is a
tetrahedron.

When the points are equidistant, the simplex is said to be regular. Basically, it has one more
point than the number of design variables which represents the number of dimensions.

3.6 Nelder-Mead Simplex Method

The Nelder and Mead simplex method carries out a search in n'™ dimensional space using
heuristic ideas. Also known as nonlinear simplex.

The strengths of this method are:
1) Does NOT require derivatives of the Objective Function
2) The Objective Function does not have to be smooth.
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The weakness of the method are that it is:
1) Not very efficient, particularly for problems with more than about 10 design variables;
2) Above n = 10, convergence becomes increasingly difficult

The basic idea in the simplex method is to compare the values of the objective function at the
n + 1 vertices of a general simplex. Then move the simplex gradually toward the optimum
point using an iterative process with 5 simple operations. The sequence of operations is
chosen based on the relative values of the objective function at each of the points.

The Steps of the Nelder-Mead Simplex Method are:
1) Find the n+1 points of the simplex
2) Evaluate and sort the points
3) Carry out the 5 Simplex Operations:
i) Reflection,
i) Expansion,
iii) Inside and Outside Contraction
iv)  Shrinking
v)  Convergence
We are now going to look at these 3 steps and 5 operations. Appreciate that each of the
operations generates a new point. The sequence of operations carried out in each iteration
depends on the value of the objective function at the new point relative to the other key points.

Let's now start with determining the initial Simplex, that is, the n+1 points

3.6.1 Step 1: Find the n+1 points of the simplex
The 1% step is to find the n+1 points of the simplex from an initial guess starting position Xo.

Then add a step size to each component of xo to generate n+1 new points. Generating a
simplex with equal length edges is preferable. Start by assuming that the length of all sides is
defined as c and that the initial guess, Xo is the (n + 1) point. The remaining points, i = 1...n

can be computed by adding a vector to Xo. With all components (i =1,2,---i =1i +1---n)equal

to b, apart for the i component which is a. The equations to calculate a and b are given in
(5.21) and (3.22).

3 (3.21)
a:b+L 3.22
2 (3.22)

where n is the number of design variables.
Let us assume that we have 2 design variables, x; and x,. That means that we need to

X
generate 3 points. Let us also assume that the point Xo is given by an initial guess: X, = { N }
20

And let's assume a step size of ¢ units.

Since n = 2, then b and a become (i) and (ii):

b :n"—ﬁ(JnTl-l):%(Jz_u-l):%(@—l)w.m%c ()
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a=b+- =0.25882¢ + = = 0.96593c (i)

2 N

The two new points, x1 and X2 then become (iii) and (iv).

_xlo +a| _xlo +0.96593c |
« = _

7%, +b | | x, +0.25882¢ )
_xlo +b]| _xlo +0.25882c |

. _ |
2| x,, +a| | x, +0.96593c W

1.5
So, ifc=3and X, = { 1 } then x1 and x2 become (v) and (vi).

1

| %, +0.96593c | 15+0.96593x3] [4.398]
“|x, +0.25882c | | 1+0.25882x3 | |1.776 | V)

2

| %, +0.25882¢ | [15+0.25882x3]| [2.276] _
“|x, +0.96593c | | 1+0.96593x3 | |3.898 V)

So the 3 points of the simplex are then given by (vii). And graphically, these 3 points generate
the Simplex of Figure 3.4.

. _[15], _[4398] _[2276 )
o7 1 ™ 71776 "2 7| 3.808 (vi)
%
45 +
gl
25 [
2_
15 F
1._
05
O:lllllllllllllllllllllllIllllllllllllllllllllllIII
0 05 1 1.5 2 25 3 35 4 45X 5

Figure 3.4: The triangular Simplex showing the generated points about Xo.
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If we have a problem with 3 design variables, xi, x> and x3. That means that we need to
generate 4 points.

.
If the initial guess point Xo is X, = [xlo X, xso] and assuming a step size of ¢ units, then

since n = 3, then b and a become (viii) and (ix).

b=——(Vn+1-1)= 3_(\/371—1):%

n/2
a=b+—— =0.23570C + — =0.94281c (iX)

JE JE

The three new points, X1, X2 and x; then become (x).

(v4-1)=0.23570c (i)

X, +a X, +0.94281c X, +b X, +b
X, =| X, +b|=]X%, +0.23570c |,x, =| X, +a |andX, =| X, +b (X)
X3, +b X5, +0.23570c Xs, +b X, +a

Table 3.2 gives the calculated values for a and b from equations (3.21) and (3.22) to calculate
the vertices of the initial Simplex for problems of up to 10 design variables

Table 3.2: Values of a and b for up to 10 design variables

n a b

2 0.96593c 0.25882c
3 0.94281c 0.23570c
4 0.92561c 0.21851c
5 0.91210c 0.20499c
6 0.90106¢ 0.19395¢
7 0.89181c 0.18470c
8 0.88388c 0.17678c
9 0.87699c 0.16988c
10 0.87092c 0.16381c

3.6.2 Step 2: Evaluate and Sort the points

After generating the initial simplex, the objective function needs to be evaluated at each of its
vertices. Then all of the points need to be sorted from best (lowest valued) to worst (highest
valued). Such that the points are arranged as per (3.23).

f(x )< <f(x)<-<f(x)<f(xy) (3.23)

Three points then need to be identified:
1) The point with the highest (worst) values of the objective function: (xu)
2) The point which is next to the highest (worst) values of the objective function: (xr)
3) The point with the lowest (best) values of the objective function: (x.)

The following five (5) Simplex operations now need to be carried out:
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3.6.3 Step 3: Carry out the 5 Simplex Operations

3.6.3.1 Reflection

Calculate the centroid of all the points x;, excluding the worst point (when i = H) using equation
(3.24). Graphically, for the case of n = 2, it looks like Figure 3.5. Note that for the Simplex with
2 design variables (n=3), x» is also the next to highest point xr.

1 n+l
Xee = ;;Xi (3.24)
i=H
After computing Xce, we know that the line from xu to Xce is a descent direction, Figure 3.6. A
new point can then be found on this line by reflection, which means that we reflect the distance

from H to Ce about Ce.
Xy

XL
Figure 3.5: Simplex showing the position of the centroid point.
X
: X =X,
XCe
x Descent
L Direction

Figure 3.6: Simplex showing the descent direction from x4 towards Xce.

This gives the new point Xr, which is calculated using equation (3.25) and is shown in Figure
3.7.

Xg = (14+ @) Xge — Xy = Xeo + A (Xee =X,y ) (3.25)

where: « is the reflection coefficient It always has a value greater than O but less than 1,
although it is usually given the value 1. It is defined by (3.26).

oo distance between x;and x.,
distance between x, and X,

(3.26)
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Figure 3.7: Simplex showing the reflected new point xr.

Since the direction of movement of the simplex is always away from the worst result, we will
be moving in a favourable direction.

Depending on the value of the objective function at the reflected point xr, there are 4 choices
which can be made of what to do next, these are:

1) If f(xr) lies between f(xr) and f(x.) such that {f (x ) <f(xg)<f(x )} , then xy is replaced

by xr. A new simplex is started, and therefore we need to check for convergence. So go
to Section 3.6.3.5 Convergence.

2) If f(xg) is less than f(x.) such that {f (x,)<f(x_)}, then the reflection produced a new

minimum. This suggests that moving further in the same direction pointing from Xce t0 Xr
might produce a new minimum. Which means we need to carry out the Expansion
Operation, so go to Section 3.6.3.2 Expansion.

3) If f(xg) is greater than f(xr) and less than f(x+) such that{f (x ) <f (x5 ) <f(x,)}. This

suggests that the reflected point is between the two worst points. Which means we need

to carry out the Outside Contraction Operation, so go to Section 5.6.3.3 Outside
Contraction.

4) If f(xq) is greater than f(xw) such that {f(x,)>f(x,)}, this means that the reflection

produced a point worse than the worst. This suggests that there might be a point inside
the original points which might be better. Which means we need to carry out Inside
Contraction Operation (iii), so go to Section 3.6.3.3a Inside Contraction

3.6.3.2 Expansion

To expand Xr to Xe , it is necessary to use equation (3.27), where the expansion process is
shown in Figure 3.8.

Xe = Xg +(1=7) Xge = Xce + 7 (Xg — Xce) (3.27)

where: yis the expansion coefficient It always has a value greater than 1, althoughitis usually
given the value 2. It is defined by (3.28).

distance between x_and X,
7= 1 (3.28)
distance between x; and x.,
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Figure 3.8: Simplex showing the expansion new point Xe.
Depending on the value of the objective function at the expansion point xg, there are 2 choices

which can be made of what to do next, these are:

1) If f(xe) is less than f(xr) such that f(xe) < f(xr), then we need to replace xu with xe. A new
simplex is started, and therefore we need to check for convergence. So go to Section
3.6.3.5 Convergence.

2) If f(xe) is greater than f(xr) such that f(xe) > f(xr), this means that the Expansion process
was NOT successful. So, need to replace xu with xg and. A new simplex is started, and
therefore we need to check for convergence. So go to Section 3.6.3.5 Convergence.

3.6.3.3 Outside Contraction

To carry out Outside Contraction it is necessary to use equation (3.29), where the outside
contraction process is shown in Figure 3.9.

Xoc = Xce + ﬂ(XR - XCe) (3.29)

where: fis the contraction coefficient It always has a value less than 1, although it is usually
given the value 0.5. It is defined by (3.30).

_ distance between X cand X,
distance between x;and X,

<1 (3.30)

Xy

Figure 3.9: Simplex showing the outside contraction new point Xoc.
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Depending on the value of the objective function at the Outside Contraction point Xoc, there
are 2 choices which can be made of what to do next, these are:

1) If f(xoc) is less than f(xg) such that {f (X, ) <f ()}, then replace xu with Xoc. A new
simplex is started, and therefore we need to check for convergence. So go to Section
3.6.3.5 Convergence.

2) Otherwise the Shrinking Operation needs to be carried out, so go to Section 3.6.3.4
Shrinking.

3.6.3.3a Inside Contraction

To carry out Inside Contraction it is necessary to use equation (3.31), where the inside
contraction process is shown in Figure 3.10.

Xic = Xce _IB(XR - XCe) (3.31)

where: £ is the contraction coefficient It always has a value less than 1, although it is usually
given the value 0.5. It is defined by (3.32).

_ distance between x.and X,
distance between x;and X,

<1 (3.32)

Xy

Figure 3.10: Simplex showing the inside contraction new point Xc.

Depending on the value of the objective function at the Outside Contraction point xic, there
are 2 choices which can be made of what to do next, these are:

1) If f(xic) is less than f(xu) {f (xlc) <f(xH )} then replace xu with xic. A new simplex is
started, and therefore we need to check for convergence. So go to Section 3.6.3.5
Convergence.

2) Otherwise the Shrinking Operation needs to be carried out, so go to Section 3.6.3.4
Shrinking.

3.6.3.4 Shrinking

If Reflection, Expansion and both Contractions failed, it will be necessary to resort to the
Shrinking operation. This operation retains the best point (x.) and shrinks the Simplex about
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that point. To shrink all points about the best point, (x.) it is necessary to use equation (3.33)
and this process is shown in Figure 3.11.

For 2<i<n+1 x =X_+p(X =X, ) (3.33)

where: pis the shrinking coefficient It always has a value less than 1, although it is usually
given the value 0.5. It is defined by (3.34).

distance between x, and X,
— <1 (3.34)

= distance between x, and x,

As a new simplex is generated, we need to check for convergence. So go to Section 3.6.3.5
Convergence.

X,
Figure 5.11: Simplex showing the shrinking new points xi.

5.6.3.5 Convergence

Two convergence criteria can be used:

1) The size of the Simplex needs to be less than a toIerance(gs) , given by equation (3.35).

S=) % =Xl <é (3.35)
i=1

2) The standard deviation of the function value in all vertices of the Simplex needs to be less
than a small quantity (&, ), given by equation (3.36).

\/ni(f (%)~ f (%ce))’ (3.36)

o= <g
n+1

o

To determine what to do next, 2 choices are available, these are:
1) If the convergence tolerance has been satisfied: (s <&g)or(o<¢,), the solution has
converged, so stop the algorithm.

2) The solution has not converged so need to sort point and start the cycle again, so go to
Section 3.6.2 Evaluate and Sort the points
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3.6.3 Example

Minimize the function (a) starting from the point (b) with a step size of c =2

Minimize:  f(x,,x,)=100(x, - xf)2 +(1-x%,)
. _ [—1.2}
° 110
Use the following parameters to solve this problem: {«, 8,7, p} = {1,0.5,2,0.5}

Step 1: Find the n+1 points of the simplex:
We have previously calculated these values to be (c) and (d).

x, +a| [x, +0.96593c |
- _
' X, +0.25882c
. X, +b ~ X, +0.25882¢
’ X,, +0.96593¢c

X,, + D]

X, +@a
Substituting for xo and c gives (e) and (f).

y ={—1.2+0.96593><2} _{0.732}
'] 1.0+0.25882x%2 1.518
y =[—1.2+0.25882x2}Z{—O.682}
> 11.0+0.96593c x 2 2.932

Therefore the 3 points of the simplex are given in (g), and plotted in Figure 3.12.

12 0.732 0.682
%=1 10 | 7| 1518 2" *2 7| 5930
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Figure 3.12: Initial Simplex for this problem.

Step 2: Evaluate and Sort the points

Substituting the 3 values from (g) into the function (a), gives the results of (h).
f (-1.21.0)=24.2, f, (0.732,1.518) =96.51and f,, (—0.682,2.932) =611.06 (h)

Which coincidentally happen to be aligned in increasing order such that, the new names for
the points are given in (i).

-1.2 0.732 —-0.682 _
X = L Xp = and Xx,, = 0)
1.0 1.518 2.932

So, now need to carry out the Reflection Operation

Step 3: Operation (i) Refection

Now need to calculate the centroid of all the points xi, excluding the worst point. This is done
by substituting x. and x; into equation (3.24), which gives the coordinates in (j).

(-1.2+0.732)
18 2 -0.234 |
=i (1.0+1.518) {1.259} 0
i=H - ~
2

Evaluate this point, gives (k).
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f., (-0.234,1.259) = 146.49 (k)

Calculate the reflection point using « = 1, using the points in (I).

-0.234 —0.682
Xce = and X, = 0)
1.259 2.932

Substituting these values into equation (3.25) gives (m).

Xg = (1+a)Xe, —ax, :(1+1){_0'234}—1{_0'682} { 0-214}

1.259 2.932 —0.414
. 0.214
R1-0.414

Evaluate this point, gives (n).

(m)

f,(0.214,-0.414) = 21.79 (n)

We now need to compare the value of f(xg) with those of the other points of the Simplex, and
using the rules set in section 3.6.3.1 Reflection, we can then decide what needs to happen
next.

Since {f (g ) <f(x, )} , the next step to follow is Step 3: (ii) Expansion.
Step 3: Operation (ii) Expansion

Calculate the expansion point using y = 2, using the points in (0).

« -0.234 d x 0.214
°~| 1.259 R 7| 0414 (©)
Substituting these values into equation (3.27) gives (p).
« « +(1 )X 2 0.214 +(1 2) -0.234 0.663
= — = X — X =
e =R TAETT) e 0.414 1.259 || -2.087 )

Evaluate this point, gives (q).
fe (0.663, —2.087) =638.26 (@)

We now need to compare the value of f(xg) with those of the other points of the Simplex, and
using the rules set in section 3.6.3.2 Expansion, we can then decide what needs to happen
next.
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Since {f (xe)>f(x, )} this means that the Expansion process was not successful. So, replace

Xn with xr and generate the new Simplex (shown in Figure 3.13), and then go to Step 3: (v)
Convergence

X2

25 |

15 L »

05 |

05 |

4
I

Figure 3.13: New Simplex generated by replacing xu with Xg.

Step 3: Operation (v) Convergence

When putting the new Simplex together, arrange it in increasing order (r).

0.214 -1.2 0.732
X, = , X = and X, =
-0.414 1.0 1.518 (n
f. (0.214,—0.414) =21.79, f, (-1.21.0)=24.20 and f, (0.732,1.518) =98.28

Now need to calculate the standard deviation of the function value in all vertices of the Simplex
using equation (3.36). But firstly, must calculate the centroid and function evaluation of the
centroid point of the new Simplex using equation (3.24), the points x. and x; which is calculated
in (s).

(0.214—1.2)
1 2 —-0.493
Xee == D X = = S
"= (-0.414+1.0) { 0.293 } )
i=H
2
Evaluating this point gives (t).

fee (—0.493,0.293) =2.48 (1)
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Substituting all of these function values to (3.36) gives (u).

Slrx0-r0)f

i=1
o=

n+1

\(21.79-2.48)" +(24.20-2.48)’ +(98.28 - 2.48)’
- 3

(u)

;.0=32.8

As we haven’t specified a tolerance, at this stage we can’t check if the problem has converged.
So the next step, now that we have a new Simplex is to carry out another Reflection.

Step 3: Operation (i) Reflection

As we have already calculated the position of the centroid in the previous step. We can now
calculate the reflection point using « = 1, using the points in (v).

-0.493 0.732
Xce = and X, = (V)
0.293 1.518

Substituting these values into equation (3.25) gives (w).

—0.493 0.732
Xg = (1+ o) Xge — X, :(1+1){ }—1{ }

0.293 1.518
(W)
-1.718
Xg =
-0.932
Evaluate this point, gives (X).
f5 (—1.718, —0.932) =1514.5 (X)

We now need to compare the value of f(xgr) with those of the other points of the Simplex, and
using the rules set in section 3.6.3.1 Reflection, we can then decide what needs to happen
next.

Since {f (xg)>f(x, )} , need to carry out Operation (jii) Inside Contraction.

Step 3: Operation (iii) Inside Contraction

Calculate the Inside contraction using point using g = 0.5. Substituting the values of xce and
Xr Of (y) into equation (5.31) gives (2).

L _[0a03] [-1718
| 0.293 R 71 _0.932 2
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Figure 5.14: New Simplex generated by replacing xu with Xc.

0.293 —-0.932

0.119 @
Xe =10.905

" Xie = Xee _ﬂ(XR - XCe) = (1+ ﬂ)XCe — PXg = (1+ 0.5)[_0.493}—0.5{_1'718}

And evaluating this point, gives (aa).
fe (0.119,0.905) =80.16 (aa)

We now need to compare the value of f(Xric) with those of the other points of the Simplex, and
using the rules set in section 3.6.3.3a Inside Contraction, we can then decide what needs to
happen next.

Since {f (x,. ) <f(x,,)} then replace x4 with xc and generate the new Simplex (shown in

Figure 3.14), and go to Step 3: (v) Convergence.... and keep going!

Figure 3.15, shows the plot of the function (a) superimposed on the Simplex of Figure 3.14.
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+X2F =100

-X2F = 100

+X2F =25
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-X2F =25
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-X2F=2.5
O x2F=0

Figure 3.15: Plot of the contour of the function superimposed on the Simplex

Nelder-Mead Simplex Worked Example 1
Minimise f(x;,x,) = 100 (x, — x;)? + (1 — x;)? using the following parameters:

Starting point x° = [x; x,] =[-1.2 1.0]
Initial step size c=2

a = 1.0, B =0.5, y = 2.0, p=05

tol = 0.0001.

This takes a total of 70 iterations to converge. The calculations for the first 10 iterations give:

Initial simplex

xL= -1.200 1.000, fL=2.420e+01
xM= 0.732 1.518, fM=9.651e+01
xH= -0.682 2.932, fH=6.111e+02

After 1 iterations, simplex is given by:

xL= 0.214 -0.414, fL=2.179e+01
XM= -1.200 1.000, fM=2.420e+01
xH= 0.732 1.518, fH=9.651e+01

After 2 iterations, simplex is given by:

xL= 0.214 -0.414, fL=2.179e+01
XM= -1.200 1.000, fM=2.420e+01
xH= 0.119 0.905, fH=8.016e+01

After 3 iterations, simplex is given by:

xL= 0.214 -0.414, fL=2.179e+01
XM= -1.200 1.000, fM=2.420e+01
xH= -0.187 0.599, fH=3.324e+01

After 4 iterations, simplex is given by:

xL= -0.340 0.446, fL=1.272e+01
XM= 0.214 -0.414, fM=2.179e+01
xH= -1.200 1.000, fH=2.420e+01

After 5 iterations, simplex is given by:

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 57



xL= -0.631 0.508, fL=3.856e+00
XM= -0.340 0.446, fM=1.272e+01
xH= 0.214 -0.414, fH=2.179e+01
After 6 iterations, simplex is given by:
xL= -0.631 0.508, fL=3.856e+00
xM= -1.185 1.368, fM=4.913e+00
xH= -0.340 0.446, fH=1.272e+01
After 7 iterations, simplex is given by:
xL= -0.631 0.508, fL=3.856e+00
xM= -1.185 1.368, fM=4.913e+00
xH= -0.624 0.692, fH=1.179e+01
After 8 iterations, simplex is given by:
xL= -0.631 0.508, fL=3.856e+00
xM= -1.051 1.061, fM=4.386e+00
xH= -1.185 1.368, fH=4.913e+00
After 9 iterations, simplex is given by:
xL= -0.497 0.201, fL=2.448e+00
xM= -0.631 0.508, fM=3.856e+00
xH= -1.051 1.061, fH=4.386e+00
After 10 iterations, simplex is given by:
xL= -0.497 0.201, fL=2.448e+00
xM= -0.807 0.708, fM=3.580e+00
xH= -0.631 0.508, fH=3.856e+00

The evolution of the final solution is shown in the following figure:

100*(x(2)x(1)*)? + (1-x(1))*

25}

x2

_1 1 1 1 | 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x1

Plot of the Nelder-Mead Simplex solution from the calculations above.

Nelder-Mead Simplex Worked Example 2

Minimise f(x;,x,) = (x; — 3)? + (x, + 1)? using the following parameters:
Starting point x° = [x; x,] =[0 0]

Initial step size c=2

a = 1.0, B =0.5, y = 2.0, p=205

tol = 0.001.
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Initial simplex

xL= 1.932 0.518, fL=3.444e+00

xM= 0.000 0.000, fM=1.000e+01
xH= 0.518 1.932, fH=1.476e+01

After 1 iterations, simplex is given by:
xL= 1.414 -1.414,fL=2.686e+00

XM= 1.932 0.518, f{M=3.444e+00
xH= 0.000 0.000, fH=1.000e+01

After 2 iterations, simplex is given by:
xL= 3.346 -0.897, fL=1.305e-01

XM= 1.414 -1.414, fM=2.686e+00
xH= 1.932 0.518, fH=3.444e+00

After 3 iterations, simplex is given by:
xL= 3.346 -0.897, fL=1.305e-01

XM= 2.604 -1.992, fM=1.140e+00
xH= 1.414 -1.414, fH=2.686e+00
After 4 iterations, simplex is given by:
xL= 3.346 -0.897, fL=1.305e-01

XM= 3.756 -1.459, fM=7.820e-01
xH= 2.604 -1.992, fH=1.140e+00
After 5 iterations, simplex is given by:
xL= 3.346 -0.897, fL=1.305e-01

xM= 3.078 -1.585, fM=3.482e-01
xH= 3.756 -1.459, fH=7.820e-01

After 6 iterations, simplex is given by:
xL= 2.668 -1.022, fL=1.107e-01

XM= 3.346 -0.897, fM=1.305e-01
xH= 3.078 -1.585, fH=3.482e-01

After 7 iterations, simplex is given by:
xL= 3.042 -1.272, fL=7.586e-02

XM= 2.668 -1.022, fM=1.107e-01
xH= 3.346 -0.897, fH=1.305e-01

After 8 iterations, simplex is given by:
xL= 3.101 -1.022, fL=1.060e-02

XM= 3.042 -1.272, fM=7.586e-02
xH= 2.668 -1.022, fH=1.107e-01

After 9 iterations, simplex is given by:
xL= 3.101 -1.022, fL=1.060e-02

XM= 2.870 -1.085, fM=2.413e-02
xH= 3.042 -1.272, fH=7.586e-02

After 10 iterations, simplex is given by:

XxL= 2.957 -0.944, fL=5.041e-03
xM= 3.101 -1.022, fM=1.060e-02
xH= 2.870 -1.085, fH=2.413e-02

After 11 iterations, simplex is given by:

XxL= 2.949 -1.034, fL=3.722e-03
XM= 2.957 -0.944, fM=5.041e-03
xH= 3.101 -1.022, fH=1.060e-02

After 12 iterations, simplex is given by:

xL= 3.027 -1.005, fL=7.441e-04
XM= 2.949 -1.034, fM=3.722e-03
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xH= 2.957 -0.944, fH=5.041e-03
After 13 iterations, simplex is given by:
xL= 3.027 -1.005, fL=7.441e-04
xM= 2.972 -0.982, fM=1.104e-03
xH= 2.949 -1.034, fH=3.722e-03
After 14 iterations, simplex is given by:
xL= 3.027 -1.005, fL=7.441e-04
xM= 2.974 -1.014, fM=8.438e-04
xH= 2.972 -0.982, fH=1.104e-03

NM simplex converged with tol = 1.000e-03 after 14 iterations
Minimum f=7.441e-04 at x= 3.027 -1.005

(x(1)-3)% + (x(2)+1)?

2

151

1+

05

x2

0 -

-05 |

Ar

15[

) I \
-2 -1 0

Plot of the Nelder-Mead Simplex solution from the calculations above.

Nelder-Mead Simplex Worked Example 3

Minimise f(x1,x,) = (x; + x3)? + sin?(x; + 2) + x2 + 10 using the following parameters:

Starting point x° = [x; x,] =[2.0 1.0]
Initial step size c=2

a = 1.0, L =0.5, y = 2.0, p=05
tol = 0.001.

Initial simplex

xL= 2.000 1.000, fL=2.057e+01
xM= 3.932 1.518, fM=4.212e+01
xH= 2518 2.932, fH=4.926e+01
After 1 iterations, simplex is given by:
xL= 3.863 -2.087, fL=1.767e+01
xM= 2.000 1.000, fM=2.057e+01
xH= 3.932 1.518, fH=4.212e+01
After 2 iterations, simplex is given by:
xL= 3.863 -2.087, fL=1.767e+01
xM= 1.931 -2.605, fM=1.774e+01
xH= 2.000 1.000, fH=2.057e+01
After 3 iterations, simplex is given by:
xL= 2.448 -0.673, fL=1.454e+01
xM= 3.863 -2.087,fM=1.767e+01

Copyright © 2024 University of Leeds UK. All rights reserved.

Page 60



xH= 1.931 -2.605, fH=1.774e+01
After 4 iterations, simplex is given by:
XxL= 2.448 -0.673, fL=1.454e+01
XM= 2.543 -1.993, fM=1.524e+01
xH= 3.863 -2.087, fH=1.767e+01
After 5 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
XM= 2.448 -0.673, fM=1.454e+01
xH= 2.543 -1.993, fH=1.524e+01
After 6 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
XM= 1.034 0.741, fM=1.371e+01
xH= 2.448 -0.673, fH=1.454e+01
After 7 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
xM= -0.285 0.836, fM=1.198e+01
xH= 1.034 0.741, fH=1.371e+01
After 8 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
XM= -0.191 -0.484,fM=1.163e+01
xH= -0.285 0.836, fH=1.198e+01
After 9 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
xM= 0.092 0.152, fM=1.084e+01
xH= -0.191 -0.484, fH=1.163e+01

After 10 iterations, simplex is given by:

xL= 1.129 -0.578, fL=1.064e+01
XM= 0.210 -0.348, fM=1.078e+01
XxH= 0.092 0.152, fH=1.084e+01

After 11 iterations, simplex is given by:

xL= 0.381 -0.155, fL=1.055e+01
xM= 1.129 -0.578, fM=1.064e+01
XxH= 0.210 -0.348, fH=1.078e+01

After 12 iterations, simplex is given by:

xL= 0.482 -0.358, fL=1.052e+01
XM= 0.381 -0.155, fM=1.055e+01
xH= 1.129 -0.578, fH=1.064e+01

After 13 iterations, simplex is given by:

xL= 0.780 -0.417, fL=1.043e+01
xM= 0.482 -0.358, fM=1.052e+01
xH= 0.381 -0.155, fH=1.055e+01

After 14 iterations, simplex is given by:

xL= 0.780 -0.417, fL=1.043e+01
xM= 0.882 -0.620, fM=1.052e+01
xH= 0.482 -0.358, fH=1.052e+01

After 15 iterations, simplex is given by:

xL= 0.780 -0.417, fL=1.043e+01
XM= 0.657 -0.438, fM=1.046e+01
xH= 0.882 -0.620, fH=1.052e+01

After 16 iterations, simplex is given by:

xL= 0.780 -0.417, fL=1.043e+01
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XM= 0.637 -0.332, fM=1.044e+01

xH= 0.657 -0.438, fH=1.046e+01

After 17 iterations, simplex is given by:

xL= 0.780 -0.417,fL=1.043e+01

xM= 0.760 -0.311, fM=1.044e+01

xH= 0.637 -0.332, fH=1.044e+01

After 18 iterations, simplex is given by:

xL= 0.703 -0.348, fL=1.043e+01

xM= 0.780 -0.417, fM=1.043e+01

xH= 0.760 -0.311, fH=1.044e+01

After 19 iterations, simplex is given by:

xL= 0.703 -0.348, fL=1.043e+01

XM= 0.751 -0.347, fM=1.043e+01

xH= 0.780 -0.417,fH=1.043e+01

After 20 iterations, simplex is given by:

xL= 0.754 -0.382, fL=1.043e+01

XM= 0.703 -0.348, fM=1.043e+01

xH= 0.751 -0.347,fH=1.043e+01

NM simplex converged with tol = 1.000e-03 after 20 iterations
Minimum f=1.043e+01 at x= 0.754 -0.382

(x1+x2)2 + (sin(x1+2))% + x22 +10
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Plot of the Nelder-Mead Simplex solution from the calculations above.

3.7 Hooke-Jeeves Method

The Hooke-Jeeves method belongs to the class of search methods known as pattern search.
Similarly, to the Nelder-Mead Simplex method, it carries out a pattern search of the design
space without the need to calculate derivatives of the objective function, by only relying on the
evaluation of the objective function at specific points. Although there is nothing stopping you
from using this method on a function which can be differentiated!

The method requires two steps, an “exploratory search” to determine the best direction from
the current location, and then a “pattern move” in that best direction.
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3.7.1 Exploratory Search
The aim of this exploratory search step is to try to find a direction which improves the value of

the objective function from the current point. In order to do this, the value of the current point
is “perturbed” by a small amount (A) (called perturbation step) in the positive and negative
direction, along each (design) variable, one at a time, and every time the objective function is
evaluated to determine if the new point is better than the current point. At the end of each
perturbation, the current point is replaced by the new point, provided it has a better objective
function value.

Before carrying out the exploratory search, we need to specify the following four parameters:
1. The initial or current point about which the exploratory search will take place. This can
take the form of the current point vector given by (3.37).

X% =X Xo0 -, X0 X, | (3.37)

where: i is the i™ design variable and n is the total number of design variables and also
perturbation directions.

2. The size of the perturbation step along each direction, which is the same as saying the
perturbation step for each design variable. This can take the form of the perturbation
vector given by (5.38).

Py =[AX, AX,, -+, AX; -+, AX, ] (3.38)
where: AX;is the i design variable step size. Note that all perturbation step sizes are

generally relatively small and do not have to be equal to each other.
3. The step size reduction parameter(n > 1), typical values are: 2 or 10.

4. The perturbation tolerance limit vector(T), which defines the smallest possible

perturbation for each design variable and which is used to stop the algorithm. This has
the same form as the perturbation vector of (5.38) and is given by (3.39).

T=[t1’t2"”'ti"”'tn] (3.39)

The exploratory search steps are:

1. Atthe current point(x0 ) , calculate the objective function f (XO) and copy these to the
best point vector (XbeSt ) and best function value (f beSt) respectively.
2. Copy the perturbation vector (P, )into the working perturbation vector (P, )

3. Combine the current point vector (Xo)and the working perturbation vector (PW ) into
the search point vector(Xl), which is of the form of (3.40).

X; = [xl+51jdkAxl,x2 + 05,0, A%, X+ 6,d AX o, X +5njdkAxn] (3.40)

where:

j: is the perturbation direction of the i" design variable, starting with j = 1 up to n.

Xi(i:1 ton) - are the design variables of the initial point from (3.37)
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0; : is the Kronecker delta given by equation (3.41), which allows to generate the
perturbation step one design variable at a time

s :{O ifi#] (3.41)
! 1 ifi=] '
dk - is the direction vector which allows the perturbation step to be carried out in
the positive (d, =1) and negative (d_ =—1)directions given by (3.42)
4 - 1 ifk=+
K —{_1 o (3.42)

k: is the direction vector index which defines if the direction vector has a positive
(k = +) or negative (k = —) perturbation direction

AX - are the perturbation step sizes from (3.38);

i(i=1ton)

4. Set the perturbation direction to have the initial value of one (j :1) and set the

direction vector index to positive(k = +), so the search point vector goes from the
format of equation (5.40) to that below:
X3 = [ X+ 0 AX, Xo0e e, X0, X, |
SXy =X AX X X X
5. At the current search point vector (X}) calculate the objective function f (x})

best

6. If f (X}) < £ Replace the best point with this one, such that X" = x} and

foest —f (XT) update j such that (j = j +1) and set the direction vector index to

positive(k = +) which then goes from the format of equation (3.40) to that below:

1 _
Xj+l - I:Xl’ XZ" ) "Xj+1 + 5j+l,j+ld+AXj+1" "’Xn:l

ol
S X _[xl,xz,-n,xjﬂ+ij+1,--~,xn]

However, if (j >nN)go to step 9, otherwise go to step 5.
7. 0F £ <f (XT) and the direction vector index is positive(k =+), set the direction

vector index to negative (k = —), which then goes from the format of equation (5.40)
to that below and go to step 5, otherwise go to step 8.
X = [xl,xz,m,xj +5”d7ij,~~-,xn]
LX] == [xl,xz,m,xj —ij,m,xn]
8. If f* <f (Xﬁ) and the direction vector index is negative (k =—), this perturbation
has not improved the objective function, so it can be discarded. Update j, such that
(j =i+1), set the direction vector index to positive(k =+) and go to step 5, but if
(j>n)gotostep9.
9. Determine if the exploratory search has succeeded or failed.

i) |If foest < f (XO) , the exploratory search has succeeded, so now go to step 11.
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iy Else if f° =f (Xo)and X' = x% the exploratory search has failed as a

better value of the objective function could not be found. The following now
needs to happen:

a) Reduce the size of the working perturbation vector (PW) using
(3.43).

R, =W (3.43)

b) If the working perturbation vector (Pw)is greater or equal to the

perturbation tolerance limit vector (T) , thatis (P, >T), then go to
step 3
c)  If, however, the working perturbation vector (P, )is less than the

perturbation tolerance limit vector (T), thatis (P, <T), go to step

10.
10. As the solution could not be improved any further, the final solution to the problem

(Xbe“)and (f bESt) are given the initial values of the problem (Xo)and f(xo). Then
goto step 11..
11. Exit the exploratory search step.

3.7.2 Pattern Move

The pattern move step uses the initial or current point(xo) and the best point (XbeSt)with an

objective function value less than the current point f°* <f(x°) in order to move in an

. . . . . 2\ - . 0 2 .

improving direction. A new point (X ) is created by moving from (X )to (X )usmg (3.44).
XZ =X0+a(XBest_X0) (3.44)

where: (XBeSt —XO) is the improving direction vector and (a)is a positive accelerator factor,

which extends the length of direction vector. A typical value of the accelerator factor is two

(a-2)

3.7.3 The Hooke-Jeeves Pattern Search Algorithm
The Hooke-Jeeves Pattern Search Algorithm requires the following five parameters, four of
which were specified in Exploratory Search. These are:

1) A starting point vector (Xo).

2) A perturbation step size vector (P,).

3) The perturbation tolerance limit vector(T),
4) The step size reduction parameter(7), and

5) The acceleration factor (a)

The seven steps for the Hooke-Jeeves Pattern Search Algorithm are as follow:
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1) Specify the five parameters required for the algorithm to work: (XO,PO,T,n,a)

2) Carry out an exploratory search around (X0 )

3) If the solution from the exploratory search is the same as the initial problem

fhest —f (Xo) , then this solution is the optimum. Go to step 7.

4) If the solution from the exploratory search is better than that of the initial problem

foest < f (xo) , then carry out the Pattern Move step and calculate f (xz) :

5) If f% <f (XZ), then copy the best point (XbESt)to the current point(xo) and go to

step 2.

6) If f (XZ) <f8' then copy the new point (Xz)to the current point(xo) and go to step

2.
7) Exit the algorithm.

Hooke-Jeeves Worked Example 1
Minimise f(x;,x,) = (x; — 3)? + (x, + 1)? using the following parameters:

Starting point x° = [x; x,] =[1.5 1.5]

Perturbation step size Py = [Ax; Ax,] = [0.5 0.5]
Perturbation tolerance limit T = [¢t; t;] = [0.025 0.025]
Exploration accelerator factor a=2

Step size reduction parameter n=2

Call 1 to exploratory search increment = 0.50000
Start xO0 = 1.500000 1.500000 f0 = 8.500000

x = 2.000000 1.500000f= 7.250000

x = 2.000000 2.000000 f= 10.000000

x = 2.000000 1.000000 f= 5.000000

Pattern search x2 = 2.500000 0.500000 f2 = 2.500000
Call 2 to exploratory search increment = 0.50000
Start x0 = 2.500000 0.500000 f0 = 2.500000

x = 3.000000 0.500000 f= 2.250000

x = 3.000000 1.000000 f= 4.000000

x = 3.000000 0.000000f= 1.000000

Pattern search x2 = 3.500000 -0.500000 f2 = 0.500000
Call 3 to exploratory search increment = 0.50000
Start x0 = 3.500000 -0.500000 fO0 = 0.500000

x = 4.000000 -0.500000 f= 1.250000

x = 3.000000 -0.500000 f= 0.250000

x = 3.000000 0.000000f= 1.000000

x = 3.000000 -1.000000 f= 0.000000

Pattern search x2 = 2.500000 -1.500000 f2 = 0.500000
Call 4 to exploratory search increment = 0.50000
Start x0 = 3.000000 -1.000000 fO = 0.000000

x = 3.500000 -1.000000 f= 0.250000

x = 2.500000 -1.000000 f= 0.250000

x = 3.000000 -0.500000 f= 0.250000

x = 3.000000 -1.500000 f= 0.250000

search increment reduced to  0.25000
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Call 5 to exploratory search increment = 0.25000

Start x0 = 3.000000 -1.000000 fO = 0.000000

x = 3.250000 -1.000000 f= 0.062500

x = 2.750000 -1.000000 f= 0.062500

x = 3.000000 -0.750000 f = 0.062500

x = 3.000000 -1.250000f= 0.062500

search increment reduced to  0.12500

search completed - increment  0.12500 below tolerance 0.25000
search completed xbest= 3.00000 -1.00000 fbest=0.00000

(x1-3)24(x2+1)2

x2
o

x1
Plot of the Hooke-Jeeves solution from the calculations above.

Hookes-Jeeves Worked Example 2

Minimise f(x1,x,) = (x; + x3)? + sin?(x; + 2) + x2 + 10 using the following parameters:
Starting point x° = [x; x,] =[2.0 1.0]

Perturbation step size Py = [Ax; Ax,] = [0.3 0.3]
Perturbation tolerance limit T = [¢t; t,] = [0.025 0.025]
Exploration accelerator factor a=2

Step size reduction parameter n=2

Call 1 to exploratory search increment = 0.30000
Start x0 = 2.000000 1.000000 f0 = 20.572750

x = 2.300000 1.000000f= 22.729360

x = 1.700000 1.000000f= 18.570726

x = 1.700000 1.300000f= 20.970726

x = 1.700000 0.700000f= 16.530726

Pattern search x2 = 1.400000 0.400000 f2 = 13.465301
Call 2 to exploratory search increment = 0.30000
Start xO = 1.400000 0.400000 fO0 = 13.465301

x = 1.700000 0.400000 f= 14.850726

x = 1.100000 0.400000f= 12.411729

x = 1.100000 0.700000f= 13.731729

x = 1.100000 0.100000f= 11.451729

Pattern search x2 = 0.800000 -0.200000 f2 = 10.512217
Call 3 to exploratory search increment = 0.30000
Start X0 = 0.800000 -0.200000 fO = 10.512217
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x = 1.100000 -0.200000 f = 10.851729

x = 0.500000 -0.200000 f = 10.488169

x = 0.500000 0.100000 f= 10.728169

x = 0.500000 -0.500000 f = 10.608169

Pattern search x2 = 0.200000 -0.200000 f2 = 10.693666
Call 4 to exploratory search increment = 0.30000
Start x0 = 0.500000 -0.200000 fO = 10.488169

x = 0.800000 -0.200000 f = 10.512217

x = 0.200000 -0.200000 f = 10.693666

x = 0.500000 0.100000f= 10.728169

x = 0.500000 -0.500000 f= 10.608169

search increment reduced to  0.15000

Call 5 to exploratory search increment = 0.15000
Start x0 = 0.500000 -0.200000 fO = 10.488169

x = 0.650000 -0.200000 f = 10.465313

x = 0.650000 -0.050000 f = 10.585313

x = 0.650000 -0.350000 f = 10.435313

Pattern search x2 = 0.800000 -0.500000 f2 = 10.452217
Call 6 to exploratory search increment = 0.15000
Start x0 = 0.650000 -0.350000 fO = 10.435313

x = 0.800000 -0.350000 f= 10.437217

x = 0.500000 -0.350000 f = 10.503169

x = 0.650000 -0.200000 f = 10.465313

x = 0.650000 -0.500000 f = 10.495313

search increment reduced to  0.07500

Call 7 to exploratory search increment = 0.07500
Start xO0 = 0.650000 -0.350000 fO = 10.435313

x = 0.725000 -0.350000 f = 10.426864

x = 0.725000 -0.275000 f = 10.441864

x = 0.725000 -0.425000 f = 10.434364

Pattern search x2 = 0.800000 -0.350000 f2 = 10.437217
Call 8 to exploratory search increment = 0.07500
Start xO0 = 0.725000 -0.350000 fO = 10.426864

x = 0.800000 -0.350000 f= 10.437217

x = 0.650000 -0.350000 f = 10.435313

x = 0.725000 -0.275000 f = 10.441864

x = 0.725000 -0.425000 f = 10.434364

search increment reduced to  0.03750

Call 9 to exploratory search increment = 0.03750
Start X0 = 0.725000 -0.350000 fO0 = 10.426864

x = 0.762500 -0.350000 f = 10.429614

x = 0.687500 -0.350000 f= 10.428818

x = 0.725000 -0.312500 f = 10.431552

x = 0.725000 -0.387500 f = 10.427802

search increment reduced to  0.01875

search completed - increment 0.01875 below tolerance 0.02500
search completed xbest= 0.72500 -0.35000 fbest = 10.42686
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(x1#x2)? + (sin(x1+2))? + x2% +10

-05 1

A L ) : ) .
0 0.5 1 1.5 2 2:5 3
x1

Plot of the Hooke-Jeeves solution from the calculations above.

Hookes-Jeeves Worked Example 3
Minimise f(x1,x;) = (x, — x1)? + (1 — x;)? using the following parameters:
Starting point x° = [x; x,] =[-1.2 1.2]
Perturbation step size Py = [Ax; Ax,] = [0.3 0.3]
Perturbation tolerance limit T = [t, t,] = [0.05 0.05]
Exploration accelerator factor a=2
Step size reduction parameter n=2
Call 1 to exploratory search increment = 0.30000
Start X0 = -1.200000 1.200000 fO = 10.600000
x = -0.900000 1.200000f= 8.020000

= -0.900000 1.500000 f= 9.370000
x = -0.900000 0.900000f= 6.850000
Pattern search x2 = -0.600000 0.600000 f2 = 4.000000
Call 2 to exploratory search increment = 0.30000
Start x0 = -0.600000 0.600000 fO = 4.000000
x = -0.300000 0.600000f= 2.500000
x = -0.300000 0.900000 f= 3.130000
x = -0.300000 0.300000f= 2.050000
Pattern search x2 = 0.000000 -0.000000 f2 = 1.000000
Call 3 to exploratory search increment = 0.30000
Start X0 = 0.000000 -0.000000 fO = 1.000000
x = 0.300000 -0.000000 f= 0.580000
x = 0.300000 0.300000f= 0.490000
Pattern search x2 = 0.600000 0.600000 f2 = 0.160000
Call 4 to exploratory search increment = 0.30000
Start x0 = 0.600000 0.600000 f0 = 0.160000
x = 0.900000 0.600000f= 0.100000
x = 0.900000 0.900000 f= 0.010000
Pattern search x2 = 1.200000 1.200000 f2 = 0.040000
Call 5 to exploratory search increment = 0.30000
Start xO = 0.900000 0.900000 fO = 0.010000
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x = 1.200000 0.900000 f= 0.130000

x = 0.600000 0.900000 f= 0.250000

x = 0.900000 1.200000 f= 0.100000

x = 0.900000 0.600000 f= 0.100000

search increment reduced to  0.15000

Call 6 to exploratory search increment = 0.15000
Start x0 = 0.900000 0.900000 f0 = 0.010000

x = 1.050000 0.900000 f= 0.025000

x = 0.750000 0.900000 f= 0.085000

x = 0.900000 1.050000 f= 0.032500

x = 0.900000 0.750000 f= 0.032500

search increment reduced to  0.07500

Call 7 to exploratory search increment = 0.07500
Start xO = 0.900000 0.900000 fO = 0.010000

x = 0.975000 0.900000 f= 0.006250

x = 0.975000 0.975000 f= 0.000625

Pattern search x2 = 1.050000 1.050000 f2 = 0.002500
Call 8 to exploratory search increment = 0.07500
Start x0 = 0.975000 0.975000 f0 = 0.000625

x = 1.050000 0.975000 f= 0.008125

x = 0.900000 0.975000 f= 0.015625

x = 0.975000 1.050000 f= 0.006250

x = 0.975000 0.900000 f= 0.006250

search increment reduced to  0.03750

search completed - increment 0.03750 below tolerance 0.05000
search completed xbest= 0.97500 0.97500 fbest = 0.00062

(x2-x1)? + (1-x1)?

-05

A
1.5

x1
Plot of the Hooke-Jeeves solution from the calculations above.
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Chapter 4

Search Methods of Optimization

4.0 Introduction

There are many search methods which can be used to find an optimum. In this course, he
following methods will be introduced:

Ant Colony Optimization (ACO)

Differential Evolution (DE) Algorithm

Genetic Algorithms (GA) — Excel Add-in provided

Particle Swarm Optimization (PSO) — Excel Add-in provided

Random Search Method — can just use Excel, very simple!

Simulated Annealing (SA)

S o

4.1 Random Search Method

Pure Random Search is the simplest stochastic! method for global optimization, and most
other stochastic methods are variations of it. Be aware that it is very inefficient!

Pure random search consists only of a global phase of two steps:
1) Evaluate f(x) at N sample points from a random uniform distribution over the set Sp.
2) The smallest function value found is the candidate global minimum for f(x).

Pure random search is asymptotically guaranteed to converge, in a probabilistic sense, to the
global minimum point. It is quite inefficient because of the large number of function evaluations
required to provide such a guarantee.

A simple extension of the method is so-called single start. In single start, a single local search
is performed (if the problem is continuous) starting from the best point in the sample set at the
end of pure random search.

4.1.1 Multistart Method

The Multistart method is one of several extensions of pure random search where a local phase
is added to the global phase to improve efficiency. In Multistart, each sample point is used as
a starting point for the local minimization procedure. The best local minimum point found is a

candidate for the global minimum X; . The method is reliable, but it is not efficient since many

sample points will lead to the same local minimum.

1Stochastic optimization (SO) methods are those that use random numbers for their operations.
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The algorithm consists of three simple steps:
1) Take a random point x(0) from a uniform distribution over the set Sp.
2) Start a local minimization procedure from x(0).
3) Return to Step 1 unless a stopping criterion is satisfied.
Once the stopping criterion is satisfied, the local minimum with the smallest function value is

taken as the global minimum X .

To calculate the value of a design variable from a random number using the upper and lower
limits for the design variable, use equation (6.1).

X =X, +1 (Xy =% ); i=1ton (4.1)
where:
L: lower limit;
U: upper limit,
i i design point;
0: 0" generation;

ri:  uniformly distributed random number between 0 and 1

Please note: Equation (4.1) is used by all stochastic methods to calculate the value of the
design variables from random numbers.

Random Search Example:
Use the Random Search Method to solve the minimization of the following function after 10
full iterations of the algorithm, between the limits of -2 < x < 2.

4
f(x) = (4 _2.1x2 +);Jx2 +1.1x +1.0164

The random points and optimum solution are given by:

For Random Search with 10 points and xmin= -2.0000 xmax = 2.0000
For random point i xrand= 0.1576 x= -1.3695 obj= 1.8241

For random point i xrand= 0.9706 x= 1.8824 obj= 5.7235

For random point i xrand= 0.9572 x= 1.8287 obj= 5.3856

For random point i xrand= 0.4854 x= -0.0585 obj= 0.9657

For random point i xrand= 0.8003 x= 1.2011 obj= 4.7385

For random point i xrand= 0.1419 x= -1.4325 obj= 1.6864

For random point i xrand= 0.4218 x=-0.3130 obj= 1.0441

For random point i xrand= 0.9157 x= 1.6629 obj= 4.8970

For random point i xrand= 0.7922 x= 1.1688 obj= 4.6973

For random point i xrand= 0.9595 x= 1.8380 obj= 5.4361

Optimum from Random Search with 10 random points x= -0.0585 obj= 0.9657.

These are shown on the following figure:
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(8-2.024+(x*73.0))x%+1.1x+1.016

(4-2.1x2+(x*/3.0)x%+1.1x+1.016)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

NOTE: since the random search is stochastic, these points will change every time the
algorithm is run.

4.2 Simulated Annealing (SA)

Simulated annealing (SA) is a stochastic approach for locating a good approximation to the
global minimum of a function. The name comes from the annealing process in metallurgy,
which involves heating and controlled cooling of a material to increase the size of its crystals
and reduce their defects. At high temperatures, the atoms become loose from their initial
configuration and move randomly to reach a configuration having absolute minimum energy.
The cooling process should be slow, and enough time needs to be spent at each temperature,
giving more chance for the atoms to find configurations of lower internal energy. If the
temperature is not lowered slowly and enough time is not spent at each temperature, the
process can become trapped in a local minimum for the internal energy. The resulting crystal
may have many defects or the material may even become glass with no crystalline order.

The Simulated Annealing method for optimization of systems emulates this process. Given a
long enough time to run, an algorithm based on this concept finds global minima for
continuous-discrete-integer variable nonlinear programming problems.

The basic procedure is to generate random points in the neighbourhood of the current best
point and evaluate the problem functions there. If the cost (or penalty) function value is smaller
than its current best value, the point is accepted and this becomes best function value. If the
function value is higher than the best value known so far, the point is sometimes accepted and
sometimes rejected.

The point’s acceptance is based on the value of the probability density function of the
Bolzman-Gibbs distribution. If this probability density function has a value greater than a
random number, then the trial point is accepted as the best solution even if its function value
is higher.
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A parameter called the Temperature (T) is used to calculate the probability density function.
For the optimization problem, this temperature can be a target value for the optimum value of
the cost function. Initially, a larger target value is selected. As the trials progress, the target
value (temperature) is reduced (called the cooling schedule), and the process is terminated
after a large number of trials.

The acceptance probability steadily decreases to zero as the temperature is reduced. So, in
the initial stages, the method sometimes accepts worse designs, while in the final stages the
worse designs are almost always rejected. This strategy avoids getting trapped at a local
minimum point. The SA method requires evaluation of a cost and constraint functions only.
Continuity and differentiability of functions are not required. So the method can be useful for
non-differentiable problems, and problems where gradients cannot be calculated or are too
expensive to calculate.

The (SA) algorithm is simple and easy to program. The following five steps give the basic
ideas of the algorithm:

1) Choose an initial temperature T® (Section 4.2.1) and a feasible trial point(x(l)).

Computef (x(l)). Select a limit on the number of iterations (M) to reach the expected

minimum value. Initialize the iteration counter (k = 1).

2) Generate a new point x <+ randomly in a neighbourhood of the current point x

using (4.2). If the point is infeasible, generate another random point until feasibility is
satisfied. Calculate f(x("*l)) and Af =f (x(“l))—f (x(l)).

(kD) Xi(l) N [(x.ma" _ Xi(l))r'

()
K) _ (@ _ymin) ()] T
() I

where: i is the i design variable in the range (i :l...,n), n is the number of design

(4.2)

variables, r*),s!* are random numbers for the i design variable in the k™ iteration in the

range [0,1]
3) IfAf < Othen acceptx**Y as the new best point(x(l)) , set f (x(l)) =f (x("*l))go to Step

4. Otherwise, calculate the probability density function (6.3).Generate a random
number (z) uniformly distributed in [0,1]. If z < p(Af), then accept xX**" as the new

best point xX® and go to Step 4. Otherwise go to Step 2.

—Af

) _ )
p(Af):exp(T(—k)j e @.3)

4) If k <M, then k = k+ 1 and go to Step 5, else if k > M and one of the stopping criteria
explained below is satisfied, then stop.
5) Update the temperature T®, (Section 4.2.2); go to Step 2.

In order to implement this algorithm, the following three points need to be considered:
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1) In Step 2 only one point is generated at a time within a certain neighbourhood of the current
point. Thus, although SA randomly generates design points without the need for function
or gradient information, it is not a pure random search within the entire design space. At
the early stage, a new point can be located far away from the current point to speed up
the search process and to avoid being trapped at a local minimum point. Once the
temperature gets low, the new point is usually created nearby in order to focus on the local
area. This can be controlled by defining a step size procedure.

2) In Step 2, the newly generated point needs to be feasible. If it is not, another point is
generated until a point in the feasible region is obtained. Another method for treating
constraints is to use the penalty function approach; that is, the constrained problem is
converted to an unconstrained one. The cost function is replaced by the penalty function
in the algorithm. Therefore, the feasibility requirements are not imposed explicitly in Step
2.

3) The following stopping criteria are suggested for Step 4:

a. The algorithm stops if change in the best function value is less than some specified
value for the last j number of consecutive iterations.
b. The algorithm stops if k reaches a specified number of iterations by the user.

4.2.1 Selecting the Initial Temperatures TW

A suitable initial temperature is one that results in an acceptance probability of value close to
1, which means that there is an almost 100% chance that a change which increases the
objective function will be accepted. The value of initial temperature will clearly depend on the
objective function and, hence, be problem-specific. It can be estimated by conducting an initial
search in which all increases are accepted (i.e., the fixed number of iterations of simulated
annealing in which all perturbed solutions are unconditionally accepted) and calculating the

maximum objective increase observed Af . Then, the initial temperature TW is given by (4.4).
(1) _ —Af
where: p is a probability close to 1 (e.g. 0.8 — 0.9).

4.2.2 Decreasing the Temperature T®

In the SA algorithm, the temperature is decreased gradually such that (4.5) and (4.6) are
satisfied.

TW>0 (4.5)
mT(” =0 (4.6)

There is always a compromise between the quality of the obtained solutions and the speed of
the cooling scheme. If the temperature is decreased slowly, better solutions are obtained but
with a more significant computation time. The temperature T can be updated using one of four
different schemes: 1) Linear, 2) Geometric, 3) Logarithmic, and 4) Modified logarithmic. These
are explained next.
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4.2.2.1 Linear Temperature Update Scheme

The Linear temperature update scheme consists of (4.7), where the temperature T is

TH =TW _(k-1)AT (4.7)

where: AT is a specified constant value which decreases the temperature equally in each
iteration, k is the iteration number.

The value of AT can be calculated with (4.8), where M is the number of trials (iterations)

(1) _ 4 (Final)
AT = TTT (4.8)

4.2.2.2 Geometric Temperature Update Scheme

The Geometric temperature update scheme consists of equation (6.9) where the temperature
in each iteration is a multiple of the previous temperature.

300

250
O 200
150

100

Temperature (

50

0

0 10 40 50 60

30
Iteration Number
Figure 4.1: Temperature change during the search process for T® = 300 °C and & =0.9.

T _ 70 (4.9)

where ¢ is a value between 0 and 1. The smaller the value of & the faster that the
temperature reaches 0, the larger the value of a the more number of iterations before reaching
a solution. Figure 4.1 shows how the temperature decreases during the search process for an
initial temperature of T® = 300 °C and the multiplier with a value of « =0.9.

4.2.2.3 Logarithmic Temperature Update Scheme

The Logarithmic temperature update scheme consists of (4.10), where the initial temperature
is divided by the logarithm of the current iteration number (k).
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T(l) T(l)
¥ = —or
In(k) log(k)

(4.10)

This scheme is too slow to be applied in practice but has been proven to have the property of
convergence to a global optimum.

Figure 4.2 shows how the temperature decreases during the search process for an initial
temperature of To = 300 °C and 20,000 iterations.
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Figure 4.2: Temperature change during the search process for T = 300 °C and 20,000
iterations.

4.2.2.4 Modified Logarithmic Temperature Update Scheme

The main trade-off in a cooling scheme is the use of a large number of iterations at a few
temperatures or a small number of iterations at many temperatures. The Maodified logarithmic
temperature update scheme consists of (4.11), which is a very slow decreasing function,
Figure 4.3.

(kD) _ T®

1+aT™®
where « is a very small constant parameter with values of approximately « =10"*. Figure
4.12 shows how the temperature decreases during the search process for an initial
temperature of T =300 °C, o =10"* and 20,000 iterations.

(4.11)

Page 77
Copyright © 2024 University of Leeds UK. All rights reserved.



Temperature (°C)

300

250

200

150

100

50

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration Number

Figure 4.3: Temperature change during the search process for T® =300 °C, ¢ =10

and 20,000 iterations.

Simulated Annealing Worked Example

3
The aim is to minimise f(x) = (4 —21x+ %) x%2 + 1.1x + 1.0164 in the x-interval —2 < x < 2
using 6 iterations of the SA algorithm.

Number Random Values Rand Used k f(x) Tk
1 0.02850 1 1 x,= -1.8860 = 1.6014 350
2 0.34773 2,3 x,= -0.6213  1.5833
3 0.75934 Af = f(x;) - f(x,)= -0.01816 <O Accept |
4 0.73739
5 0.86296 2 xy= -0.6213  1.5833 300
6 0.69197 45 xs= 0.01569  1.0346
7 0.69055 Af =| f(xs) - f(x,)= -0.54862 <0 Accept |
8 0.72874
9 0.44761 3 xy= 0.01569  1.0346 250
10 0.00820 6,7 x;= 0.00222 = 1.0189
11 0.80004 Af =| f(xs) - f(x,)= -0.01577 <0 Accept |
12 0.15108
13 0.22558 4 x1=  0.0022 1.0189 200
14 0.45510 8,9 Xs=  0.3220 1.7632
15 0.85492 Af =| f(xs) - f(x,)= 0.744335 >0 Check |

p(Af)= 0.99629

10 Next Rand Number z = 0.0082
I Z < p(Af) True Accept I
5 X1 = 0.3220 1.7632 150
11,12 X6 = 0.7470 3.4742
Af =| f(xe) - f(x,)= 1.711002 >0 Check |

p(Af) = 0.98866

13 Next Rand Number z = 0.22558
I Z < p(Af) True Accept I
6 X1 = 0.7470 3.4742 100
14,15 X7 = 0.2389 1.5008

| Af=| f(x7) - f(x,)= -1.97338 <0 Accept |
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The numerical solution is given by the following calculations:

Initial random number = 0.02850 xmin=-2.00000 xmax= 2.00000 initial x=-1.88600
Iteration 1 T=350.000 xmin=-2.000 xmax= 2.000
x1=-1.88600 f1=1.60142

r=0.34773 s= 0.75934 probrand= 0.00000
x2=-0.62129 f2= 1.58326

Iteration 2 T=300.000 xmin=-2.000 xmax= 2.000
x1=-0.62129 f1= 1.58326

r=0.73739 s= 0.86296 probrand= 0.00000
x2=0.01569 f2= 1.03464

Iteration 3 T=250.000 xmin=-2.000 xmax= 2.000
x1=0.01569 f1= 1.03464

r=0.69197 s= 0.69055 probrand= 0.00000
x2=0.00222 f2=1.01887

Iteration 4 T=200.000 xmin=-2.000 xmax= 2.000
x1=0.00222 f1=1.01887

r=0.72874 s= 0.44761 probrand= 0.00820
x2=0.32202 f2= 1.76320

Iteration 5 T=150.000 xmin=-2.000 xmax= 2.000
x1=0.32202 f1=1.76320

r=0.80004 s= 0.15108 probrand= 0.22558
x2=0.74701 f2= 3.47420

Iteration 6 T=100.000 xmin=-2.000 xmax= 2.000
x1=0.74701 f1= 3.47420

r=0.45510 s= 0.85492 probrand= 0.00000
x2=0.23894 f2= 1.50082

SA search after 6 iterations completed: x= 0.23894 f = 1.50082

The solution is shown on the following figure:

, (4-2.1x2+(x4/3.0))x%+1.1x+1.016

N] w &~ ] o
T T T
rd
i

(4-2.1x%+(x*3.0))x*+1.1x+1.016)

X

4.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population based search algorithm based on the
simulation of the social behaviour of birds in a flock, Figure 4.4. PSO is stochastic and mimics
the flock’s behaviour as it adjusts its movement to avoid predators to seek food sources.
Individual particles exchange information about their position, velocity and fithess. The
position of each individual particle represents a candidate solution to the optimization problem.
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The particle swarm optimisation algorithm (PSOA) uses a fitness function to evaluate the
optimality of each solution.

Figure 4.4: Swarming of starlings

This function enables each solution to be compared and ranked against each other. If the
objective function is required to be minimised, a solution with the smallest value will have a
higher fitness value. The sharing of information between particles is fundamental to the PSOA
as it offers an evolutionary advantage. The act of exchanging information influences the
behaviour of the flock, which adapts by returning to regions of high fitness already discovered
and searching for better positions with each time step. The real-valued particle swarm
optimization method works like this:

Assume that the search space has (d) dimensions (d is the number of design variables). The
i particle of a swarm with N, particles can be represented by the d-dimensional position vector
of (6.12).

X :(Xil’XiZ"“’Xid) (4.12)
The velocity of the particle is denoted by the vector of (4.13).

V= (VilvVizv' : ’vVid) (4.13)

In order for PSO to work, it is also necessary to consider both the best-visited position of the
i™ particle (4.14) and the best global position explored so far by the entire swarm (4.15).

P pest = (P Pizv s Pa) (4.14)
I:)g,best = (pgl’ pg2!' " pgd ) (4.15)

The velocity of the particle which is then used to calculate its position at the (t + 1) iteration is
given by (4.16) and (4.17) respectively.

Vi (t + 1) = WVi (t)+ Clng(Pi,best - Xi )+ CZ(DZ (Pg,best - Xi ) (416)
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Xi(t+2)= X (t)+V,(t+2) (4.17)
where:
ci: A positive constant called the cognitive parameter, a typical value is 0.72
c2: A positive constant called the social parameter, a typical value is 1.44
o,. random variables with uniform distribution between 0 and 1
@,. random variables with uniform distribution between 0 and 1

w: is the inertia weight which shows the effect of the velocity vectors on the
new vector. This value is generally constant for the entire optimization,
but could be made to vary between two values with decreasing effect as
the solution evolves using equation (6.18)

(Wmax ~Whin )t
t

max

t: t"iteration

tmax:  Maximum number of iterations, specified by the user.
d: d" design variable

Minimum inertia value

Maximum inertia value, used at the start of the optimization to
allow a wide search space. The maximum inertia value should
be less than ~50% of the design variable range:

W0V <0.5x(x = x§)

w® Actual inertia value at t" iteration

min *

=

max

An upper bound is placed on the velocity in all dimensions Vmax .This limitation prevents the
particle from moving too rapidly from one region in search space to another. This value is
usually initialized as a function of the range of the problem. For example, if the range of all X
is [-50,50] then Vnax is proportional to 50.

Pivest for each particle is updated in each iteration when a better position for the particle or for
the whole swarm is obtained. PSO is driven by social interaction. Individuals (particles) within
the swarm learn from each other, and based on the knowledge obtained then move to become
similar to their “better” previously obtained position and also to their “better” neighbours.
Individuals within a neighbourhood communicate with one other. Based on the communication
of a particle within the swarm different neighbourhood topologies are defined. Each patrticle
can communicate with every other individual, forming a fully connected social network. In this
case each particle is attracted toward the best particle (best problem solution) found by any
member of the entire swarm. Each particle therefore imitates the overall best particle. So the
value of Pgpest is updated when a new best position within the whole swarm is found.

The algorithm for the PSO consists of the following 7 steps:
1) Initialize the swarm X. The positions of the N, particles are randomly initialized within
the hypercube of feasible space.
2) Evaluate the performance F of each particle, using its current position X(t).
3) Compare the performance of each individual to its best performance so far. If

F(Xi)< F(P ) then F(Pi,best): F(Xi)’ P best = X

i,best
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4) Compare the performance of each particle to the global best particle. If
I:(Xi)< F(Pg,best) then F(Pg,best ): F(XI)’ Pg,best = X
5) Change the velocity of the particle based on the value calculated using equation (1).

6) Move each particle to a new position using equation (2).
7) Go to step 2, and repeat until convergence.

Particle Swarm Optimisation Worked Example

3
The aim is to minimise f(x) = (4 —2.1x+ %) x2 + 1.1x + 1.0164 in the x-interval =2 < x < 2
using the PSO algorithm. The following parameters are used with 3 iterations:

Table 1: Random Numbers in
the range of 0 to 1

LT Random Values

0.457
0.818
0.285
0.373
0.609
0.251
0.678
0.778
0.964
0.073
0.429
0.572
0.219
0.891

0.75 Cognitive Parameter C,
1.5 Social Parameter C,
2 Number of Particles
1 Max Number of lterations
1 Inertia Value
0.5 Initial velocity

| 1]
| 2
| 3
L ad
| 5
| 6
|8
|9
[ 10 |
|11
| 12
[ 138 |
14

The calculations result in:

PSO: ¢1=0.750 c2=1.500 Np= 2 Niter= 3 w_x= 1.000 v_initial= 0.500 xmin=-2.000 xmax= 2.000

Random numbers used throughout PSO calculations:

Particle initialisation: for particle 1 xrand= 0.45700, particle 2 xrand= 0.81800

For k=1 particle 1: thil= 0.28500 thi2 = 0.37300 particle 2: thil= 0.60900 thi2 = 0.25100
For k=2 particle 1: thil= 0.67800 thi2 = 0.77800 particle 2: thil= 0.96400 thi2 = 0.07300
For k=3 particle 1: thil= 0.42900 thi2 = 0.57200 particle 2: thil= 0.21900 thi2 = 0.89100

Iteration 1: Initial x1= -0.17200 x2= 1.27200 f1= 0.94371 f2= 4.80190

Initial x1best= -0.17200 flbest= 0.94371 x2best= 1.27200 f2best= 4.80190

Initial xgbest= -0.17200 fgbest= 0.94371

For particle 1 thil= 0.28500 thi2= 0.37300 For particle 2 thil= 0.60900 thi2= 0.25100
Initial veocity particle 1= 0.50000 particle 2= 0.50000

Start of iteration 2 xgbest= -0.17200 fgbest= 0.94371

Before iteration x1= -0.17200 x2= 1.27200 f1= 0.94371 f2= 4.80190

Before iteration x1best= -0.17200 flbest= 0.94371 x2best= 1.27200 f2best= 4.80190
For particle 1 thil= 0.28500 thi2= 0.37300 For particle 2 thil= 0.60900 thi2= 0.25100
After iteration: For particle 1 velocity= 0.50000 particle 2 velocity= -0.04367

After iteration x1= 0.32800 x2= 1.22833 f1= 1.78365 f2= 4.76708
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After iteration x1best= -0.17200 flbest= 0.94371 x2best= 1.22833 f2best= 4.76708
After iteration 2 xgbest= -0.17200 fgbest= 0.94371

Start of iteration 3 xgbest= -0.17200 fghest= 0.94371

Before iteration x1= 0.32800 x2= 1.22833 f1= 1.78365f2= 4.76708

Before iteration x1best= -0.17200 flbest= 0.94371 x2best= 1.22833 f2best= 4.76708
For particle 1 thil= 0.67800 thi2= 0.77800 For particle 2 thil= 0.96400 thi2= 0.07300
After iteration: For particle 1 velocity= -0.33775 particle 2 velocity= -0.19700

After iteration x1= -0.00975 x2= 1.03133 f1= 1.00606 f2= 4.43074

After iteration x1best= -0.17200 flbest= 0.94371 x2best= 1.03133 f2best= 4.43074
After iteration 3 xgbest= -0.17200 fgbest= 0.94371

PS search completed xgbest= -0.17200 fghest = 0.94371

4-2.1x%+(x*3.0))x? + 1.1*x + 1.0164

[y w B w [e)]
T T T T
"
.

4-2.1x%+(x*3.0)x% + 1.1 + 1.0164

-
/

®
\

4.4 Differential Evolution (DE)

The differential evolution (DE) algorithm works with a population of designs. At each iteration
(called generation), a new design is generated using some current designs and random
operations. If the new design is better than a preselected parent design, then it replaces that
design in the population; otherwise, the old design is kept and the process is repeated.
Compared to genetic algorithms (GA), DE algorithms are easier to implement, and don’t
require binary number coding and encoding.

The basic DE algorithm consists of the following four steps, which will be explained next.
1) Generate an initial population of designs.
2) Mutation with difference of vectors to generate a donor design vector.
3) Crossover/recombination to generate a design vector.
4) Selection (accept/reject) the trial design vector using the fitness function.

4.4.1 Generation of the Initial Population
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It is necessary to generate an initial population of Np design points. Np is usually a large
number, between five (5n) and ten times (10n): the number of design variables (n), where
each design variable is called a chromosome. The initial designs are generated using
equation (6.1), which for DE has the form of (6.19).

XM =+ (x].U —ij) j=1ton (4.19)
where:
lower limit;
upper limit,
i design point;
0" generation;
j" component of the population
ri:  Uniformly distributed random number between 0 and 1, generated for each
component of the design point.

coTCcrm

4.4.2 Generate a Donor Design

The donor design point is created by changing a design point from the current population. This
change is done by combining the design vector with the difference between two other vectors
of the population, all randomly selected. The generated design vector is called the donor
design/vector. Mutation implies changing all components of a design vector. So, at the k"
generation, to generate the donor design vector, the following steps are required:

1) Randomly select three design points from the current population, represented by these

3 variables: {x(rlk),x(rz'k),x(r3’k)} 11, I2, and rs are three different designs.

2) Select a fourth pointx(’"k), called the parent/target design point; p means parent
design.
3) Generate a Donor design vector using (6.20)

VAR = x(x(rz'k) —x(’3"‘)) (4.20)
where:
F: is a scale factor, with values typically between 0.4 and 1;
VPR Donor design vector at the k™ generation/iteration associated with p™ parent

design
4.4.3 Crossover Operation to Generate Trial Design

The crossover operation is carried out using (4.21).

VK ifr o <Crorj=j
upk=ai _ j=1ton 4.21
: xl(p'k), otherwise J (4.21)
where:
o is a uniformly distributed random number between 0 and 1,
jr: is a randomly generated index between 1 and n that ensures that U® ¥
receives at least one component from V®¥;
Cr: Crossover rate (value of 0.9 commonly used).
4.4.4 Acceptance/Rejection of the Trial Design
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Check if the trial design U®¥ is better than the parent design x®¥.If it is, it replaces the parent
design (to keep population size constant). This is represented by (4.22).

x(p,k+1)={U(p’k), if £U0)<f(x?) (4.22)

x(PK), otherwise

If the cost function value for the trial design point is less than for the parent design, it replaces
the parent design point in the next generation; otherwise, the parent design is retained. The
population then gets better or remains the same but doesn’t deteriorate. Note that the parent
design is replaced by the trial design even if both produce the same cost function value. This
allows the design vectors to move over a flat fithess landscape.

4.45 The DE Algorithm

The DE algorithm only requires three parameters: Np, F, and Cr, and its flow chart is given in
Figure 4.5. The termination criteria consist of the following three steps:
1) Specify a limit kmax 0N the number of generations.
2) The best fitness/cost function value of the population does not change appreciably for
several generations.
3) A specified value for the cost function is reached.

-
-«

4

Generate initial Generate Generate trial

population donor design g design > Selection

Figure 4.5: Main steps of the differential evolution algorithm..

Differential Evolution Worked Example

3
The aim is to minimise f(x) = (4 —2.1x+ %) x? + 1.1x + 1.0164 in the x-interval —2 < x < 2
using the DE algorithm. The following parameters are used:

Table 1: Random
Numbers in 0 to 1 range

Random
Values

0.6582

0.7161

02503 Number of Design variables

07816 Total number of design points (6n)

0.8839

o
n

Scale accelerator

0 =

0.5247

1
N

0.1934 XL Lower limit of design variable

0.5037

y8]

Upper limit of design variable
0.0998

0.4530 Random number from table

0.7599 Cross over rate

0.0387

—_—

o
©

06920 Maximum number of generations

0.2269
0.8502

0.3498

=
=]

0.6921

0.3651
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Differential Evolution: n=1 Np=6 Ngen=2 xmin= -2.0000 xmax= 2.0000 F= 0.4000 Cr= 0.9000

Random numbers for initialisation of design points:

Point 1= 0.6582 2= 0.7161 3= 0.2503 4= 0.7816 5= 0.8839 6= 0.5247

Random numbers for generating donor and target points at each iteration:

Generation 1 random numbers: 0.1934 0.5037 0.0998 0.4530
Generation 1 donor designs: 2 4 1 and target design 3

At start of generation 1:

x1= 0.6328 x2= 0.8644 x3=-0.9988 x4= 1.1264 x5= 1.5356 x6= 0.0988

fl= 2.9989 f2= 3.9226 f3= 2.1491 f4= 4.6308 f5= 4.8315 f6= 1.1639

Minimum function value= 1.1639 at x= 0.0988

For generation 1 donation use rl= 2 r2= 4r3= 1 for target rp= 3 with potential x= 1.0618

At end of generation 1:

x1= 0.6328 x2= 0.8644 x3=-0.9988 x4= 1.1264 x5= 1.5356 x6= 0.0988
fl= 2.9989 f2= 3.9226 f3= 2.1491 f4= 4.6308 f5= 4.8315 f6= 1.1639
Minimum function value= 1.1639 at x= 0.0988

DE search completed xbest=0.09880 fbest= 1.16393

y=4-2.1x2+(x*3.0))x? + 1.1*x + 1.0164

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

The following example solves the same problem but with a different set of random numbers
and a larger number of generations:

Differential Evolution: n=1 Np=6 Ngen=10 xmin= -2.0000 xmax= 2.0000 F= 0.4000 Cr= 0.9000

Random numbers for initialisation of design points:

Point 1= 0.9106 2= 0.8006 3= 0.7458 4= 0.8131 5= 0.3833 6= 0.6173
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Random numbers for generating donor and target points at each iteration:

Generation 1 random numbers:
Generation 1 donor designs: 4
Generation 2 random numbers:
Generation 2 donor designs: 4
Generation 3 random numbers:
Generation 3 donor designs: 2
Generation 4 random numbers:
Generation 4 donor designs: 2
Generation 5 random numbers:
Generation 5 donor designs: 3
Generation 6 random numbers:
Generation 6 donor designs: 2
Generation 7 random numbers:
Generation 7 donor designs: 5
Generation 8 random numbers:
Generation 8 donor designs: 6
Generation 9 random numbers:
Generation 9 donor designs: 1

At start of generation 1:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

0.5755 0.0871 0.8990 0.4106
1 5 and target design 3
0.5301 0.8021 0.6259 0.9843
5 4 and target design 6
0.2751 0.9891 0.1379 0.9456
6 2 and target design 6
0.2486 0.0669 0.2178 0.6766
1 2 and target design 4
0.4516 0.9394 0.1821 0.9883
6 2 and target design 6
0.2277 0.0182 0.0418 0.7668
1 1 and target design 5
0.8044 0.6838 0.1069 0.3367
4 2 and target design 3
0.9861 0.7837 0.6164 0.6624
5 4 and target design 4
0.0300 0.5341 0.9397 0.2442
4 6 and target design 2

Minimum function value= 1.2782 at x= -0.4668

For generation 1 donation use rl= 4 r2= 1r3= 5 for target rp= 3 with potential x= 2.0961

At end of generation 1:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

Minimum function value= 1.2782 at x= -0.4668

At start of generation 2:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

Minimum function value= 1.2782 at x= -0.4668

For generation 2 donation use rl= 4 r2= 5r3= 4 for target rp= 6 with potential x= 0.5648

At end of generation 2:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

Minimum function value= 1.2782 at x= -0.4668

At start of generation 3:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5=-0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

Minimum function value= 1.2782 at x= -0.4668

For generation 3 donation use r1= 2 r2= 6 r3= 2 for target rp= 6 with potential x= 0.9090

At end of generation 3:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

Minimum function value= 1.2782 at x= -0.4668

At start of generation 4:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
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Minimum function value= 1.2782 at x=-0.4668
For generation 4 donation use rl= 2 r2= 1r3= 2 for target rp= 4 with potential x= 1.3783

At end of generation 4:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x=-0.4668

At start of generation 5:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5=-0.4668 x6= 0.4691

fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

Minimum function value= 1.2782 at x=-0.4668

For generation 5 donation use r1= 3r2= 6 r3= 2 for target rp= 6 with potential x= 0.6901

At end of generation 5:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668

At start of generation 6:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5=-0.4668 x6= 0.4691

fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

Minimum function value= 1.2782 at x= -0.4668

For generation 6 donation use rl= 2 r2= 1r3= 1 fortarget rp= 5 with potential x= 1.2022

At end of generation 6:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5=-0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 fo= 2.3146
Minimum function value= 1.2782 at x= -0.4668

At start of generation 7:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5=-0.4668 x6= 0.4691

fl= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

Minimum function value= 1.2782 at x=-0.4668

For generation 7 donation use rl= 5r2= 4 r3= 2 for target rp= 3 with potential x= -0.4467

At end of generation 7:

x1= 1.6423 x2= 1.2022 x3=-0.4467 x4= 1.2525 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 1.2422 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2422 at x= -0.4467

At start of generation 8:

x1= 1.6423 x2= 1.2022 x3=-0.4467 x4= 1.2525 x5=-0.4668 x6= 0.4691

fl= 4.8751 f2= 4.7397 f3= 1.2422 f4= 4.7879 f5= 1.2782 f6= 2.3146

Minimum function value= 1.2422 at x=-0.4467

For generation 8 donation use r1= 6 r2= 5r3= 4 for target rp= 4 with potential x=-0.2186

At end of generation 8:

x1= 1.6423 x2= 1.2022 x3= -0.4467 x4= -0.2186 x5= -0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 1.2422 f4= 0.9623 f5= 1.2782 f6= 2.3146
Minimum function value= 0.9623 at x=-0.2186

At start of generation 9:
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x1= 1.6423 x2= 1.2022 x3=-0.4467 x4=-0.2186 x5= -0.4668 x6= 0.4691

fl= 4.8751 f2= 4.7397 f3= 1.2422 f4= 0.9623 f5= 1.2782 f6= 2.3146

Minimum function value= 0.9623 at x=-0.2186

For generation 9 donation use r1= 1r2= 4 r3= 6 for target rp= 2 with potential x= 1.3672

At end of generation 9:

x1= 1.6423 x2= 1.2022 x3=-0.4467 x4=-0.2186 x5=-0.4668 x6= 0.4691
fl= 4.8751 f2= 4.7397 f3= 1.2422 f4= 0.9623 f5= 1.2782 f6= 2.3146
Minimum function value= 0.9623 at x=-0.2186

DE search completed xbest= -0.21857 fbest = 0.96231

y=4-2.1x2+(x*13.0))x? + 1.1*x + 1.0164
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4.5 Genetic Algorithms (GA)

Genetic algorithms (GA) are a class of stochastic algorithms which simulate natural
inheritance and Darwin’s survival of the fittest concept. They belong to the class of probabilistic
algorithms; but are very different from random ones, as they combine elements of directed
and stochastic search. They are superior to hill-climbing methods, since at any time a GA
provides for both exploitation of the best solutions, and exploration of the search space.

GA performs a multi-directional search by maintaining a population of potential solutions and
encourages information formation and exchange between these directions. This population
undergoes a simulated evolution: at each generation the relatively “good” solutions reproduce,
while the relatively “bad” solutions die. One of the main differences between GA and other
stochastic methods is in the way that the design variables are stored and manipulated. GA
attempts to simulate numerically biological genetics and evolution. So, the design variables
are represented not as a vector of values, but as a binary string of 0's and 1’s called a

chromosome. This means that this vector of design variables: X = (Xl, X2,---,Xn) is represented

by this binary string:x =101010011100111100100110001001010100100101. But
instead of calling this the design variables, this binary string is called a chromosome (6.23).
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chromosome = [1010100111 0011110010 0110001001 0101001001 01]  (4.23)

A chromosome (also called an Individual or string) is a binary string which holds all of the
design variables and which needs to be optimized. Since the design variables are all
embedded inside of the chromosome, then all of the segments which make up each individual
design variable are the genes, (4.24).

chromosome =|10101001110011110010 ---0100100101 (4.24)

gene 1 gene 2 gene Ny,

The genes then represent the design variables inside of the chromosome. In the chromosome
of (4.24), the number of design variables is Nvar, and each one has been coded using 10 bits,
i.e. Ngene = 10. The length of this chromosome is then given by (4.25).

Niis = Ngene XNy =10x N, bits (4.25)

bits gene

Each individual bit of a chromosome is called an Allele, (4.26).

chromosome =|1010100111 0011110010 ---01001001 (4.26)
gene 1 gene 2 gene N,

A Population consists of a group of individuals that interact (breed) together and looks like
(4.27).

101010011100111100100110001001010100100101

001001001111000101001010010010101000000010

Population = (4.27)

111110010001011001010010010110010010010011

A population of individuals can then be manipulated and combined by using the following six
genetic operators, each of these operators will be explained in the sections which follow.

1) Evaluation

2) Selection

3) Reproduction (Cross-over)

4) Mutation

5) Elitism

6) Extermination

45.1 Evaluation

In conventional optimization, the objective function is used to provide a measure of optimality
for the values of the design variables. In GA, the fithess of an individual is used to determine
its relative performance (fitness) compared to the other individuals of a population. Fithess
Function (FF): is the function used to calculate the fitness, (4.28).
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F(x)=g(f(x)) (4.28)
where:

f:  is the objective function;
g: transforms the value of the objective function to a non-negative number
F: s the resulting relative fitness.

45.2 Selection

The process of selection consists of selecting two chromosomes (individuals) from the mating
pool (population) in order to carry out reproduction to produce two new offspring. The selection
process is biased toward fit members of the current population. Using the fitness value F; for
each individual of the population, its probability of being selected is calculated using (4.29).

NP
P = b Q- D F (4.29)
Q i
The members with the higher fitness have the largest probability of selection. To explain the
process of selection, consider the roulette wheel with a handle, Figure 4.6. The wheel has Np
segments to cover the entire population. The size of the i segment is proportional to the
probability P;. A random number w is generated between 0 and 1. The wheel is then rotated
clockwise, with the rotation proportional to the random number w.

The second member is selected
since P1 < w< (Pq+ Py)

¢ \ Spin based on a random

number w (0 <w< 1)

Pn

% /

Initial Position Rotated Position
Figure 4.6: Roulette wheel process for selection of designs for new generation (reproduction).
After spinning the wheel, the member pointed by the arrow at the starting location is selected
for inclusion in the next generation. In Figure 4.6, the 2" individual is selected as a parent for
reproduction. Since the segments on the wheel are sized according to the probabilities P;, the
selection process is biased toward fitter members of the current population.
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Note that a member selected for mating remains in the current population for further selection.
Therefore, the new population may contain identical members and may not contain some of
the less fit individual members from the current population. This guarantees that the average
fithess of the new population is increased. The three of the most common selection methods
are:

1) Roulette Wheel Selection

2) Linear-rank selection

3) Tournament selection:

4.5.2.1 Roulette Wheel Selection

Roulette Wheel Selection or Proportional Selection was the original selection process. As was
just explained, each individual of the population is represented by a space proportional to its
fithess. By repeatedly spinning the wheel, individuals are chosen using random sampling with
replacement.

4.5.2.2 Linear-Rank Selection

The individuals of the population are ordered according to their fithess. Copies are assigned
in such a way that the best individual receives a pre-determined multiple of the number of
copies the worst one receives. Rank selection implicitly reduces the dominating effects of
“super individuals” in populations (i.e., individuals that are assigned a significantly better
fitness value than all other individuals). However, it warps the difference between close fitness
values, thus increasing the selection pressure in stagnant populations.

4.5.2.3 Tournament Selection

There are a number of variants on this theme. The most common one is k-tournament
selection where k individuals are selected from a population. The fittest individual of the k
selected ones is considered for reproduction. In this variant, selection pressure can be scaled
guite easily by choosing an appropriate number for k.

4.5.3 Reproduction (Cross-over)

The operator to produce new individuals is call reproduction. Like nature, reproduction is
carried out by crossover, which produces new individuals with some parts from the genetic
material of both parents. There are 3 common forms of cross over, these are:

1) Single-point Crossover

2) Multi-point Crossover

3) Uniform Crossover

4.5.3.1 Single-point Crossover

Consider the following two binary strings as two parents:
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P=1010110010
PL=0001100111

A position, i, is selected randomly between 1 and the string length, I. Assume that for this
problem, the position i = 5 was randomly selected. The two strings are then cut between the
5™ and 6™ allele.

P=10101(10 0 10
P,=0 0 0 11/0 0 111

The segments of the strings to the right of the cut are then swapped.

P=1010 1|l 0 0 1 0
P,=0 0 0 1 1{[0 0 1 1 1]

To produce these two children
0=1010100111
0,=0 001110010

4.5.3.2 Multi-point Crossover

For multi-point crossover, m crossover positions are chosen at random with no duplicates and
these are then sorted into ascending order, (4.30).

k, €,3,7,12,---,1 -1} (4.30)
where:
ki: are the crossover points
I: is the length of the chromosome

Then, the bits (alleles) between successive crossover points are exchanged between the two
parents to produce two new offspring

Consider the following two binary strings as two parents:
PP =101111011100

110
P, =000010001010100
If the number of cross overs (m) was set to m = 3. With the 3 positions randomly selected to
bek; € {3,6,13}, this then creates the 4 segments shown below. But only segments 2 and 4

take part in the crossover. These two segments are cut are then swapped.

PP =10 1|1 1 1 2)1:11 0 0 1{[1 0 :>
P, =00 0/0 109010 10 1[0 0

= ~ < =
1 2 3 4
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To produce these two children
O =101010011100100
0O, =000111001010110

4.5.3.3 Uniform Crossover

Uniform crossover generalises this scheme to make every locus a potential crossover point.
A crossover mask (the same length as the chromosome) is randomly created with values of 0
or 1. The value of the bits in the mask indicates which parent supplies each offspring with their
information. Consider the following two parents and the randomly generated crossover mask.

P, =101010011100100
P, = 00011121001010110
mask = 0 1 1 010 0 0 0 OO0 1010

The first offspring, O, is produced by taking the bit from P if the corresponding mask bit is 1
or the bit from P if the corresponding mask bit is 0. Offspring O is created using the inverse
of the mask. For the two parents and mask shown above, the two offspring become:

0O =001111001010100
0Ob =100010011100110

45.4 Mutation

In natural evolution, mutation is a random process where one allele of a gene is replaced by
another to produce a new genetic structure. In GA, mutation is randomly applied with a
probability of between 0.001 and 0.01 (0.1% to 1%). Mutation takes place after the
reproduction (cross-over) stage and modifies individual alleles in the chromosome by inverting
their value. Mutation provides a guarantee that all possible strings will be searched. It acts as
a safety net to recover good genetic material which may have be lost through selection and
crossover

Consider that the 2" of these two offspring was randomly selected for mutation. It was then

randomly found, that the 7" position was going to be mutated.
0 =001111001010100
O, =100010[0J11100110

Since the current value is 0, this is then mutated to have a value of 1.

O, =001111001010100
O, =100010[211100110
45,5 Elitism

A very small proportion of the individuals (chromosomes) with the best fithess are carried over
from one generation to the next. Elitism guarantees that the solution quality obtained by the
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GA does not decrease from one generation to the next. A reasonable proportion of the
population to be considered for elitism is 10%.

45.6 Extermination

It's reasonable to exterminate a certain percentage (%) of the population of lowest fitness. A
reasonable proportion of the population to be exterminated is between 10 and 25%.

457 Termination Condition

The GA process can go forever, unless there is some sort of termination condition. There are
normally a couple of ways to achieve this:
1) Maximum number of iterations (called generations) reached . A typical value is 150
generations
2) Fitness function conversion. If the fitness function value does not improve by more
than a minimum relative threshold (typically) 0.0001% (0.000001) over the previous n
generations (typically 10) the process is terminated.

4.5.8 The Genetic Algorithm Procedure

The virtual code of Figure 4.7 shows how the GA procedure works.
Genetic Algorithm Procedure
begin
t=1
Initialize P(t) - Randomly
Evaluate P(t)
while (not termination-condition) do
begin
Extermination P(t)
Selection from P(t)
Elitism P(t+1) from P(t)
Reproduction P(t+1)
Mutation P(t+1)
Evaluate P(t+1)
t=t+ 1
end
end
Figure 4.7: GA virtual code

4.6 Ant Colony Optimization (ACO)

Ant colony optimization (ACO) emulates the food searching behaviour of ants. The method
was originally developed by Dorigo (1992) to search for the optimal path for a problem
represented by a graph. It was based on the behaviour of ants seeking the shortest path
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between their colony and a food source. ACO falls into the metaheuristics? and swarm
intelligence methods class. It is a stochastic technique for solving computational problems,
which can be used to find optimal paths.

4.6.1 How Real Ants Work

Ants are able to deal with complex tasks by acting collectively. This collective behaviour is
supported by the release of a chemical substance, named pheromone. During their
movement, ants deposit pheromone in their followed paths.

The presence of pheromone in a path attracts other ants. In this way, pheromone plays a key
role in the information exchange between ants, allowing them to accomplish several important
tasks. A classic example is the selection of the shortest path between their nest and a food
source.

Consider four ants (A1, A2, Az and As), and two possible paths, P1 and P», Figure 6.8. These
two paths link a nest (NE) to a food source (FS), and for this explanation, it is assumed that
path P is longer than path P», hence P, < P;.

food source (fs) |

nest (ne)

Figure 4.8: Two paths between a nest and food source with four ants.

Initially, all the ants (A1, A2, As and A4) are in Ne and must choose between the paths P; and
P> to arrive to Fs.

At the Ng, the four ants don’t know the localization of the food source (Fs). Randomly they
choose between P1 and P», with the same probability. So assume that ants A; and A, choose
P1, and ants A; and A4 choose P, Figure 4.8.

As the ants travel by P; and P2, they leave a certain amount of pheromone on the paths, 7,
andr,, respectively. Since P2 < P1, As and A4 arrive to Fs before A; and Az. At that moment,
7, =2, but 7, = 0since A; and A, have not arrived to Fs, Figure 4.9.

2 Metaheuristics: Makes few assumptions about the optimization problem being solved, making it
usable for a variety of problems.
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NE TZ=2A3 FS

Figure 4.9: Two ants follow path P1 and the other two paths P.. Now at the food source, the
ants need to decide which path to take.

In order to come back to Ng, As; and As must choose again between P; and P». At the Fs,
7, > 7,, the probability of these ants choosing P2 is higher. Assume then, that As and A4

choose Pa, so that as they travel back to Ne 7, =4.

P,

N E AS A4

Figure 4.10: With ants A; and A, already along path P;, ants A; and Az need to decide which
path to take.

When A; and A; arrive at the Fs, then 7, =4 and 7, = 2, Figure 4.10. When A; and A decide
to go back to Ng, since 7, > 7, then the probability that they choose to return via P> becomes

higher. As they do, then 7, =6. When all ants are back at Ng, then 7, =6and 7, =2, soin
the future P2, will have highest probability of being selected, Figure 6.11.

P,

A
4NE T2=6 FS

Figure 4.11: Final pheromone composition in the two paths after all ants are back at the
nest.

When there is no pheromone, an ant looking for food randomly will choose between P; and
P2 with a probability of 0.5 (50% possibility of choosing each path). When there is pheromone
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on at least one of the paths, the probability of selecting a given path is proportional to the
amount of pheromone on it. Thus, paths with a higher concentration of pheromone have a
higher probability of being selected.

To understand how to use ant colonies to solve problems, it is necessary to understand the
problem of foraging for food and how ants solve it. Each location (nest, food source, etc.) is
represented by a node and each path by an edge in a graph, Figure 4.12.

To solve a problem using ant colony optimization the domain needs to be able to be
represented, as a graph and the goal will then be to find the best path.

P,

® ®

P,

Figure 4.12: Two nodes representing the nest and food source connected by two paths.

4.7 How to Solve Constrained Optimization Problems

The most common approach for solving optimization problems which have constraints
(particularly, inequality constraints) with any of the stochastic methods mentioned in this
chapter as well as pattern search methods of chapter 3 (sections 3.6 and 3.7) is to use Penalty
Functions.

The idea of this method is to change a constrained-optimization problem into an unconstrained
problem; by adding a value to the objective function based on the amount of constraint
violation present in the solution. The modified objective function with the penalty terms is given
by equation (4.31).

F(x):f(x)+rkghf(x)+rkg<g (x)>2 (4.31)

where:
is (> 0) and has to be appropriately selected. A possible equation for it is
I, given by equation (4.32). It needs to have a small value at the start but then
increase to a larger value for the purpose of tightening the constraints.
<g (x)> is the function of equation (4.33) which has a value of zero if the inequality
constraint is not violated or the value of how much the constraint is violated.

=Mmax ! .
- {’“ o) hJ(X)J -
(9, (x)) =max[0,g, (x)] (4.33)
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In case constraints are satisfied g, (x)<0, then <gi (x)> will be zero and there will be no

penalty on the objective function. In case constraints are violated g; (x) >0 then <gi (x)> will

be a positive value resulting in a penalty on the objective function. The penalty will be higher
for higher infeasibility of the constraints. The function F(x) can be optimized using the
algorithms for unconstrained problems. The penalty function method of this form is called the
exterior penalty function method.

The main advantages of the penalty function method are that:
a) It can be started from an infeasible point.
b) Unconstrained optimization methods can be directly used.

The main disadvantages of the penalty function method are that:

a) The function becomes ill-conditioned as the value of the penalty terms is increased.
Owing to abrupt changes in the function value, the gradient value may become large
and the algorithm may show divergence.

b) As this method does not satisfy the constraints exactly, it is not suitable for optimization
problems where feasibility must be ensured in all iterations.

Only exterior penalty function method was presented, which can be started even from an
infeasible point. Some problems require feasibility to be maintained in all iterations. In such
cases, the interior penalty function methods also called barrier function methods can be
used.
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Chapter 5

Design of Experiments (DoE)

50 Introduction

A Design of Experiment (DoE) [42, 48, 123] is a procedure for selecting the values of the input
variables for the experiment from the predetermined parameter domain. DoE methods are not
always relevant for certain physical experiments, such as data values dictated by geographical
locations, however they are ideal for computer simulations. Theoretically there are an infinite
number of possible design choices, practically however the domain is discretised into a finite
number of possible data points either based upon the computer paradigm and/or engineering
requirements. The values for the design parameters chosen by the DoE are members of this
finite set and are also known as the training data for the resulting approximation model. The
guantity of training data points required for any given situation is problem dependent and can
be viewed as an optimisation in its own right, how to obtain the best (most representative)
results for the least amount of work.

Whilst the overall aim is to use computer simulations as a complement, or even as a
replacement, for physical experiments, the techniques are illustrated using standard analytical
optimisation test problems. However, a possible drawback with this approach is that for
practical engineering problems we do not usually know how smooth the actual response
surface is. The addition of a small (< 10%) amount of normally distributed random errors
(‘noise’) to the true analytical response value can mimic real life engineering applications
slightly better, whilst remaining computationally cheap to analyse and potentially highlighting
any possible pitfalls with the surrogate models, such as over-fitting. Hueng et al. [61] use this
approach for several analytical test functions, with varying amounts of noise per function,
normally distributed about the true values.

5.0.1 Test Functions

Two different analytical test functions with different properties have been chosen for illustrative
and testing purposes. The first is the Six-Hump Camel-Back (SHCB) function [102, 151] which
has three pairs of local minima, of which one pair are global minima, within the specified
domain. The second test function, the Rosenbrock ‘Banana’ (RB) [143], presents different
challenges with large response values at the domain extrema and a notoriously difficult to find
global minimum [6] located within a banana shaped groove.
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The SHCB function is described by (8.1) with the global minima having values of f = —1.0316
at (0.0898,—0.7127) and (—0.0898,0.7127). Contours of the function are shown in Figure 5.1.
The contours shown are evenly spaced at increments of f = 0:25.

fxg, %) = 4x? — 2.1xt + %xf + x1x, — 4x3 + 4x3,
forx, € [=2,2], x, € [-1,1]. (5.1)

x)

Figure 8.1: Contour plot for the Six-Hump Camel-Back analytical function.

Whilst the SHCB function has multiple minima, it only accepts two-dimensional training data.
The two-dimensional RB function given by (5.2a), shown in Figure 5.2, can be extended to p
dimensions, as in equation (5.2b).

fx1,x) = (1 —x7)% +100(x, — x%)?, (5.2a)
fG) = 3P (1 —x)% + 10001, — x2)?). (5.2b)

For the two dimensional case, the single global minimum lies at (1,1) with a value of f = 0.
For higher dimensions [6, 79], there are multiple minima (two for 4 < n < 7, with the global
locatedatx; = 1,i =1, ...,patavalue of f = 0.

The contour plot for the two dimensional case is shown in Figure 5.2, with contours at f =
0.5,1,2,3,4,5,10, 25,50,100,250,500,1000 and 2000.

X5

1000

500 —

i

Figure 5.2: Contour plot for the 2D Rosenbrock Banana function.

-1 0 1 2
|
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5.0.2 DoE Notation

Each DoE contains n training data points X, (1si < n)Iocated within the parameter domain,

where each data point is represented by a p dimensional coordinate x,eRP. As such, each
DoE can be represented as either a vector of vectors or a matrix, (8.3), which may be used to
determine the quality of the experimental design. Some DoE techniques require that each
design parameter be discretised into levels (intervals) to aid with allocation of the parameter
values for the n data points.

X = (X %y Xy ) =| 8 L (5.3)

Whilst in the context of CFD and engineering, each training data point corresponds to a
particular set of values for the design parameters, for the purposes of this report (and following
literature [92, 103]) a ‘design’ can be taken to mean a particular set of n training data points
that constitute a given DoE and may be interchanged accordingly. The design parameters p
are the variables for both the DoE and the resulting n simulations, hence the terms design
parameters and parameters are equally valid in both instances.

Following this notation, a population of DoEs contains Q individual designs, each design
containing n training data points in p dimensions, x,eR? for 1<i<n.

5.1 Experimental Designs for Simulations

Theoretically the exact input-output relationship for computer simulations is already known.
Furthermore, plotting the computer response for the entire parameter domain would provide
an accurate response (hyper-) surface. However as this may be too computationally expensive
to realise, numerous methods (known as surrogate models or often termed metamodels) for
mimicking the behaviour of a given hyper-surface have been developed [25, 54, 69, 86, 123,
129, 151] based on a reduced (hopefully minimum) number of strategically chosen input data
points.

Regardless of the ultimate experimental objective, there exist several different and well-
documented methods for obtaining the initial training data. Recent years have seen an
increase in the development of such techniques for computational experiments [42, 73, 125],
tailoring the methods to the specific requirements, many of which are straightforward to
implement for regular parameter domains. As irregular domains may be problematic [73] and
affect properties of the method, they will not be considered in this thesis. However, constraints
may be added to a regular domain [73], after DoE selection and surrogate model construction,
as part of the optimisation process. Although this may incur additional computational efforts,
it simplifies the groundwork stages enormously.
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5.1.1 DoE Requirements for Simulations

An obvious requirement is that given any set of design parameters and number of training
data points, the DoE technique vyields different sets of training data whose resulting surrogate
models have predictive (quantitative and qualitative) qualities, thus allowing accurate
comparison of different surrogate modelling techniques. If different designs produce
significantly different hyper-surfaces when implementing the same surrogate model, this
indicates that the initial design may not have contained enough data points. Alternatively, it
may suggest that the surrogate model was inappropriate and another may provide better
results. There may even be a necessity to customise a DoE such that it is suitable for a certain
surrogate model.

As uniform designs provide a good basis for an average surrogate model representation
across the parameter domain [125], a sensible strategy could be to get basic approximation
with a space-filling design and then tailor the surrogate model further with exploratory
techniques for allocating additional data points. As such, the initial focus is concerned with
space-filling designs. Situations that require additional training data that also fulfil the space-
filling requirement are also considered, for example when the initial number of data points is
insufficient.

For most practical engineering problems, it is a reasonable assumption that the cost of the
calculation of the response value at each training data point is computationally expensive,
especially in comparison with the cost associated with that of generating a suitable DoE, which
may be small, or even negligible, to that of a single data point evaluation. Therefore the time
taken to obtain a good set of input points can potentially avoid wasted simulation time.

5.1.2 Quantifying and Comparing Spatial Coverage

A population of distinct DoE designs can be generated from any DoE method for a given
number of training data points in any specified parameter domain. Each member of the
population can be evaluated according to the spatial coverage it provides over the parameter
domain and the most appropriate DoE design employed for the subsequent simulation. There
exist several documented measurements based on the Euclidean distance between the data
locations in parameter space to quantify spatial coverage and compare different experimental
designs. The methods are equally applicable for comparisons of different designs in a
population or modification to an individual design to produce a new design, and hence
determining whether the modification has yielded any improvement. Two of the simplest
guantifiers are the maxi-min and mini-max methods, mathematical details for both can be
found in [125] and references therein.

The maxi-min method ensures that in any individual design no two training data points are too
‘close’ in parameter space. The first stage calculates the Euclidean distances between all the
data points in a design and determines the minimum. If another design, be it a modification or
another member of the population, has a greater minimum Euclidean distance, then the
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second design is better under this criterion. Similarly the mini-max method guarantees that
the data points are not too far apart by finding the minimum of the maximum Euclidean
distances. Used in tandem, the mini-max and maxi-min methods can provide bounds for
ascertaining the ‘best’ design in a population. However, these methods may not provide the
optimum design as they do not consider the distribution of data points in each design as a
whole, only the extrema.

The potential energy analogy is shown to overcome this barrier [11, 13, 14, 88] by effectively
assigning a unit of ‘charge’ to each of the n data points and calculating the resulting ‘energy’,
U, in the whole design:

U= i i r.?, fori=] (5.4)

i=1 j=i+l

where: rj is the Euclidean distance between data points i and j The ‘best’ (as in the most
uniformly distributed) DoE of any given set of DoE designs is the one with the lowest potential
energy U.

5.2 Overview of Various Design of Experiment Techniques

Traditionally experiments were carried out by varying one design factor at a time and holding
the others constant. Classical DoE techniques came in 1920 when Fisher published his
strategy for experimenting with several design variables [148], initially applying his Full
Factorial designs to agricultural problems. The next developmental wave came in the 1950s
with Box and Wilson’s work on Response Surface Methodology (RSM), with application in the
chemical industry [148]. Since then, classical DoE methods have traditionally been used with
physical experimentation [92], however they are not always applicable to computational
simulations. Newer methods, such as Hammersley Sampling and Latin Hypercube Sampling,
have been developed to fulfil the requirements, and exploit the additional flexibility, of
computational experimentation.

The desired outcome of the experiment can also influence the choice of technique used. The
authors of [103] advise that a sequence of smaller experiments can provide better results than
one large experiment. An example of which is a screening DoE to determine the significance
of the design variables with a view to reducing the final set of experimental variables to the
most significant. A strategy, therefore, would be to consider a low resolution design for
screening the main effects followed by a high resolution design for investigating input-output
relationships in detail. They also state that the ‘effect’ of any given design factor be determined
by the change in the average response over the m levels (intervals dividing the domain). This
is in stark contrast to the Taguchi viewpoint which advocates a large experiment including all
the main factors to highlight the interactions, including noise parameters [148]. Taguchi
methodology has been fundamental in the development of robust design in industry over the
last thirty years.
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Training data can be chosen from the parameter domain randomly, uniformly or in an
exploratory manner. Santner et al. [125] recommend that for computer simulations the
experiment be designed so as to obtain a surrogate model which provides estimates of the
computer response at unsampled locations over the entire experimental domain. They also
suggest that the DoE (set of training data points) allows for a range of surrogate models. Both
of these objectives can be achieved using uniformly distributed training data points, also
known as space-filling designs.

5.2.1 Classical Designs

Full factorial designs [92,103] became popular in the 1920s as an alternative to the existing
costly and time-consuming methods [148]. They contain n = m? points for m level designs,
where m is typically 2 or 3, increasing too rapidly with increasing m or p to be viable for most
problems. A two level design can be represented by strings (or matrices) of —1 and 1, or even
simply + and —, whilst a three level design typically includes the centre point and is
represented by 0. Fractional factorial designs [92] were developed in the 1930s and 1940s
[148] as a cost effective alternative to full factorial designs. They contain a selected fraction of
the full factorial, typically £ or 1, however n still rises rapidly with m and (especially) p.

Box-Wilson Central-Composite designs (CCD) [103] and Box-Behnken designs (BBD)
[20,103] are a direct consequence of the RSM development in the 1950s. CCD typically
contain five levels for each variable, with full or fractional factorial designs (with centre points)
embedded in the design space. BBD is more efficient than CCD [157], containing three levels
for each design variable, including the central point but omitting the corners, thereby requiring
fewer data points n than CCD. However unlike CCD, Box-Behnken designs do not contain
embedded full or fractional factorial designs. Both methods are used to generate quadratic
response surfaces.

5.2.2 Non-Classical Designs

Sacks et al. [123] note that a common feature of classical DoEs is to account for random, non-
repeatable, errors in physical experiments, which therefore make them inappropriate for
deterministic computer experiments [73]. Simpson et al. [130] find that DoEs with a more
uniform coverage of the design domain produce more accurate approximations, irrespective
of the sample size (n). Several computer-aided algorithms have been developed to generate
and evaluate the design matrices, including Monte Carlo methods, orthogonal arrays and Latin
Hypercube sampling.

Monte Carlo (MC) methods [30, 73] are statistical sampling techniques based on randomly
generated numbers. Basic MC methods may over sample some areas of the design space,
leaving others inadequately sampled. Stratified MC [70, 73] divide the domain into hypercubes
of equal probability to ensure a more even coverage of data points.

Orthogonal arrays aim to separate the effects of various design parameters from other factors
[18], with an equal number of levels (design intervals) in each column of the array, including
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domain corner points [73, 130]. Taguchi proposed a set of orthogonal arrays for robust design,
where noise accounts for variation in response values [7, 30]. Fractional designs and Latin
hypercubes are also subsets of orthogonal arrays [30].

For a regular parameter domain in Latin Hypercube Sampling (LHS) [73, 130], for n samples
and p parameters, the domain is divided into n? hypercubes of equal probability (where each
variable is discretised into n levels). The n samples are chosen such that no two data points
lie in the same hypercube or share any coordinate values. Whilst random LHS (RLHS) evenly
samples each design parameter, it may not sample the parameter domain evenly, although
there exist techniques to obtain LHS which do.

5.3 Latin Hypercube Sampling

LHS can be described for normalized design parameters [73] by (5.5). Here K; is a vector of
independent, random permutations of the sequence of integers {0, ...,n — 1} and 7; is generally
a vector of uniform random numbers in the interval [0,1] although this can differ between texts;
7; may also be set as a constant, 0.5 say [73, 125], for all i. Equally valid, is to discretise the
parameter domain from 1 to n and force the data points onto the nodes. The latter method
ensures fewer DoE permutations which can be of benefit when searching for uniform designs.
Use of random number generators to determine the design matrix makes it highly unlikely for
the process to produce the same results twice.

ki +7

X = , V1<i<n (5.5)

One of the main shortcomings of RLHS is illustrated in Figures 5.3a and 5.3b which shows
two equally likely DoEs in two dimensions for ten training data points, highlighting that spatial
coverage cannot be guaranteed with random LHS.
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(A) Non-uniform spatial coverage (B) Worst case scenario.
Figure 5.3: Two sample 10 point normalised RLHS in 2D.

As with all random sampling methods, there is a tendency for uniformity to increase with larger
numbers of design points. Figures 5.4a to 5.5 show the distribution for three n = 50 and one n
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= 100 RLHS DoEs respectively, for two design parameters in a normalised domain, and their
corresponding minimum distance plots (from one DoOE point to its nearest neighbour). It can
be seen that the minimum distances between neighbouring data points varies drastically,
which would not be the case if the designs were uniformly distributed over the parameter
domain. However, it is important to note that although the minimum distance plots are a useful
visual aid (as in [150]), they can also be misleading as would be the case for Figure 5.3b which
would show a small constant minimum distance for all the data points.
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Figure 5.4: Three sample 50 point normalised RLHS in 2D. Left: Point distributions. Right:
Minimum distances.
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Figure 5.5: A sample 100 point normalised RLHS in 2D. Left: Point distribution. Right:
Minimum distances.

As discussed in section 5.1.2 there are various methods to quantify the spatial distribution of
the DoE. Using the minimum Euclidean distances as in [150], a mean u and standard deviation
o can be assigned to these distances. As demonstrated in Figure 5.3 above, the mean and
standard deviation of the minimum distances is a necessary, but certainly not sufficient,
condition to guarantee uniform spatial coverage of the design space as only one extreme is
considered. When comparing DoEs, a better indication of the entire spatial distribution of data
points can be achieved by considering the Potential Energy analogy given by (5.4).

To illustrate the need for uniform spatial coverage of the design space, the three two-
dimensional 50 point DoEs presented in Figure 5.4 are used as training data for cubic Radial
Basis Function (RBF) surrogate models of the Six-Hump Camel-Back function, Figure 5.6,
and the Rosenbrock Banana function, Figure 5.7. RBF methods will be discussed in greater
detail in the next chapter. Both figures show the contours of the three resultant surrogate
models and the contours of the errors produced by direct comparison of the surrogate models
with the analytical function, where a positive error value indicates that the surrogate model
has over-predicted the true function and a negative value under-predicts. The relevant DoEs
are superimposed on all contour plots.

For the SHCB function in Figure 5.6, the contours are evenly spaced at intervals of f = 0.25
for the surrogate models and f = 0.125 for the error plots. The RBF however has dramatically
different scales and evenly spaced contours are not appropriate. The contours for the
surrogate models include those shown in the analytical function depicted in Figure 3.2,
however = some  additional negative  values are also required: f =
+0.5,+1,+2,+43,+4,4+5,+10,+25,4+50,100,250,500,1000 and 2000. The error contours are at
f = 0,£5,+£10,+25,+50 and +100.

Page 108
Copyright © 2024 University of Leeds UK. All rights reserved.



Although the number of training data points, the choice of surrogate model and the choice of
analytical function is arbitrary for this illustration, several conclusions can still be drawn.
Perhaps the most obvious is that all the training data points lie on contours of zero error due
to the interpolation surrogate model used. An approximation model would have minimum
errors close to the data points, but not necessarily zero. Another obvious trend is that the
maximum errors are on the edges of the domain where there are fewer data points to influence
the surrogate model, highlighting one drawback of surrogate modelling. Naturally, errors are
larger where there is a lower concentration of points. Clearly 50 data points are sufficient to
capture the essence of these functions, if somewhat inaccurately.
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Figure 5.6: Surrogate model and error contour plots based on three 50 point RLHS
predicting the SHCB function.
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Figure 5.7: Surrogate model and error contour plots based on three 50 point RLHS
predicting the RB function.

Despite having the lowest potential of the three DoEs, the surrogate model based on DoE
Example C is the only model to over-predict the number of local minima for the SHCB,
incorrectly showing seven whereas the other two examples both show six reasonably close to
the true locations. The surrogate model based on DoE Example A, on the other hand, vastly
under-predicts the global minimum for the RB.

To produce the contour plots, each coordinate axis is divided into 100, with the values of the
surrogate model and associated errors determined at 100? locations, effectively creating an
output lattice of data points. Clearly this method is adequate for graphical purposes, adjusting
the size of this lattice as required, but it is severely limited for optimisation. For example,
increasing the accuracy of the coordinates in the output lattice by one decimal place requires
that the total number of evaluations increases by a factor of 107, quickly making this infeasible.
Also worthy of consideration is the fact that discretising the domain then performing an
optimisation routine may find a different minimum than optimising on a continuous domain.
Further, for domains that are unequal in size (in the coordinate directions) and have not been
normalised, as with the SHCB case, the Euclidean distances between output points are not
equal (in the coordinate directions).

5.3.1 Optimising the Latin Hypercube

The aim of optimising the LH is to obtain a uniform DoE, otherwise known as an Audze-Eglais
Latin Hypercube (AELH) [11, 13]. Intuitively, this can be achieved simply by rearranging the
coordinates of the design points [88] and calculating the value of the designated spatial
quantifier, U say. It is easily seen that ‘brute-force’ systematic rearranging of the design is not
afeasible option for larger numbers of design parameters p (or larger numbers of design points
n) as this method rapidly becomes too expensive [13]. For 2 design variables p and 5 training
data points n, there are 52 possible positions for the first data point, 42 for the second and so
forth, leading to a total of 5!% (or 14,400) possible designs. This generalises to n!? which rapidly
becomes infeasibly large. Even if one of the parameters is fixed [13], systematic checking of
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each and every design combination is not an option for large numbers of design variables or
data points as the equation is only reduced to n!P~1,

Another option is to use an optimisation algorithm to find a ‘better’, if not necessarily the best,
DoE. One method of achieving this is to generate an initial population of designs, encode
them, and then use a Genetic Algorithm (GA) [13, 14, 26, 59, 60] to find a better configuration.
Genetic Algorithms follow four basic steps: initialisation, selection, reproduction and
termination. Once a population size Q@ has been chosen, @ random LH designs can be
generated. The fitness for each individual design is assessed using the potential energy U,
(5.4). Designs which do not satisfy a criterion based on the fitness value are discarded whilst
the remainder are selected to go through to the next generation and to reproduce further
designs so that every generation has Q individual designs. The algorithm is terminated either
when a specified number of generations is met or the designs meet a designated criterion.

Two possible methods for elite selection criteria are only allowing designs which are within a
user specified percentage (10% say) of the minimum fithess value to pass through to the next
generation or using the average fitness for the generation as a kill criteria. The latter method
is based on a modified version of that presented in [102]: a design is allowed through to the
next generation if it has a fitness value less than the average for the current generation. The
fitness U; for an individual design j is determined from the potential energy U, as defined in
(5.4), whilst the average fitness for a generation U,,. is calculated from the sum of the
individual finesses:

1
Uave zazuj (56)

Once the selected designs are through to the next generation, individual designs are chosen
at random to become ‘parents’. Each pair of parents produce one ‘child’ which is added to the
generation. Thus each generation, apart from the initial one, consists entirely of parents from
the previous generation and their children. When applying a GA to a LH DoE, it has been
found, that due to the nature of the LH, permutations to the design are more suitable than
encoding the design and using a binary method with penalties [14], as permutations ensure
that the LH criteria are fulfilled at every stage, making the resulting GA inherently more
efficient.

5.3.1.1 The ‘PermGA’ Method

The potential energy, U, of the DoE designs is to be minimised using a permutation GA.
Permutating parent designs can be accomplished through mutation of a single design or
swapping values between two parents. Bates et al. [14] found that ‘cycle crossover’ used in
conjunction with a mutating ‘inversion’ provided the speediest solutions for the GA. The
permutation technique is known as permGA [14, 102].

Cyclic Crossover Two parents are chosen from a population of designs. For example for a
problem with 1 design parameter and 6 training points we could have:
Parent A= [25461 3]

Page 112
Copyright © 2024 University of Leeds UK. All rights reserved.



ParentB= [145362].

The first entry in Parent A becomes the first entry in Child A:
Child A = [2 % * x * *].

Next, the value from the first entry in Parent B is located in Parent A and inserted into Child A.
Here the value is 1 and is the fifth entry in Parent A (and consequently in Child A):
ChildA = [2 *** 1 *].

In this example, the fifth entry in Parent B has a value of 6, which is the fourth entry in Parent
A. Similarly, the fourth entry in Parent B is 3, which is the sixth entry in Parent A, giving Child
A as:

ChildA = [2x* 613].

The sixth entry in Parent B has a value of 2, which is located in the first entry of Parent A,
thereby ending the cycle. The remaining entries in Child A are filled with the corresponding
entries from Parent B. The LH criteria are fulfilled as the cycle ensures that no data points are
repeated in any given dimension. A second child can be generated using this method with the
first entry from Parent B as a starting point.

ChildA = [245613],

ChildB = [154362].

This crossover method is applied to each design variable independently. There may be
instances where the first entry for a design variable for each of the parents is identical, in which
case no crossover occurs and Child A = Parent A (similarly Child B = Parent B) for that design
variable. The example below shows a two design variables and six training data points, where
the LH values for the first design variable are identical for both parents (the second variables
take the values described in the previous example):

(123456 _[123456
ParentA—[254613] and Parent B = 145362]
. [123456 o [123456
CMdA_.b45613 and CNMB__L54362

It need not be the case that all the values for the first design variables are identical, if just the
primary entries for each design variable are identical in both parents, then no cycle crossover
occurs. As such, this method cannot guarantee that the children produced are different from
their parents.

Inversion Mutation (IM) Two ‘cut-off’ points are randomly chosen, inverting the values in the
parent design to produce the single offspring. For cut-off points 2 and 5 say, represented by
|| and applied to Parent A, we obtain

Parent A= [24]|561]|3],

Child C = [2 4]|1 6 5]|3].
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In practice, this is applied not to a parent, but as a transformation applied to a child generated
from the cycle crossover described above. The cut-off points are allocated randomly for each
design variable, with the restriction that the cut-off points are not in the same location. Hence
this method does guarantee that an identical design is not obtained as a result of inverting the
original design.

5.3.1.2 Effect of Uniform Spatial Coverage

In addition to running the permGA for the validation parameters, near optimal DoEs were also
generated for p = 2;n = 50 for direct comparison with the RLHS shown in Figure 5.4. The
point distributions and minimum distance plots for these three examples are shown in Figure
5.5. Visual comparisons between Figures 5.4 and 5.13 show that a greater uniformity of spatial
coverage has been achieved using the permGA method than any of the original three RLHS.

As before, a cubic based RBF was used to build a surrogate model approximation for both the
SHCB function and RB function. Clearly both test functions have different requirements, in
particular the RB approximations would greatly benefit from iterative improvement in the
trough area. However, a more uniform distribution of training data points improves all the
approximations for the two test functions. Other factors such as choice of surrogate model
(including parameters) and number of data points also influence the final approximation.
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Figure 5.8: Optimised LHS DoE with 50 data points in 2 dimensions and corresponding
minimum distance plots.
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Figure 5.9: Surrogate model and error contour plots based on three 50 point OLHS
predicting the SHCB function.
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Figure 5.10: Surrogate model and error contour plots based on three 50 point OLHS
predicting the RB function.

5.3.2 Simultaneous Generation of Initial and Validation OLH DoEs

Analytical test functions are known a priori making validation of surrogate models trivial, as
the test functions can be evaluated at any number of data points in the parameter domain.
Clearly this is not the case for more expensive functions where a more sophisticated method
is required. In practical engineering applications, the process of surrogate model fitting
includes the initial build stage and validation of the model. The validation is usually problem
specific, dependent on the required accuracy, and must be valid throughout the design
parameter domain [102]. As such, in addition to an OLH DoE for the initial build points, the
validation points should also meet OLH DoE criteria. Further, subsequent to a successful
validation exercise, a refined surrogate model based on the combined build and validation
DoE points requires that the merged DoEs also exhibit space filling properties, as proposed
by Narayanan et al. [102].

The total number of levels, n, in the DoE is split into build, b, and validation, v, levels such that
n = b+ v. The number of validation levels can be varied according to the problem in
question. Figure 3.16 illustrates a simple case with a total of n = 7 for p = 2, where the build
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and validation levels are b = {1,3,5,7}and v = {2,4,6} respectively. The (blue) build points are
free to allocate any of the intersections of the solid lines, whilst the (red) validation points are
confined to the intersections of the dashed lines. The build and validation sections of the
chromosomes are generated separately for the initial population. The fitness of a design, Uy,
is given as a multi-objective function of the individual fithess of the build, validation and merged
DoEs:

Uy =f (Ub’Uv’Um) (5.7)

Each generation is ranked according to the multi-objective fitness function, those designs
whose overall fitness are less than the average fitness for that generation become the elite
designs for the next, as with the single objective fithess function for the basic permGA and in
line with strategy presented in [102]. The parents are chosen in the same way as in the basic
permGA with tournament selection and a weighted roulette wheel. The cycle crossover for
generating children preserves the build and validation levels and are therefore applied
independently to each.
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Figure 5.11: lllustration of build and validation levels.
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Figure 5.12: Example BVM with b = 32 and v = 18. Left: Point distributions. Right: Minimum
distances.

5.3.3 Inclusion of Corner Points

Section 5.2 introduces various sampling technigues for obtaining training data points whose
computer responses can be used with a surrogate model to provide an approximation of the
response surface. Whilst some methods do not meet the space-filling criteria required for DoE
for surrogate models they can provide a cheap overview for determining which of the design
variables warrant further investigation, which will inevitably lead to data points with useful
response information. Due to the computational expense of acquiring the response data it
would be desirable to reuse this information by incorporating it into the final design, however,
this is likely to mean that the final design is not technically a Latin Hypercube. Toropov et al.
[150] simply call these types of designs ‘Extended Latin Hypercubes’ (ELH).

A weakness of LHS is that it is not possible to have training data points located at each ‘corner’
of the domain [150]. Simpson et al. [130] find that orthogonal arrays, which have points located
in the corners of the design domain, have lower values of maximum errors [73]. This can be
seen in Figures 5.6, 5.7, 5.9 and 5.10 where the largest errors are at the edges and corner
points of the domain. Leary et al. [86] find that the training data points need to go to edge of
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domain, otherwise surrogate models methods fail as they are not designed for extrapolation.
Thus, including the corner points should help to bound the surrogate model and hence improve
accuracy. The technique used in [150] is to allow the fixed data points to be included in the
calculation of the ‘potential energy’ objective function, but to exclude the points from the design
variable set which is being modified to minimise the objective function.

One method to achieve this is to divide the domain into the extremities and the interior, where
the LH requirement is relaxed on the boundaries only. The inner LH is self-contained, but
optimised subject to the potential for the domain as a whole. Figure 5.13 shows an example
in two dimensions with n = 10 training data points. The corners require four of these points
(n. = 4), shown in red, leaving a further six data points within the inner LH (n,; = 6), shown
in blue. To ensure equal spacing between the levels, the domain is divided into (6 + 2)?
intersections. For the multidimensional case, the number of corner points increase rapidly as
n. = 2P whilst the number of points in the inner LH decrease as n;; = n — 2P and the domain
is divided into (n — 2P~1)? hypercubes. Due to the number of corner points rising rapidly, this
method is restricted to n, < n;y to ensure adequate spatial coverage.

¢ [

7= L —

1 2 3 4 5 6 7 8
Xy

Figure 5.13: Illustration of fixed corner points and inner DoE in two dimensions.
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Chapter 6

Surrogate Modelling Techniques

6.0 Introduction

A surrogate model (which is also often called a metamodel or a response surface model)
aims to mimic the response surface of some important output metric over the entire parameter
domain based on the location and response information provided from a small (ideally
minimal) number of experimentally- and/or computationally-generated training data points
chosen from the domain. Whilst metamodels are not optimizing methods in themselves, they
form a cheaper alternative to direct optimization on problems when obtaining data points is
expensive, as is often the case with experiments or using a high fidelity computational
simulations such as a CFD solve and post process. The goal is to produce a metamodel that
is much faster to compute than the original function, but is still sufficiently accurate away from
the known data points. This enables the optimization procedure to be carried out using the
metamodel and the optimal result to be validated subsequently using experiments or a high
fidelity computational evaluation.

This general approach is often referred to as surrogate-based optimisation (SBO), whereas
if the optimization is carried out using both the surrogate model and data obtained from the
experiments or high fidelity simulations, this is termed surrogate-assisted optimisation.

The first step in creating the surrogate model is to generate the high fidelity data at a series of
sampling, or Design of Experiment (DoE) points. Once sampling has been performed we have
a list of data points called the training data {x’, f'} for i=1,..,n, where x' is the ith DoE point, f*
contains the corresponding high fidelity output at x* and n is the number of DoE points.

Surrogate models can be based on interpolation or regression. Interpolation builds
surrogate models that exactly matches the training data. Regression methods do not try to
match training points exactly — they minimise the error between a smooth trend function and
the training data. To fit a surface by means of regression, the criteria of passing the surface
exactly through the data points is relaxed. The use of regression techniques (such as least
squares methods discussed below) in determining surrogate surfaces can be explained by the
origins of Response Surface Methods, which lie in the interpretation of experimental data [73].
Data obtained from physical experiments is noisy since all observations are subject to
measurement error. Regression techniques allow for this noise as the surrogate surface does
not pass through the data points, only close by. Exactly how close depends on tuneable
parameters in the model, which will be referred to generically as hyper-parameters of the
surrogate model, with larger parameters allowing for noisier data.
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The surrogate modelling process for two design variables is illustrated in the following figure

Design of experiments Function evaluations Metamodel

Response
Response

3 3 1

Vapy,, .,
Tag Wiy, Wiy,
2 yariave > e 5 yarioble ble 5 yariavie

6.1 Surrogate Model Validation

To ensure confidence, any surrogate model requires that its accuracy and quality be checked.
One method is to validate against extra (potentially expensive) data. Other methods rely on
cross-validation methods where the original DoE dataset is split up (often randomly to avoid
bias errors) into training and testing sub-sets. Such approaches are needed to avoid over-
fitting the surrogate model to the training dataset, as this results in the surrogate model being
inaccurate at points not contained in the training dataset. In practice, each surrogate modelling
technique will have a range of hyper-parameters associated with it and cross-validation
methods enable the most appropriate hyper-parameters to be obtained.

Note that obtaining the hyper-parameters is often an extremely challenging optimization
problem in itself!

6.1.1 Holdout Dataset Cross-Validation

One popular approach is to use most of the DoE data to train, or fit, the surrogate model and
use the rest of the DoE points to test/validate the accuracy of the generated surrogate model.
A common approach would be to use typically 70%-80% of the DoE dataset, chosen randomly
from the full DoE dataset, to train the surrogate model and then use the surrogate model to
predict the value of the output metric, f say, at the remaining DoE points that have not been
used to construct the surrogate model.

The points used to train the surrogate model are referred to as the training dataset and those
at which the accuracy of the surrogate model is determined are referred to as the testing
dataset. If the full DoE dataset {x/, f} =1,...,n is split into ntrain training points {x} i, fiain}
and ntest testing points {xtiestl ftiest} where n=ntrain+ntest, then the accuracy of the surrogate
model at the testing data points can be quantified using metrics such as the Root Mean Square
Error, RMSE, defined by
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ntest

1 - .
— i fl 2
RMSE = |—— >1 (F' = feest)
1=

where f! is the value of the output from the surrogate model at the ith testing point and fL.,
is the (actual) value of the output at the DoE testing point. Clearly, smaller values of the RMSE
indicate that the surrogate model is more accurate at the testing datapoints.

Note that, if possible, this process would be repeated a number of times to decrease bias
errors resulting from specific train/test data splits.

The hyper-parameters of the surrogate model would be determined by minimising the RMSE
during the training/testing cross-validation process.

6.1.2 Leave-One-Out Cross-Validation (LOOCV)

LOOCYV is particularly useful when the DoE dataset is small so that it is possible to remove
too many points from the surrogate model’'s training dataset. In this approach, the first DoE
point is removed from the training dataset and the surrogate model is trained on the remaining
(n-1) DoE points. The square of the difference between the surrogate model at this first DoE

point /1 and the (actual) value of the output at the first DoE point, f1, (f* — fl)2 is stored.

This process is repeated consecutively at each of the n DoE points and the total RMSE
calculated via

o,
RMSE = E;(f‘—f)z

Once again, the hyper-parameters of the surrogate model would be determined by minimising
the RMSE during the training/testing cross-validation process.

6.1.3. k-fold Cross-Validation

This process is similar to LOOCYV but this time the DoE dataset is split randomly into k roughly
equally-sized data subsets. The first subset is removed from the full DoE dataset and used as
the first testing dataset. The surrogate model is then trained on the remaining (k-1) subsets
and the RMSE calculated for the first testing dataset. This process is repeated over each of
the k data subsets and an average value of the RMSE is calculated.

Once again, if possible, this k-fold randomisation process would be repeated a number of
times to decrease bias errors resulting from specific train/test data splits. The hyper-
parameters of the surrogate model would then be determined by minimising the RMSE during
the training/testing cross-validation process.

6.1.4. Adding Extra Points into the DoE sample
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Sometimes we find that the surrogate model is not accurate enough so it is necessary to
include additional points in the DoE sample and re-construct the surrogate model — a process
called infill. It is claimed that for an accurate estimate of a global optimum to be found, the
surrogate surface must converge to the true surface at every point in the domain [69, 149].
Thus, any method for selecting additional data points to evaluate must also incorporate
samples from untested regions in parameter space so the entire domain is adequately
represented [54]. There are a number of methods for updating the DoE points. Whilst general
surrogate modelling methods often have to use empirical approaches, or computationally
expensive Bayesian techniques, some methods such as Kriging/Gaussian Process
Regression can provide simple methods for estimating the errors in the surrogate model which
can be used as a convenient guide for choosing the next DoE point to evaluate.

6.2 Least Squares Regression Surrogate Modelling
As noted above, regression can be very useful when the data is noisy since interpolation
models may produce undesirable oscillations when filtering the noise.

6.2.1. Linear Least Squares Regression
If we have n DoOE points giving a response f as a function of ndv design variables xi, X2, Xs,...,

Xndv, We can look for a polynomial fit of the data.
For example, a linear fit for three design variables we would fit the data to a hyper-plane of
the form: f = ci+cixat+CaXxo+CaXs. The goal is then to find the regression coefficients ¢, ¢, Cs,

cs. The regression coefficients are the hyper-parameters of the surrogate model in this case.

Least squares regression analysis seeks to minimise the sum of the squares of the differences
(Square Errors, SE) between the data points and the fitted curve. For this example

n

; ; ; N2

SE = Z(}” — €1 — C X — C3xh — cyxh)
i=1

where f! is the response at the ith DoE point.

To find the regression coefficients ¢; which minimise the SE we need to satisfy

n
0SE . . . .
—=-2 z(f‘ —cp—Cpxh— c3xh —cxh) =0
dcy 4
i=1
JdSE . . . N
—= —22(}”. — 01—y X — c3xh —cuxb)xi =0
dc, t
i=1
n
0SE .
Fr -2 Z(f‘ — 1 — Xk — c3xl —cuxt)xb =0
¢ i=1
n
JdSE

These lead to the four regression equations (a linear system):
xli +c3

X3+ ¢y x§=2f1

n n n n
ncy+c,
i=1 i=1 i=1 i=1
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M:

n n n
xt + ¢, Z(xl) + Q,Zx{xé +cy Zx{xg = Zf‘x{
i=1 i=1

1

i=1 i=1 i=1

n n

l —

clzxzyi+622x1x2+c32(x2) +C4Z xi = Zf x}

i=1 i=1 i=1

n n n n n
o Zxé +c, inxé +c3 Z xixt + ¢y Z(xg) = Zf‘xé

i=1 i=1 i=1 i=1 i=1

We solve these equations to obtain the regression coefficients ci, ¢, Cs, Ca. this leads to the
surrogate model: f = c1+CoX1+C3Xo+CaXa.

6.2.2. Engineering Example

The following example explores the effect of the order of the polynomial regression model for
representing data from an engineering company that produces algal photo-bioreactors to
harvest phosphorous from wastewater. The company is trying to optimise the system so that
they can extract the maximum amount of phosphorous (kg) which depends on the amount of

light intensity (watts), the concentration of oxygen "':fg

the phosphorus mass P(ox) depends only on the concentration of oxygen ox. The dataset of
Phosphorus mass as a function of oxygen concentration obtained from experiments is given

by:

(0D P(ox)
0.054848447 | 3.070101933
0.399361417 | 2.288275883
0.625771597 | 1.998910871
0.920604333 | 2.538819248
1.013368979 | 2.985745038
1.426680967 | 2.489943212
1.727360442 | 1.230933862
1.786319956 | 1.215692053

Least squares Regression fitting of P vs ox leads to the following regression curves:

(i%mparison between experimental data points and 1st order fit C4oomparison between experimental data points and 2nd order fit

—&— experimental data -8~ experimental data

j— fi I
35 1st order fit 35 2nd order fit

30 30

20 20

15 15

10 T T T T T T T 10 T T T T T T T
000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
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(ioomparison between experimental data points and 3rd order fit (i%mparison between experimental data points and 4th order fit

-~ experimental data -~ experimental data
gy i el ¥

35 3rd order fit 3s 4th order fit

30 30

é 25 é 25
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15 15
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x X

(ioomparison between experimental data points and 5th order fit (i%mpan'son between experimental data points and 6th order fit
—&— experimental data —e— experimental data

35 —— 5th order fit % —— 6th order fit
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Calculating the RMSE between the predicted points, using the polynomial curve fitting, and
the actual data points points yields the following:

RMSE from polytnomial curve fitting with all data vs of order of fit
0.475 1

0.450 |

0.425 A

0.400 - Minimum RMSE=0.28 for order of fit= 3

0.375 -

RMSE

0.350

0.325 -

0.300 -

0.275

1 2 3 4 5 6
order of fit

These results are obtained by using the Python program, using_alldata.py on the alldata
directory. These results suggest using a third order polynomial fit as this leads to the smallest
RMSE error. However, this approach is not recommended and it is much more effective to use
a cross-validation approach that splits the data into training and testing datasets in some way.
This avoid the problem of over-fitting which can lead to the surrogate modelling being
inaccurate at points not in the training dataset.

In this case, the only hyper-parameter of the surrogate model is the order of the polynomial.
How do we choose the order of regression to use? If we use Leave-One-Out Cross Validation

Page 126
Copyright © 2024 University of Leeds UK. All rights reserved.



RMSE

and calculate the RMSE for each regression order we obtain the following using the program

0.50

using_leaveoneout.py on the leave-one-out directory, we obtain:

RMSE from Leave-One-Out validation vs of order of fit

10 -
8 1 Minimum RMSE=0.34 for order of fit=5
w b6
v
-—
(=<
4
2 o
o L T T T T
1 2 3 4 5 6
order of fit

On the basis of LOOCV we would use a 5" order polynomial regression model for to represent
P vs ox.

Suppose now that we use a holdout approach, where we divide the full dataset into a testing
dataset consisting of two points selected randomly from the dataset of Phosphorus mass as
a function of oxygen concentration obtained from experiments, given above, and a training
dataset of the remaining six points. This algorithm is implemented in using_holdout.py on
the holdout directory. Since the points are selected randomly, the solutions change every
time the program is run. Here are two examples of results obtained by running
using_holdout.py:

RMSE from Holdout validation vs of order of fit RMSE from Holdout validation vs of order of fit

Minimum BMSE=0.44 for order of fit= 1 Minimum BMSE=0.52 for order of fit= 3

RMSE

order of fit order of fit

The first result on the left suggests a first order polynomial approximation is best, whereas
the second result suggests a third order polynomial is needed. How should be proceed? The
main problem is that our dataset is so small. A more effective approach for smaller datasets
is to use k-fold cross validation described in section 6.1.3 above. You will explore k-fold
cross validation in your optimization assignment described below.
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OPTIMIZATION ASSIGNMENT

In this assignment you are asked to modify the codes you have been given above to explore
what happens when you use 4-fold cross validation where you randomly selected 4 sets of 2
points from the experimental dataset given above. You will combine 3 of these sets of 2 points
into a training dataset with 6 points with the remaining points forming the testing dataset.

You should:

a. Write a Python program that calculates the RMSE at the testing datapoints for
polynomial curves of orders 1 to 6 and determines which polynomial order leads to
the smallest RMSE. Use your program to explore how much variability there is in the
selected polynomial order of fit.

b. Summarise your findings.
Only if you have the time and are interested in doing so:
c. Extend your Python program so that the 4-fold cross validation process is repeated a

specified number of times. Explore how the variability in the selected polynomial
order of fit depends on the number of times you repeat the 4-fold cross-validation.

Good luck!

Note: Once you have implemented your programs you can compare your findings with the
using-kfold1.py and using_kfold2.py programs on the kfold directory.

You have now finished your assignments for this brief, introductory course. The
following content is for information only, if you are interested in finding out more
about surrogate modelling!

6.2.3. Second Order (Quadratic) Regression: example with 2 design variables
This uses the surrogate model:

F(x) = ¢y + cyx1 + €3 x5 + Cax? + Ccsx1 Xy + Cox 5.

The Least Squares (LS) regression coefficients c, c2, €3, Cs, Cs and cs at the output point
{x7} ={x{, xJ} are obtained by minimising the sum of the least squares, SE;, over all the
sampling points (x}, x}) defined by

n
' , . <2 o \2\2
SE; = (fl — €1 — CaX{ — C3 X3 — c4(x{) — CsX1X3 — Ce(xé) )
=1

i

The LS coefficients are obtained by requiring that

OSE; _0SE; _8SE; _0SE; _0SE; _O8SE; _ 0
dc,  dcy dcs T dc, dcs - dce -
0SE; ) ) 2 o 2
] _ i i i [ i
50 = z (f‘ —¢1 — coxt — c3xh — cg(x})” — coxfnl — co(xh) ) =0
=
O0SE:; . ) 2 o 2
] _ [ i i i Lad i —
ac, qu (fl — €1 — Xy — C3Xp — C4(x1) — C5X1Xp — Cs(xz) ) =0
2

i=1
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n

dSE; . . . 2 - <2
= > x5 (fl—c1— coxt — c3xh — cq(x})” — csxixd —co(x5)") =0
9. 2,0 17 C2X1 — C3X5 — Ca\ X 5X1X; — Cg\ X2 =
3 i?ll
O0SE;
j_ 2 i i i )2 i 2\ _
ac —ZXLi(f —cl—cle—c3x2—c4(x1) —65x1x2—06(x2) =0
4 =1
%= x % (ff —¢ —cxi—cxi—c(x")z—cxix"—c(xi)2 =0
9c 1iX2,i\J/ i~ 2X1 = C3X3 — C4l\Xg 5X1X3 — Ce\ X2
5 =1
0SE;
j _ 2 i i i 2 i N2\ _
dc —sz,i(f —cl—cle—c3x2—c4(x1) —c5x1x2—c6(x2) =0
6 ¢
i=1

Solve equations for ¢, €z, C3, €4, Cs and Cs and obtain the LS approximation
2] j j % JoJ %
f(x7) = o1+ cox] + c3x) + co(x]) + csx)x; + co(x3)
of f, at the output point {x/} = {x/, xJ}.
6.2.4. Six Hump Camel Back Function Examples
In the remainder of this chapter the surrogate modelling methods are demonstrated for the

Six Hump Camel Back (SHCB) function defined in the previous chapter:

X, =4, -2 X, =2x,—1,0<x,x, < 1

2 2 2 2
flx,x) = (4—21X; "+ X% 3) X, "+ XX, + (=4 +4X, ) X,

with the global minima having values of f = —1.0316 at (0.0898,—0.7127) and
(—0.0898,0.7127). The SHCB surface is given below:

True SixHump Camel function
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In the following examples, the surrogate modelling is used within an optimisation algorithm to
determine the global optimum. For example, if the analytical solution is used within a Nelder-
Mead Simplex optimisation algorithm in Python the following convergence to the optimum is

observed when the initial point x, = (0.3,0.7), «a = 1.0, = 0.5,y = 1.0,p = 0.5,c = 0.5and a
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convergence tolerance of 0.0001. The path of the optimisation algorithm is shown as the
solution meanders from (0.3,0.7) towards the optimum at (0.48,0.86) where the function

value is -1.032.

i I Nelder-Mead Simplex: Six Hump Camel Back Function = X
Nelder-Mead Simplex: Six Hump Camel Back Function
Parameter settings Plot
a B Y P Tolerance
1.0 0.5 1.0 0.5 0.0001 - Six Hump Camel Back Function
x 0 y 0 c
o3 0.7 o5
H Run Save Settings Import Settings
Nelder-Mead Simplex Results
x min y min fmin
0.4767 0.8564 -1.0316e+00
Calculations
xL=  0.477 0.856, fL=-1.032e+00
XM= 0.479 0.858, fM=-1.031e+00
xH= 0.477 0.860, fH=-1.031e+00
Reflection carried out for iteration 19
After 19 iterations, simplex is given by:
xL= 0.477 0.856, fL=-1.032e+00
XM= 0.478 0.855, fM=-1.031e+00
xH=  0.479 0.858, fH=-1.031e+00 x
NM simplex converged with tol=1.000e-04 after 19 iterations =
Minimum £=-1.032e+00 at x= 4.767e-01 §.564e-01 SavePlot | Animate Plot
Examples of using Least Squares Regression for the SHCB function are given below:
Linear Least Squares Approximation of Six Hump Camel Hump Back Function N=50
e Optimum x=0.00 y=1.00 opt=1.02 <
« DoE points :5
S
t 60 &
-
v
. 20 3
’ G A . T
o opa PR X8 20 &
]
v
Q
£
3
I
x
v
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Quadratic Least Squares Approximation of Six Hump Camel Hump Back Function N=5(

e Optimum x=0.27 y=1.00 opt=-0.49

» DoE points
' "+ 60

T 40

Six Hump Came Back Function

Cubic Least Squares Approximation of Six Hump Camel Hump Back Function N=50

e Optimum x=0.73 y=0.00 opt=-0.38
« DoE points

Six Hump Camel Back Function
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Quartic Least Squares Approximation of Six Hump Camel Hump Back Function N=50

e Optimum x=0.44 y=0.86 opt=-0.52
DoE points

Six Hump Camel Back Function

It can be seen that Least Squares Regression is not very effective in these examples.

6.3 Moving Least Squares Surrogate Modelling

Least Squares Regression can be extended to the Moving Least Squares Method. In this
case, weights are applied which are functions of the Euclidian distance r¢ from a k-th DoE

sampling point to a point x where the surrogate model is evaluated.

DoE point

e Evaluation point x

One possible approach Is to create a surrogate model estimate In the torm
n
F6 =) willlx =)
i=1
where r; = ||x - x‘|| is the Euclidean norm between the point at which the surrogate model

is being evaluated and the ith DoE sampling point.

6.3.1. First Order (Linear) Regression: example with 3 design variables
MLSM used to estimate the response, f, using a first order (linear) interpolation fit to the

sampling points with three design variables.

This uses the surrogate modelling estimate f(x) = ¢; + ¢;x; + €3 X5 + C4X3.
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The MLSM regression coefficients cs, 2, Cs, C4 at the output point {x/} = {x{ xg, x,{dv}
are obtained by minimising the sum of the least squares, SE;, over all the sampling points

{x} ={xi, x5, ..., x,ild,,}, defined by

n
. . . . 2
—_ L L l l
SE; = Z wl-j(f — €] — CyX] — C3 X5 — c4x3)
i=1

w; is the weight decay function between output point j and sample point i. For or a Gaussian
2 . .
weight decay function w;; = e "#"ii where r;; = ||x/ — x| and B is the only hyper-parameter

for the model. The MLS coefficients are obtained by requiring that
6SEJ- _ aSEj _ OSEJ- _ 6SE]-

661 - BCZ 303 6C4 - 0.
n
0SE; . . ) .
Fp J=0=0= 2[—2Wij(f‘ — 1 — CX] — C3Xx5 — c4x§)] =
1 c

=1
n n n n n
i i i _— i
Clzwij+czzwijx1+C3ZWU‘X2+C4ZWUX3— ZWUf
i=1 i=1 i=1 i=1 i=1
— — n i(fi i i i
=0=0= Zizl[—Zwijxl(f — €1 — CX{ — C3X5 — c4x3)] =

n n n n n

L L | 0 Lol L l

o E wiixi + ¢, E wii(xd)” + 3 E Wy xixs + ¢y E wixixy = E wiiftxd
i=1 i=1 . i=1 i=1 i=1

aSE]'
aCZ

OSE; o ) ) .
L=0=20= ) [-2wxi(fi — c1 — cpxt — c3xh — cxd)] =
dc jr2 1 241 342 443
3 i=1
n n n n n
l l.,.1 l Lal L l
clzwisz + CZZWijxlxz + c32wij(x2) + C4ZWijx2x3 = ZWijf X3
=1 i=1 i=1 i=1 i=1
n
0SE; _ _ o i (£l i_ i_ i
5. 0 =>0= 2wijxz(f' — 1 — caxg — C3x5 — cax3) [ =
Cq

i=1
n n n n n
L | AP | AN A L —_ 14 L
o E wiixh + ¢, E wyxixs + 3 E Wi xsxs + ¢y E wii(x8)" = E wyf ! x
i=1 i=1 i=1 i=1 i=1

We then solve these equations for c1, ¢, ¢z and ¢4 and obtain the MLSM surrogate model
estimate at design point

f(xj) =c + czx{ +c3 xé' + c4xj

6.3.2. Second Order (Quadratic) Regression: example with 2 design variables
This uses the surrogate model:

f(x) =cy + cyx1 + €3 X + C4x2 + Csx1X, + CoX3.

The MLS regression coefficients cs, ¢, Cs, Cs, Cs and cs at the output point {x/} = {x{ xé}
are obtained by minimising the sum of the least squares, SE;, over all the sampling points
(x3, x3) defined by

n

. . . (2 . .22

SE; = Zwij (f‘ — 1 — Ccoxf — 3 xh — cq(x})” — csadxh — co(xh) )
—

4
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where wj is the weight decay function between output point j and sample point i. The MLS
coefficients are obtained by requiring that

aSE]' _ aSE]' _ aSE]' _ aSE]' _ aSE]' _ aSE]'

661 aCZ aC3 aC4_ 6C5 6C6 - 0.
n
aSEJ’_ ) i . i_ i N2 _ i iV = o
Y wij | ff—c1 — coxp — c3x3 c4(x1) C5X1X; Ce(xz) =
T3
0SE;

i . . . ) . . 2
— L L L L L, L —
e, § —2W;jxy (f — € T CXp — C3Xp c4(x1) — C5X1X2 — Cs(xz) ) =
2 ¢
i=1

0SE; _ ) i i_ i_ 2 _ i —
_663 = WijiXgi | ff—c1 — cxp — c3x3 c4(x1) Csx1x2 Ce(xz) =
i=1

J0SE; 2 2
j _ 2 (¢ i i i i i2)
e = E —2w;x%; (f — 1 — coxt — c3xh — cq(x})” — coalnl — co(xh) ) =0
4

0SE; i i 2 i )2
Ere Z 2WijXqiXa,; (f ; — €1 T C2X1 — C3X3 — c4,(x1) — Cs5X1X3 — C6(x2) ) =0
5
0SE; ) . 2 . 2
l l L [P l —
ac Z ZWl]‘XZL — €1 — CX1 — C3Xy — c4(x1) — C5X1X3 — Ce(xz) ) =
6

Solve equations for cy, C, Cs, Cs, Cs and cs and obtain the MLSM approximation
PN . . . . 2
f(xf) =+ czx{ + c3xé + c4(x{) + c5x1x2 + CG(Xé)

of f, at the output point {x/} = {x/, xJ}.

6.3.3. Higher Order Regression
For higher order regression, the number of regression coefficients increases rapidly.

e.g. with two design variables {x} = {x;, x,} the third order MLSM builds an approximation
of the form:

f(xj) =+ czx{ + C3xg + c4(x{)2 + C5X1x2 + 06(x )2 + C7(x{)3 + c8(x{)2xg + ch{(xg)z
in3
+ c10(x37)

at the output point {x1} {x], xJ}. c1-c10 are determined by minimising SE, summed over all
n sampling points (x{, x):

SEj = ?:1( fi—c1 - szi' - ngé —C4(xi.)2 - Csxi.xé
—co(x5)” = e7(xd)” — ca(xh) xh — coxd(xh)” — c1o(xh)) 2

For two design variables {x} = {x;, x,} the fourth order MLSM builds an approximation of
the form:

f(xj) =c + czx{ + c3xg + c4(x{)2 + cg,xlx2 + 06(x )2 + c7(x{)3 + cg(x{)zxg + ch{(xg)z

. 3 . 4 .2 .2 , . 3 . 4
+epo(x]) +ena(x) + ClZ(xf) x) +ci3(x]) (%) +caxi(x]) +cis(x3)
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at the output point {x/} = {x/, xJ}. The regression coefficients ci-c1s are determined by

minimising the Moving Least Squares expression, summed over the n sampling points
(x, x%) etc.

6.3.4. MLS surrogate modelling of the Six Hump Camel Back Function

Analytical Function 20 DoE points, =10.0
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Analytical Function 20 DoE points, =20.0
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Analytical Function 100 DoE points, 8=120.
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These show that the MLS method can represent the SHCB function accurately with ~50 DoE
points and that the hyper-parameter [ is also very influential.

6.4 Radial Basis Functions

In addition to surrogate modelling, radial basis functions (RBFs) are used in other areas, for
example in computer graphics and mesh deformation. Initially requiring 0(n®) calculations, a
further O (n) calculations are required per prediction [113].

As discussed earlier, the RBF surrogate model uses the data at the Design of Experiment
points to create an approximation that is accurate everywhere in the design space. If there
are ndv design variables and a total of n DoE points {x'} = {x{, x§, .., xig,}, fori=1,...,nat
which the output response takes the values y' for i=1,...,n then the RBF approximation to Yy
at any point x = {x;, x, ..., X,4»} With the design space is given by the RBF approximation

Vrpf(X) = ZAH/J”?C — x| =Z7\i Yr) =
=1 =1

where {x'} = {xi, xi, .., xL4,}is the ith DOE point. The norm r; = ||x — x!|| is often taken to
be the Cartesian distance between the points, given by

where ndv is the number of design variables.

RBF basis functions i can take several different forms. Common examples include:

Y(@) =r; P@) =7r3 P@) =r’lnr
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Gaussian: (1) = exp(—pr?)
Multi-quadratic: y(r) = (r? + )2,
Inverse multi-quadratic: Y(r) = (r? + g2)~1/2.

where [ is the single hyper-parameter. RBFs are normally used in interpolating mode which
means that the weights A; are chosen so that the RBF approximation is exact at each of the
DoE points, i.e. ymi(x!) =y for i=1,...,n. In this case, the A; are obtained by solving the linear
matrix equation;

-1

A= vy

where w is the Gram matrix defined such that w; ; = ¥||x’ — x/||. If the Cartesian norm is
used, then

||xi - xj|| =T =

which is the Cartesian distance between the ith nd jth DoE point.

Note: If the responses y' are corrupted by numerical noise, this may lead to overfitting of the
data — this does not discriminate between the underpinning response and the noise. We can
introduce a regularization parameter, r, added to the main diagonal of the Gram matrix:

w=(w+ r[)7ly

where r is a (usually small) number and I is the unit nxn matrix with 1s on the leading
diagonal and zeros elsewhere.

The following results illustrate RBF surrogate modelling of the Six Hump Camel Back function
as a function of the number of DoE points. In each case the hyper-parameter 3 is obtained
using LOOCYV for 0.5 < <10 and the global minimum is obtained using a Nelder-Mead
simplex optimisation algorithm available in Python. The optima can be compared to the ‘true’
value of -1.031 obtained from the analytical form of the Six Hump Camel Back function.
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Case 1: n=10 DoE points
RBF approximation of Six Hump Camelback with g =5.725 and n=10

e Optimum x=0.56 y=1.00 opt=-0.79

+ DoE points
g
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Plot out RMSE vs Beta for Leave One Out Cross Validation

4.0 1

35 1

3.0 1

RMSE

25 1

2.0 1

15 1

Case 2: n=20 DoE points
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RBF approximation of Six Hump Camelback with 8 =10.0 and n=20

e Optimum x=0.55 y=0.28 opt=-0.47
+« DoE points

Plot out RMSE vs Beta for Leave One Out Cross Validation
3.00 1

beta

Case 3: n=50 DoE points

Page 140
Copyright © 2024 University of Leeds UK. All rights reserved.



RBF approximation of Six Hump Camelback with 8 =0.5 and n=50

e Optimum x=0.48 y=0.86 opt=-1.03
« DoE points

10 00

Analytical Function

Six Hump Camelback Function
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Plot out RMSE vs Beta for Leave One Qut Cross Validation
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The above results show that n=50 DoE points is sufficient to get a reasonable RBF
representation of the functional surface and good agreement with the global optimum value.

6.5 Random Forests

Random Forests is a surrogate modelling method (also termed a supervised machine
learning method) which clusters data points into functional groups. It is very effective for
avoiding the problem of over-fitting the DoE data to the resultant surrogate model and is well
suited to creating surrogate models for optimisation problems where the design variables are
mixed continuous/categorical in nature. A categorical design might be for example, a
particular manufacturing method or a metal being used, i.e. a variable which does not have a
clear link to a numerical value. Random Forests are based on Decision Trees.

6.5.1 Decision Trees
In a Decision Tree the DoE dataset is split up according the values of the input variables into
a series of smaller subsets whose output values have similar values. The similarity in the
output variables if often measured in terms of a standard deviation/variance about the
average output value in the subset. Each split in the input DoE data is like a branch in a tree
and each data subset is called a leaf. The data are progressively split until some
convergence condition is satisfied. The convergence criterion could be based on

e The maximum number of splits that have been performed

¢ The standard deviation in the output values of the subset is below a specified

tolerance

The prediction from the Decision Tree for a specific set of input variables would then be
based on the average value associated with the final leaf with which it is associated and
which will not be split any further. The general idea can be explained by a simple example.

6.5.2. Example

Suppose that a Decision Tree is used to predict the corrosion rate of a metal in a corrosive
liquid (in mm/year) as a function of 2 input variables — the pH and the temperature of the
liquid in °C. A series of experiments are carried out and the experimental (DoE) data is given
by the following table:
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pH T (°C) Corrosion Rate
(mm/year)
4.1 45.2 6.8
3.8 41.5 6.6
4.8 32.5 3.9
4.6 28.0 4.1
5.1 36.0 3.2
6.5 38.0 2.8
6.3 33.0 1.2
5.5 29.5 1.9

The following figure shows two possible Decision Trees that could be used. Tree 1 uses the
following splits. Data is split up first of all according to whether pH<5.0 or pH=5.0 (the first
branch in Tree 1) and then according to whether T<35°C or T235°C (the second branch).
The leaf associated with the branches with pH<5.0 and T<35°C results in the leaf with
corrosion rates (3.9,4.1). Hence for the specific case with pH=4.0 and T=29.0°C, the
Decision Tree would predict the average of these two values: 4.0 mm/year. Other design
variables would result in the other averages shown.

Suppose now there is a second tree, Tree 2, where data is split up according to whether
pH<4.5 or pH24.5 (the first branch in Tree 2) and then according to whether T<30°C or
T=30°C (the second branch).

Corrosion Prediction Decision Trees

Tree l Tree 2
,'/"' ‘\. ,/ \.\-
pH<5.0 / . pH25.0 pH<45 / \. pH24.5
/ ‘.\.
1<ssoc /  \T2350c T<35.0c / \ T235.0C T<s00c /  \T2300c T<30.0c / \ T230.0C
\
(3.9,4.1) (6.8,6.6) (1.2,1.9) (3.2,2.8) (4.1) (6.8,6.6) (4.1,1.9)  (3.9,3.2,2.8,1.2)
Avg=4.0 Avg=6.7 Avg=1.55 Avg=3.0 Avg=4.1 Avg=6.7 Avg=3.0 Avg=2.775

For the specific case with pH=4.0 and T=29.0°C, Tree 2 has only one output value, 4.1, in
the associated leaf (obtained from the branches pH<4.5 and T<30°C) hence Tree 2 predicts
the corrosion rate to be 4.1 mm/year.

In practice, the power of the Random Forest method is based on using a number of trees
where the branching criteria are specified randomly and then taking the averages over all
these Decision Trees. This is an example of an Ensemble Learning method which uses the
outcomes of many different models. If the results of Tree 1 and Tree 2 are combined into a
Random Forest with these two Decision Trees, the corrosion rate prediction for the case with
pH=4.0 and T=29.0°C would be given by the weighted sum of the two leaves. This would be
the average of 3.9, 4.1 and 4.1 or 4.03 mm/year.
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The Random Forest method has a number of hyper-parameters which have to be optimised
during the training and validation process. These include the number of trees, the number of

decision levels and the convergence criteria.

Examples of using Random Forest surrogate modelling of the Six Hump Camel Back

Function are given below.

Six Hump Camel Back Function: Random Forests
Random Forest approximation of Six Hump Camel Back Function N=10

+ DoE points
Optimum x=0.50 y=0.50 opt=0.78

o ———

0
Six Hump Camel Back Function

Random Forest approximation of Six Hump Camel Back Function N=20

DoE points
Optimum x=0.50 y=0.53 opt=0.29

P
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Six Hump Camel Back Function
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Random Forest approximation of Six Hump Camel Back Function N=50

+ DoE points
e Optimum x=0.52 y=0.50 opt=-0.17
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Random Forest approximation of Six Hump Camel Back Function N=100

+ DoE points
e Optimum x=0.49 y=0.56 opt=-0.21
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Six Hump Camelback Function

8 0
1.0 0.0

It can be seen that 100 DoE points are needed for the Random Forest to generate a surface
similar to that of the actual function. However, even for 100 DoE points, the optimal solution
(-0.21) is very inaccurate compared to the actual optimum (-1.03).

6.6 Gaussian Process Regression

Gaussian Process Regression (GPR) models are widely used in surrogate modelling and
machine learning due to their ability to represent complex, nonlinear relationships between
input and output variables. Their assumption of Gaussian/Normal behaviour enables
equations for quantifying uncertainty to be obtained in an easy to calculate form. The
background to GPR models is rather mathematical but they are widely available in packages
such as Matlab and Python.

Regressions models formulate a function that represents observed data and uses this
function to predict values at new data points. There are an infinite number of ways this
function can be formulated and GPR models use a probability distribution over this infinite
number of functions to determine which is the most likely given the DoE data provided.

6.6.1. Gaussian/Normal distribution
If a single random variable X is Gaussian — or normally — distributed with mean p and
variance o2, its probability density function (pdf) is given by

1 _ 2
) = T P (‘ %)

This is the well-known bell-shaped curve.
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This can be generalised to the Multivariate Normal Distribution (MVN) for several design
variables x = (x4, ..., Xpaw)

1 1
P (slu,2) = COREEPIE exp(— (s = wWTE (s — w)

where u = E(x) is the mean vector and X is the (ndv x ndv) covariance matrix. The MVN pdf
can be visualised for 2 design variables. An example is shown below

6.6.2 Covariance Matrix/Kernels
The covariance function between the design variables is also called the Kernel function and
encapsulates prior knowledge about the functions we are trying to represent. The squared
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exponential (SE) kernel, also known as the Gaussian or Radial Basis Function (RBF) kernel,
is widely used

2
o 4T
Cov(x‘, x1) = afzexp(— %)

where r;; is the Cartesian distance between points x'and X and afz and [ are hyper-

parameters of the Covariance matrix. The hyper-parameters in a GPR model are generally
associated with the Correlation matrix/kernel function and with the noise levels in the data.
The hyper-parameters are found be solving a separate optimisation problem that maximises
the likelihood of obtaining the observed set of DoE data.

The key limitations of GPR models are that:
(@ The computational complexity is O(ndv®) where ndv is the number of design

variables
(ii) The memory requirements are O(ndv?)

This means that GPR models are impractical for data sets with large numbers of design
variables. In such cases, sparse GPR models are used instead.

6.6.3 GPR Surrogate Modelling of Six Hump Camel Back Function

Examples are given below.
GP approximation of Six Hump Camel Back Function N=10

e Optimum x=0.60 y=1.00 opt=-1.46

Six Hump Camel Back Function
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GP approximation of Six Hump Camel Back Function N=20

e Optimum x=0.57 y=0.30 opt=-0 41
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GP approximation of Six Hump Camel Back Function N=50

e Optimum x=0.48 y=0.85 opt=-1.02
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GP approximation of Six Hump Camel Back Function N=100

e Optimum x=0.48 y=0.85 opt=-1.03

Six Hump Camel Back Function

It can be seen that the surrogate model and optimum value being predicted are accurate for

N>50 DoE points.

6.7 Neural Networks

This section is based on the excellent book by Martins & Ning (2022) listed as one of the
module’s recommended textbooks. Interest in Neural Networks (NNs) has exploded in
recent years due to their ability to approximate highly non-linear relationships between input
and output variables. In addition to their use in optimisation, NNs are used in a wide range of
Al applications, including Large Language Models (LLMs), Machine Vision and medical

diagnostic devices.

NNs are simplified models based on the brain, with its enormous network of neurons and in
NNs each neuron is a node that represents the value from a simple function. The power of
the NN comes from its definition of chains of simple functions into composite functions which
are able to model much more complex, non-linear behaviours. For example, if we have four
simple functions f!, 2, f and f4, these can be chained together into the composite functions

or network:
G =42 (F2(F1)))

the composite function f(x) can model very complex behaviour.

Most NNs are feedforward ones where information flows from the inputs x to the outputs
f(x). Recurrent NNs also have important elements of feedback throughout the network. The

figure below (due to Muhammad Raihan) shows a diagram of a NN, where each node
represents neuron. The neurons are joined between consecutive layers to form the network.
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The first layer is called the input layer and the last one is the output layer. The layers
between these two are the hidden layers. The total number of layers is called the network’s
depth. Deep Neural Networks have many layers, enabling very complex behaviour to be
represented accurately. The first and last layers can be considered to be the inputs and
outputs of the surrogate model. Each nodes in the hidden layers represents a function.
The output from the NN can be represented by a vector, x. In the example above, the output

IS
V1
X = (3’2)
V3

More generally, the vector of values for layer k is x*, the value for the ith neuron in layer k is
x¥, there being n;, neurons in layer k. A neuron in layer k is connected to many neurons from
the previous layer, (k-1). We can select functions for each neuron in layer k that takes values
from layer (k-1) as inputs. If only linear functions were used then all the functions would be
linear and only linear relationships could be modelled. Hence, some layers have to use non-
linear functions. A common approach is to have hidden layers with a layer of linear functions
followed by a layer with nonlinear functions. A neuron in the linear layer produces the
intermediate value

Ng—1

_ (k-1)
zZ= Z WjX; +b
j=1
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where n;_; is the number of neurons in layer (k-1), w; are weights for layer (k-1) and b is
called the bias term which scales the significance of the overall output.
This can be written more conveniently using vector notation as

z=wlxk-D 4 p

which is a linear function of the neurons in the previous layer (k-1). The next key step is to

pass the value z through an activation function, a(z). In the past one of the most common
activation functions was the sigmoid function:

1
1+e%

a(z) =

10 4

0.3

0.6 1

0.4 1

Sigrnoidix)

0.2

0.0

-10.0 -7.5 50 25 0a 25 50 75 100
X

This produces values between 0 and 1 so that large negative outputs are insignificant while
large outputs results in values close to 1.

The Rectified Linear Unit (ReLU) activation function is now much more common:

a(z) = max(0,z)

10

Rell(x)

-100 -75 50 -25 00 25 5.0 75 100

=i,
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As Rel U eliminates negative inputs, the bias term is a threshold defining what is a
significant value. The output from the ith neuron is obtained by combining the linear function
with the activation function:

xF = awTx®V + b))

As a result of the above, the NN is now parametrised in terms of the weight and bias
parameters. These are all hyper-parameters of the NN and like all surrogate models, a
separate optimisation problem has to be solved to determine the optimal value of these
parameters. This is called Training the Network. If we consider the NN in the figure above
with 6 input values/neurons and then have the first hidden layer with 10 neurons, the second
hidden layer with 8 neurons and 3 output neurons then there would be a total of (6x10 +
10x8 + 8x3) weights and 10+8+3 bias parameters giving a total of 185 variables. Note this is
a very small NN — large NNs, for example with Large Language Models, will have several
million such variables.

Since the optimisation problem that needs to be solved to train the network is very large,
gradient-based optimisation methods are used. These require derivatives to be determined
for all of the optimisation variables. These are obtained using reverse-mode algorithmic
differentiation (AD) — also known as backpropagation. The derivatives are commonly used
with specialist steepest descent methods which are referred to as stochastic gradient
descent methods. In practical problems the goal is not to obtain the absolute minimum but to
find a good enough solution quickly. The stochastic gradient descent method does not
perform a line search. Instead a step-size, called the learning rate, is used and this is usually
a pre-selected value. These algorithmic developments have been crucial in enabling NNs to
be applied in increasing numbers of important Al and optimisation applications.

6.7.1 NN Surrogate Modelling of Six Hump Camel Back Function
Examples are given below.
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ANN approximation of Six Hump Camel Back Function N=10

+ DoE points
e Optimum x=0.58 y=1.00 opt=-0.73
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ANN approximation of Six Hump Camel Back Function N=20

« DoE points
e Optimum x=0.48 y=0.36 opt=-0.31
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ANN approximation of Six Hump Camel Back Function N=50

« DoE points

e Optimum x=0.49 y=0.85 opt=-0.96
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ANN approximation of Six Hump Camel Back Function N=100

« DoE points

e Optimum x=0.53 y=0.00 opt=-1.13
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It can be seen that the accuracy generally improves for larger values of DoE points, although
the performance is not as good as seen for the GPR surrogate models. Note that NNs
generally perform much better than GPRs for larger numbers of design variables and much
bigger training datasets. The Six Hump Camel Back function is too small to demonstrate

their capabilities fully.
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6.8 Discussion and Engineering Example

The future development of many different complex products and processes will be based on
a systematic optimisation process where design optimisation methods are used extensively.
The data used within these optimisation methods can come from a variety of sources,
including experiments, simple mathematical models and/or physics-based computer
simulations. The latter type of data, in particular, is increasingly being used to solve a wide
variety of challenging design problems in science and industry. This approach is very well
established for structural design problems and is now used routinely to minimise the weight
of automotive components or design composite wings for aircraft. Although there have been
comparatively few studies which have used Computational Fluid Dynamics (CFD) to
optimise complex flow problems, interest in CFD-enabled design optimisation methods is
now also growing rapidly.

There has been rapid progress in reducing computational times for both gradient-free and
gradient-based optimisation methods. Gradient-free optimisation methods can be very
effective for up to 100 design variables, whereas for larger design problems, with > 100
design variables, gradient-based methods, powered by rapid advances in adjoint methods,
have solved problems where the number of design variables is in the 1000s or even millions.
Other key improvements that have driven these advances include adaptive Design of
Experiments methods, which can provide an appropriate balance between exploration and
exploitation, and multi-fidelity modelling which enables most of the computational work to be
done on cheaper, lower fidelity models. Both of these enable the number of expensive, high
fidelity computer simulations used in the optimisation process to be kept to a minimum.
Significant progress has also been made in multi-disciplinary design optimisation (MDO)
methods which coordinate simulations of the individual disciplines affecting a design (e.g.
fluid mechanics, structural mechanics, ...) toward a system design that is optimal as a whole,
taking into account the competing objectives.

There are several exciting research directions that will enable design optimisation methods
to have even greater impact in the future. The ACARE Beyond 2020 Vision (European
Commission, 2019), for example, predicts that effective MDO methods will be a key enabling
technology for the future development of environment-friendly aircraft and that these aircraft
will be designed virtually, using computer-based simulations, by 2050. For these and other
safety-critical applications (in for example the nuclear industry), there will be increasing
demands for the development of robust simulation-based optimisation methods that can
ensure that product and/or process performance does not degrade significantly due to
unavoidable variations in manufacturing tolerances, operating conditions, etc. It is also likely
that the growing interest in using Machine Learning, for example to tune parameters in
turbulence models, and the increasing trend of combining physics-based and data-driven
flow simulations will widen the both the power and scope of simulation-based design
optimisation methods in the very near future.

6.8.1 Electronics Cooling using Heat Sinks

This example is based on a recent research project which analysed the cooling potential of
liquid cooled heat sinks for high-density electronics cooling. Heat sinks are used to take the
heat away from the electronics as efficiently as possible while at the same time ensuring the
energy required to pump the liquid through the heat sinks is minimal. The work is published
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in the article: A.F. Al-Neama et al., ‘An experimental and numerical investigation of the use
of liquid flow in serpentine microchannels for microelectronics cooling’, Applied Thermal
Engineering, 116, 709-723, 2017. The following figure shows the physical design (top left),

CAD model (bottom left); heat sink temperature distributions (top and bottom right).

©

C
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There are two objectives that need to be minimised for electronics cooling: the thermal
resistance (which measures the resistance to dissipating heat from the electronics) and the
pressure drop (which is directly related to energy losses in the system). Here we use the

following data at 30 Design of Experiments data points:
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Copyright © 2024 University of Leeds UK. All rights reserved.

32295.88
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35215.58
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27282.88
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25538.35
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0.664
0.688
0.712
0.736
0.76
0.784
0.808
0.832
0.856
0.88
0.904
0.928
0.952
0.976
1

0.952
0.76
0.64
0.496
0.88
0.736
0.4

1
0.592
0.808
0.472
0.928
0.688
0.568
0.832

0.1739714
0.1713519
0.1711744
0.1749193
0.1666564
0.1670559
0.1808273
0.1636113
0.1693082
0.1641188
0.176308

0.1625802
0.167041

0.1721966
0.1643945

21385.96
19779.7

18578.62
17376.79
18166.45
17080.95
15481.67
16821.3

15178.61
15338.31
14047.45
14806.84
13858.26
13244.67
13500.18

Here the first two columns relate to two geometrical design parameters which are in the
range 0.4 < x1<1.0 and 0.4 < x»<1.0, the third column is the thermal resistance and the
fourth the pressure drop in Pascal. We will be focussing here on creating surrogate models

for the thermal resistance in the heat sink system.

The surrogate modelling is carried out using Gaussian Radial Basis Functions. For example,
using the hyper-parameter f=2.0 creates the following surrogate model of the thermal
resistance:

RBF approximation of Thermal Resistance with beta=2.0 and n=30

0.28
0.27
0.25
0.24
0.22

0.21
0.19
0.18

[ 0.16

0.15

0.22
- 0.21
- 0.20
- 0.19
- 0.18

- 0.17

Using Leave One Out Cross Validation for the thermal resistance leads to the following figures,

with 3=1.45 leading to the smallest RMSE.
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RBF approximation of Thermal Resistance with beta=1.45 and n=30

Plot out RMSE vs Beta for Leave One Out Cross Validation
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Using Leave One Out Cross Validation for the pressure drop leads to the following figures,
with 3=0.88 leading to the smallest RMSE.

RBF approximation of pressure drop with beta=0.88 and n=30

Plot out RMSE vs Beta for pressure drop: Leave One Out Cross Validation
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The last figure shows the Pareto front that results from multi-objective optimisation of the
thermal resistance and pressure drop (both suitably scaled). It shows the compromises that
can be struck between minimising each of the objectives. For example. Reducing thermal
resistance below 0.17 will results in pressure drops > 13,000.
Pareto front for thermal resistance vs pressure drop
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