
Page 1 
Copyright © 2024 University of Leeds UK. All rights reserved. 

 
 

 
 
 

 
 
 
 
 
 

Numerical Modelling using Python 
 
 
 
 
 
 
 
 
 
 
 
 

Harvey Thompson 
 
 
 



Page 2 
Copyright © 2024 University of Leeds UK. All rights reserved. 

 
 

 

1. Initial value problems 
The first part of the module will introduce you to the most popular numerical methods used to solve 
initial value problems (IVP). IVPs consist of a differential equation that describes how some quantity  
changes over time (see examples below) and a given initial value. 
 

1.1 Examples 
1.1.1 Carbon dating 
Carbon dating relies on the radioactive decay of 14N, a radioactive carbon isotope. The 
method was invented by Willard F. Libby in 1949 and in 1960 he was awarded a Nobel prize 
for his work. The decay (i.e. the rate of change with time of the number of atoms) is 
proportional to the number of C14 atoms in the sample 
 

𝐶14̇ =  −𝜆 𝐶14     (1.1) 
 
Throughout these notes, a dot over a quantity means a derivative with respect to time, that is 
 

𝐶14̇ =  
𝜕𝐶14

𝜕𝑡
          (1.2) 

 
and 
 

𝐶14̈ =
𝜕2𝐶14

𝜕𝑡2
          (1.3) 

 
In return, one N14 atom is generated out of each C14 atom which decays. Therefore, 
 

𝑁14̇ = 𝜆 𝐶14       (1.4) 
 

The decay constant λ is related to the half-life τ via 
 

𝜏 =
𝑙𝑜𝑔𝑒(2)

𝜆
         (1.5) 

 
that is the shorter the half-life, the greater the decay constant. The half-life of C14 is τ =5730 
years so that λ ≈ 0.000121. Equation (1.1) is probably the most simple example of an ordinary 
differential equation (ordinary means it only contains derivatives with respect to one variable, 
time t in this example) and we can simply guess its solution 
 

𝐶14(𝑡) =  𝐶14(0)𝑒
−𝜆𝑡      (1.6) 

 
Remark 1 
The model can obviously lead to fractions of atoms being present. How does this limit the 
applicability of the decay model? 
 
Note that we need an initial value C14(0) to find the solution at time t. 
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Carbon dating 
Carbon dating relies on the fact in living plants and animals, C14 atoms are constantly 
replenished, keeping the ratio between radioactive C14 and non-radioactive C12 roughly 
constant. After a plant or animal dies, this process of replenishment stops and decaying C14 
atoms are no longer replaced, slowly changing the ratio over time. We denote the ratio 
between C14 and C12 atoms as r(t) and set t=0 as the time the plant/animal died - at this time, 
the ratio is equal to the atmospheric ratio which is roughly 
 

𝑟(0) =
𝐶14(0)

𝐶12(0)
≈

1.5

1012
          (1.7) 

 
Then, while C12 does not change, C14 decreases according to Equation (1.6) so that 
 

𝑟(𝑡) =  
𝐶14(𝑡)

𝐶12(𝑡)
=
𝐶14(0)

𝐶12(0)
𝑒−𝜆𝑡         (1.8) 

 
So after we determine the ratio r(t) in e.g. an archaeological sample, we can compute its age t. 
Let us say we find a ratio of 
 

𝑟(𝑡) =  
𝐶14(𝑡)

𝐶12(𝑡)
= 0.5 × 10−12              (1.9) 

 
then we can solve for the age t by 
 

𝑡 = −
1

𝜆
𝑙𝑜𝑔𝑒  (

𝑟(𝑡)

𝑟(0)
)  ≈  

−1

0.000121
𝑙𝑜𝑔𝑒  (

1

3
)  ≈ 9047 years         (1.10) 

 
 
Self-study. Write a simple python function that takes a measured ratio r(t) of C14 to C12 and 
returns the time t. 
 
1.1.2 Chemical batch reactor 
Consider a chemical reactor where two species A and B react to form a species C. 
The reaction is 
 

𝐴 + 𝐵 → 𝑛𝐶            (1.11) 
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Figure 1.1: Solution of (1.12) with Python’s odeint solver in simple_reaction.py. 
 
with a reaction rate constant k. In terms of concentrations CA, CB and CC this reaction can be 
modelled as 
 

𝐶𝐴̇ = −𝑘𝐶𝐴𝐶𝐵     (1.12a) 

𝐶𝐵̇ = −𝑘𝐶𝐴𝐶𝐵     (1.12b) 

𝐶𝐶̇ = 𝑘𝐶𝐴𝐶𝐵         (1.12c) 
 
 

Note that  𝐶𝐴̇ + 𝐶𝐶̇ = 0  and 𝐶𝐵̇ + 𝐶𝐶̇ = 0 which means that  
 

𝐶𝐴(𝑡) + 𝐶𝐶(𝑡) = 𝐶𝐴(0) + 𝐶𝐶(0), 𝐶𝐵(𝑡) + 𝐶𝐶(𝑡) = 𝐶𝐵(0) + 𝐶𝐶(0)           (1.13) 
 
corresponding to the fact that the total number of atoms stays the same -- mass is conserved. 
 
Remark 2 
Obviously, concentrations have to remain positive to make any sense. Not all numerical 
methods guarantee this, however.  
 
Self-Study 
Figure 1.1 shows a solution of (1.12) for CA(0)=2, CB=1.0 and CC=0.0 computed with Python's 
odeint solver in the program simple_reaction.py. This code is given below: 
 
simple_reaction.py 
""" 

Solves an initial value problem modelling a simple chemical reaction 

 A + B --> C, with rate constant k 

 

""" 

import numpy as np 

from scipy.integrate import odeint 

 

# define the rhs function, f 

def f(u,t,rate_constant): 

    return [-rate_constant*u[0]*u[1],-rate_constant*u[0]*u[1],rate_constant*u[0]*u[1]] 

 

rate_constant = 1.0 

tend = 10.0 
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A_0 = 2.0 

B_0 = 1.0 

C_0 = 0.0 

 

u0 = [A_0,B_0,C_0] 

t = np.linspace(0,tend,1000) 

u = odeint(f,u0,t,args=(rate_constant,)) 

 

A = u[:,0] 

B = u[:,1] 

C = u[:,2] 

 

# plot out results 

import matplotlib.pyplot as plt 

plt.plot(t,A,'r') 

plt.plot(t,B,'b') 

plt.plot(t,C,'g') 

plt.xlim([0,10]) 

plt.ylim([0,2]) 

plt.xlabel('Time') 

plt.ylabel('Concentration') 

plt.legend(['A','B','C']) 

plt.savefig('simple_reaction.jpg') 

 
Does the solution make sense to you? Modify it to plot CA(t)+CC(t) and CB(t)+CC(t)  over time. 
What would you expect to see and is this what happens? 
 
1.1.3 Non-Hookean mass-spring system 
We consider a mass-spring system where a bob of mass m is attached to a spring with a spring 
constant k. However, instead of linear Hooke's law, we use Duffing's model where the 
restoring force is 
 

𝐹𝑟𝑒𝑠𝑡𝑜 = −𝑘(𝑥(𝑡) + 𝛽𝑥
3(𝑡))       (1.14) 

 
where x(t) is the displacement of the bob from its equilibrium and β some model parameter. 
Friction is assumed to be linear and modelled via 
 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = −𝑏𝑥̇(𝑡)          (1.15) 

 
Allowing for an external force Fext(t), Newton's second law then reads 
 

𝑚𝑥̈(𝑡) = −𝑘(𝑥(𝑡) + 𝛽𝑥3(𝑡)) − 𝑏𝑥̇(𝑡) + 𝐹𝑒𝑥𝑡(𝑡)         (1.16) 

 
We can introduce velocity 𝑣 = 𝑥̇(𝑡) as a variable to eliminate the second order derivative 
 

𝑥̇(𝑡) = 𝑣(𝑡); 𝑣̇(𝑡) = −
𝑘

𝑚
(𝑥(𝑡) + 𝛽𝑥3(𝑡)) −

𝑏

𝑚
𝑣(𝑡) +

1

𝑚
𝐹𝑒𝑥𝑡(𝑡)         (1.17a, 1.17b) 

 
For β=0 and Fext=0, we recover the equations for unforced linear harmonic motion 
 

𝑥̇(𝑡) = 𝑣(𝑡); 𝑣̇(𝑡) = −
𝑘

𝑚
𝑥(𝑡) −

𝑏

𝑚
𝑣(𝑡)         (1.18a, 1.18b) 

 
or, eliminating v(t) again, 
 

𝑚𝑥̈(𝑡) + 𝑏𝑥̇(𝑡) + 𝑘𝑥(𝑡) = 0        (1.19) 
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For the case with b=0, we can derive the exact solution by making an educated guess1. Let 
 

𝑥(𝑡) = 𝐴𝑠𝑖𝑛(𝛼𝑡) + 𝐵𝑐𝑜𝑠(𝛼𝑡)          (1.20) 
 
for some parameters A, B and α. First, compute 
 

𝑥̇(𝑡) = 𝑣(𝑡) = 𝐴𝛼 cos(𝛼𝑡) − 𝐵𝛼 sin (𝛼𝑡)           (1.21) 
 
and then 
 

𝑣̇(𝑡) = −𝐴𝛼2 sin(𝛼𝑡) − 𝐵𝛼2 cos(𝛼𝑡) =  −
𝑘

𝑚
𝑥(𝑡) = −

𝑘

𝑚
𝐴 sin(𝛼𝑡) − 

𝑘

𝑚
 𝐵 cos (𝛼𝑡)       (1.22) 

 
From that we can conclude that 
 

𝛼2 =
𝑘

𝑚
 or 𝛼 = √

𝑘

𝑚
               (1.23) 

 
We still need to fix parameters A and B. Let x0 and v0 be the initial values given at t=0. Then,  
 

𝑥(0) = 𝐵 = 𝑥0         (1.24a) 
 

𝑣(0) = 𝐴𝛼 = 𝑣0       (1.24b) 
 
so that B=x0 and A=v0/α fixes the parameters. Figure 1.2 shows the exact and numerical 
solution with odeint to the linearised problem (1.18) and the numerical solution to the 
nonlinear pendulum (1.17). This is obtained by running the following program, springmass.py: 
""" 

springmass.py 

""" 

import numpy as np 

from scipy.integrate import odeint 

 

# define the rhs function, f 

def f(u,t,k,m): 

    return [u[1],-(k/m)*u[0]] 

 

# define the rhs function, fnonlinear 

def f_nonlinear(u,t,k,m,beta): 

    return [u[1],-(k/m)*(u[0] + beta*(u[0]**3))] 

 

T = 10.0    # final time until which we compute 

N = 100     # number of time steps 

taxis = np.linspace(0,T,N+1) 

k = 5.0 

beta = 0.1 

m = 1.0 

 

# compute frequency alpha for linear (Hookean) solution 

alpha = np.sqrt(k/m) 

 

# initial values for position and velocity 

x0 = 1.0 

v0 = 0.0 

                                                           
1 The case b>0 allows a similar derivation using the complex exponential function. 
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u0 = [x0,v0] 

 

# compute parameter A and B of exact linear pendulum 

B = x0 

A = v0/alpha 

 

# compute exact solution for linear pendulum 

xexact = A*np.sin(alpha*taxis) + B*np.cos(alpha*taxis) 

 

# use odeint to solve 

t = np.linspace(0,T,N+1) 

u = odeint(f,u0,t,args=(k,m,)) 

u_nonlinear = odeint(f_nonlinear,u0,t,args=(k,m,beta,)) 

 

# plot out results 

import matplotlib.pyplot as plt 

plt.plot(t,u[:,0],'bo') 

plt.plot(t,xexact,'k-') 

plt.plot(t,u_nonlinear[:,0],'rx-') 

plt.xlim([0,10]) 

plt.ylim([-1.1,1.1]) 

plt.xlabel('Time') 

plt.ylabel(r'$\theta$') 

plt.legend(['odeint','Exact linear','odeint nonlinear']) 

plt.savefig('springmass.jpg')  

 
Question.  
Figure 1.2 below shows a noticeable difference between the linear and nonlinear system. 
Does that make the linear model wrong? Changing which parameters would improve 
agreement between linear and nonlinear model? Run springmass.py to explore this. 
 

 
 

Figure 1.2 Exact (black) and numerical (blue) solution of the Hookean spring-mass system as 
well as numerical solution of the nonlinear Non-Hookean system (red), obtained using 

springmass.py. 
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General initial value problems: notation 
We can introduce a general compact way to write down initial value problems 
 

𝐮̇(t) = 𝐟(𝐮(t), t)         (1.25) 
 
where u(t) is a time-dependent vector containing all components of the system while f is what 
is referred to as the right-hand-side function. For Equation (1.1) we would have 
 

𝒖(𝑡) = (𝐶14(𝑡))           (1.26) 
 
and 
 

𝐟(𝐮(𝐭)) = 𝐟(𝐶14(𝑡)) =  −𝜆𝐶14(𝑡)           (1.27) 

 
Note that in this case u is not really a vector because it has only a single component. This 
changes for the chemical reaction given by Equation (1.11). Here, 
 

𝐮(t) =  (
𝐶𝐴(𝑡)
𝐶𝐵(𝑡)
𝐶𝐶(𝑡)

)            (1.28) 

 
while f is a function that takes a vector u as argument and returns the vector 
 

𝐟(𝐮(t)) = 𝐟 (
𝐶𝐴(𝑡)
𝐶𝐵(𝑡)
𝐶𝐶(𝑡)

) = (
−𝑘 𝐶𝐴(𝑡)𝐶𝐵(𝑡)
−𝑘 𝐶𝐴(𝑡)𝐶𝐵(𝑡)

𝑘 𝐶𝐴(𝑡)𝐶𝐵(𝑡)

)            (1.29) 

 
Finally, for the mass-spring system given by Equation (1.17), we have 
 

𝐮(t) = (𝑥(𝑡)
𝑣(𝑡)
)               (1.30) 

 
and 
 

𝐟(𝐮(t)) =  (
𝑣(𝑡)

−
𝑘

𝑚
𝑥(𝑡)−

𝑘

𝑚
𝛽𝑥3(𝑡)−

𝑏

𝑚
𝑣(𝑡)+

1

𝑚
𝐹𝑒𝑥𝑡(𝑡)

)           (1.31) 

 
While this notation may seem abstract at first, it will allow us to write down numerical 
methods more generally, using the same notation independent of the problem we will apply 
them to later. 
 

Forward and backward Euler method 
Most initial value problems will be too complex to be solved by hand. Therefore, we use 
numerical methods to compute approximate solutions. Consider now the IVP in generic form 
 

𝒖̇(𝒕) = 𝐟(𝐮(t), t),     𝐮(0) =  𝒖𝟎        (1.32) 
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Instead of trying to find a continuous function u(t) that solves the differential equation at 
every time t in some interval [0, T], a numerical method will construct a finite number of 
approximate values at selected points in time: 0 = t0 < t1 < t2 < … < tN = T. Here, N is the 
number of steps we use and, for the sake of simplicity, we will assume that the distance 
between two points is always the same, that is 
 

∆𝑡 =  𝑡𝑛+1 − 𝑡𝑛        (1.33) 
 
for any n = 0, …, N-1. We will denote approximations at a point in time tn delivered by a 
numerical method with a superscript n, that is un is an approximation of the exact solution 
u(tn). Further, we will denote the error made by this approximation as 
 

𝑒𝑛 = ‖𝐮𝒏 − 𝒖(𝑡𝑛)‖           (1.34) 
 
To compute the error, we need to know the exact solution u(t) so this will only be possible 
when testing our algorithms for simple problems. Finally, we define the global error as the 
largest value of en over all time steps, that is 
 

𝑒𝑔𝑙𝑜𝑏𝑎𝑙 = max
0≤𝑛≤𝑁

𝑒𝑛         (1.35) 

 
With this notation, we can now write down the forward or explicit Euler algorithm for the 
generic IVP (1.32) as 
 

𝒖𝒏+𝟏 = 𝒖𝒏 + ∆t 𝐟(𝒖𝒏, 𝑡𝑛)          (1.36) 
 
Note how starting from the initial value u0 this rule iteratively generates a series of 
approximate solutions u1, u2,… The method is called explicit because computing un+1 from un 
requires only evaluating f(un,tn) but not solving any linear or nonlinear equations. It also often 
called the forward Euler method. This is because it can be derived by using a (forward) Taylor 
expansion of the solution u(t) around t=tn 
 

𝒖(𝑡𝑛+1) = 𝒖(𝑡𝑛) + (𝑡𝑛+1 − 𝑡𝑛)𝒖̇(𝑡𝑛) +
(𝑡𝑛+1−𝑡𝑛)

2

2
 𝒖̈(𝑡𝑛) + ⋯     (1.37) 

 
We ignore all terms except the first two on the right hand side and use that tn+1-tn = Δt and 
that, because u solves the differential equation, 𝒖̇(𝑡𝑛) = 𝒇(𝒖(𝑡𝑛), 𝑡𝑛) to get 
 

𝒖(𝑡𝑛+1) ≈ 𝒖(𝑡𝑛) + ∆𝑡 𝒇(𝒖(𝑡𝑛), 𝑡𝑛)        (1.38) 
 
Starting this procedure from u(0)=u0 and naming the resulting approximations un results in the 
forward Euler method (1.36). 
 
The other type of Euler method is backward or implicit Euler 
 

𝒖𝒏+𝟏 = 𝒖𝒏 + ∆𝑡 𝒇(𝒖𝒏+𝟏, 𝑡𝑛+1).       (1.39) 
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Here, computing un+1 from un requires the solution of 
 

𝒖𝒏+𝟏 − ∆𝑡 𝒇(𝒖𝒏+𝟏, 𝑡𝑛+1) = 𝒖
𝒏       (1.40) 

 
which, depending on f, can be a linear or nonlinear problem. Note that for the radioactive 
decay equation (1.1) (where u=C14 and f(u)= -λ C14) this becomes 
 

𝐶14
𝑛+1 + ∆𝑡𝜆𝐶14

𝑛+1 = 𝐶14
𝑛         (1.41) 

 
which can easily be solved to give 
 

𝐶14
𝑛+1 =

𝐶14
𝑛

1+∆𝑡𝜆
       (1.42) 

 
However, solving Equation (1.40) by hand is only possible for very simple problems. In most 
cases you will have to use some numerical procedure for that. Python offers the numpy.linalg 
function for linear problems and the scipy.optimize fsolve command for nonlinear problems. 
We will see examples later. 
 
Figure 1.3 shows the approximate solution obtained with forward and backward Euler as well 
as the exact solution in black, for the case with λ=2 and N=10 time steps. The code used in 
carbon_euler.py given below: 
 
""" 

carbon_euler.py 

""" 

import numpy as np 

T = 0.5    # final time until which we compute 

N = 10     # number of time steps 

taxis = np.linspace(0,T,N+1) 

dt = T/N    # length of each time step 

lam = 2.0    # decay constant 

r0 = 1.0    # ratio at t=0 to 1.0 

 

# preallocate two arrays to store all values computed with explicit and 

# implicit Euler - this will save a bit of time compared to appending a 

# value in each step. The 1 is because the number of components in case of 

# the decay equations is one. 

rexp = np.zeros(N+1) 

rimp = np.zeros(N+1) 

 

# first entry is the initial value r0 for both 

rexp[0] = r0 

rimp[0] = r0 

 

# forward euler 

for i in range(N): 

    rexp[i+1] = rexp[i] -dt*lam*rexp[i] 

     

# backward euler 

for i in range(N): 

    rimp[i+1] = rimp[i]/(1 + dt*lam) 

 

# plot out results 

import matplotlib.pyplot as plt 

plot1 = plt.figure(1) 

plt.plot(taxis,rexp,'ro') 

plt.plot(taxis,rimp,'bo') 

plt.plot(taxis,r0*np.exp(-lam*taxis),'k-') 

plt.xlim([0,0.5]) 

plt.ylim([0.3,1.0]) 
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plt.xlabel('Time') 

plt.ylabel('C14') 

plt.legend(['Explicit Euler','Implicit Euler','Exact solution']) 

plt.savefig('carbon_euler.jpg') 

 

# to compute the error, we have to figure out the exact solutions at all 

# time points - note that taxis is a row vector whereas rexp, rimp are 

# column vectors, so we need to transpose taxis to match 

rexact = np.transpose(r0*np.exp(-lam*taxis)) 

 

# now compute error of forward and backward Euler at each step 

errorexp = np.abs(rexp-rexact) 

errorimp = np.abs(rimp-rexact) 

plot2 = plt.figure(2) 

plt.semilogy(taxis,errorexp,'r') 

plt.semilogy(taxis,errorimp,'b') 

plt.xlim([0.05,0.5]) 

plt.xlabel('Time') 

plt.ylabel('Error') 

plt.legend(['Explicit Euler','Implicit Euler']) 

plt.savefig('carbon_euler2.jpg') 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3: Approximations to the exact solution (black) of the radioactive decay equation 
computed with explicit Euler (red) and implicit Euler (blue) for λ=2 and N=10 time steps, 
obtained by running carbon_euler.py. 
 
Both methods seem to do a reasonably good job in approximating the real solution. This 
changes drastically if we increase the decay rate λ. Figure 1.4 shows the same experiment but 
now for a value of λ=50 (note the different scaling of the y-axis). Running carbon_euler.py 
shows that Backward Euler still seems to provide a reasonable approximation, even though it 
is very difficult to tell given the scaling of the figure. 
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Figure 1.4: Approximations to the exact solution (black) of the radioactive decay equation 
computed with explicit Euler (red) and implicit Euler (blue) for λ=50 and N=10 time steps. 
 
Forward Euler, however, clearly gives a very wrong result: instead of decaying, the number of 
C14 atoms increases over time. It also oscillates between increasingly large positive and 
negative values. The provided numerical solution is clearly completely useless. 
 

Euler methods for the mass-spring system 
If we apply forward Euler to (1.17) with m=1, b=0 and no external force we get 
 

(𝑥
𝑛+1

𝑣𝑛+1
) = (

𝑥𝑛

𝑣𝑛
) + ∆𝑡 𝒇 ((

𝑥𝑛

𝑣𝑛
) , 𝑡𝑛) = (

𝑥𝑛

𝑣𝑛
) + ∆t (

𝑣𝑛

−𝑘𝑥𝑛 − 𝑘𝛽(𝑥𝑛)3
)       (1.43) 

 
or, when writing the components individually, 
 

𝑥𝑛+1 = 𝑥𝑛 + ∆𝑡 𝑣𝑛       (1.44a) 
𝑣𝑛+1 = 𝑣𝑛 − ∆𝑡 (𝑘𝑥𝑛 + 𝑘𝛽(𝑥𝑛)3)       (1.44b) 

 
Given values xn, vn from the previous time step, this is straightforward to compute. 
 
Deriving the backward Euler will be a bit more complicated. First, we can write out the implicit 
Euler equation (1.40) for the nonlinear mass-spring system 
 

(𝑥
𝑛+1

𝑣𝑛+1
) = (

𝑥𝑛

𝑣𝑛
) + ∆t (

𝑣𝑛+1

−𝑘𝑥𝑛+1 − 𝑘𝛽(𝑥𝑛+1)3
)       (1.45) 

 
This is a system of two equations for the two unknowns xn+1 and vn+1 and because of the (xn+1)3 
term, this system of equations is nonlinear. For now, we use Python's fsolve function to do it 
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for us. Because fsolve can only solve problems of the form F(u)=0, we have to rewrite our 
problem as 
 

𝐅(𝒖𝒏+𝟏) = 𝒖𝒏+𝟏 − ∆t 𝐟(𝒖𝒏+𝟏, 𝑡𝑛+1) − 𝒖𝒏 = (
𝑥𝑛+1 − ∆𝑡 𝑣𝑛+1 − 𝑥𝑛

𝑣𝑛+1 + ∆𝑡 (𝑘𝑥𝑛+1 + 𝑘𝛽(𝑥𝑛+1)3) − 𝑣𝑛
) = 0   

(1.46) 
 
with u=(xn+1,vn+1) (be careful, f and F are different functions, albeit closely related). Figure 1.5 
shows the solution for both methods by running the following program: springmass_euler.py.  
 

""" 

springmass_euler.py 

Solves the equation for the nonlinear spring-mass system with forward and 

backward Euler methods 

""" 

import numpy as np 

from scipy.integrate import odeint 

from scipy.optimize import fsolve 

 

# define the rhs function, fnonlinear 

def f_nonlinear(u,t,k,m,beta): 

    return [u[1],-(k/m)*(u[0] + beta*(u[0]**3))] 

 

# define the function which needs to be solved at each implicit time step 

def F(u,t,dt,i,u_init): 

    return u - dt*np.array(f_nonlinear(u,(i+1)*dt,k,m,beta)) - u_init 

 

T = 10.0    # final time until which we compute 

N = 200     # number of time steps 

taxis = np.linspace(0,T,N+1) 

dt = T/N 

k = 5.0 

beta = 0.1 

m = 1.0 

 

# compute frequency alpha for linear (Hookean) solution 

alpha = np.sqrt(k/m) 

 

# initial values for position and velocity 

x0 = 1.0 

v0 = 0.0 

u0 = [x0,v0] 

 

# allocate vectors to store solution; note that for the pendulum the vector u 

# has two components 

u_exp = np.zeros([N+1,2]) 

u_exp[0,:] = u0 

 

# define right hand side function; assume u = [ x, v ] so that u[0]=x, 

# u[1]=v. % Note that we allow for an argument t that we do not really need, so that 

# we can reuse f later for the odeint function. 

 

# simple Forward Euler first 

for i in range(N): 

    dudt = np.array(f_nonlinear(u_exp[i,:],(i+1)*dt,k,m,beta)) 

    u_exp[i+1,:] = u_exp[i,:] + dt*dudt 

 

# solve with odeint 

u_nonlinear = odeint(f_nonlinear,u0,taxis,args=(k,m,beta,)) 

 

# now Backward Euler 

u_imp = np.zeros([N+1,2]) 

u_imp[0,:] = u0 

for i in range(N): 

    u_init = u_imp[i,:] 

    # val = fsolve(F,u_init,args=((i+1)*dt,dt,i,u_init)) 

    u_imp[i+1,:] = fsolve(F,u_init,args=((i+1)*dt,dt,i,u_init)) 

     

# plot out results 
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import matplotlib.pyplot as plt 

plt.plot(taxis,u_exp[:,0],'r') 

plt.plot(taxis,u_imp[:,0],'b') 

plt.plot(taxis,u_nonlinear[:,0],'k-') 

plt.xlim([0,10]) 

plt.ylim([-2.5,2.5]) 

plt.xlabel('Time') 

plt.ylabel('x') 

plt.legend(['Explicit','Implicit','odeint']) 

plt.savefig('springmass_euler.jpg') 

 

 
Figure 1.5: Solution of nonlinear pendulum equation with forward (red) and backward (blue) 
Euler and odeint (black) for reference, obtained using springmass_euler.py. 
 
Both are not very satisfactory: implicit Euler causes the amplitude of oscillations to gradually 
decrease over time until eventually not much oscillation happens at all. In contrast to what 
should happen, the system has essentially come to rest. Forward Euler does the opposite: the 
amplitude of the oscillations steadily increases, corresponding to a system that swings faster 
and faster. Since the example does not include any external forces, this essentially generates 
kinetic energy out of nothing and is thus a clearly unphysical solution. 
 

Euler methods for linear spring-mass system. 
Let us see how both Euler methods behave for the slightly simpler linear system following 
Hooke's law where β=0. For forward Euler, we can use almost the same code as for the 
nonlinear pendulum, we only need to slightly change the definition of the function f. For 
implicit Euler, we can theoretically do the same and rely again on the fsolve function, but that 
turns out to be very inefficient. Instead, notice that for β=0 we can write f as 
 

𝒇 (
𝑥
𝑣
) = (

0 1
−𝑘 −𝑏

) (
𝑥
𝑣
) = (

𝑣
−𝑘𝑥 − 𝑏𝑣

)       (1.47) 

 
That means we can write f as a matrix-vector multiplication. We denote the matrix as  
 

𝑨 = (
0 1
−k −b

)       (1.48) 

 
With that, the equation (1.40) we need to solve for backward Euler becomes 
 

𝒖𝒏+𝟏 − ∆t 𝐀 𝒖𝒏+𝟏 = 𝒖𝒏       (1.49) 
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or 
 

(I − ∆t 𝐀)𝒖𝒏+𝟏 = 𝒖𝒏       (1.50) 
 

with I being the identity matrix. We can obtain un+1 by solving 
 

𝒖𝒏+𝟏 = (I − ∆t 𝐀)
−1𝒖𝒏       (1.51) 

 
For a general matrix M, using the numpy.linalg function in Python will return the solution of 
the linear system of equations 
 

𝑴𝒙 = 𝒃       (1.52) 
 
Figure 1.6 shows the resulting approximations obtained by running the following program, 
springmass_linear_euler.py: 
 
""" 

springmass_linear_euler.py 

Solves the equation for the linear spring-mass system with forward and 

backward Euler methods 

""" 

import numpy as np 

from scipy.integrate import odeint 

 

# define the rhs function for linear spring mass case 

def f(u,t,A): 

    return np.matmul(A,u) 

 

T = 10.0    # final time until which we compute 

N = 200     # number of time steps 

taxis = np.linspace(0,T,N+1) 

dt = T/N 

k = 5.0 

b = 0.0 

beta = 0.1 

m = 1.0 

 

# define the matrix A 

A = np.array([[0, 1], [-k, -b]]) 

 

# initial values for position and velocity 

x0 = 1.0 

v0 = 0.0 

u0 = [x0,v0] 

 

# allocate vectors to store solution; note that for the pendulum the vector u 

# has two components 

u_exp = np.zeros([N+1,2]) 

u_exp[0,:] = u0 

 

# define right hand side function; assume u = [ x, v ] so that u[0]=x, 

# u[1]=v. % Note that we allow for an argument t that we do not really need, so that 

# we can reuse f later for the odeint function. 

 

# simple Forward Euler first 

for i in range(N): 

    u_exp[i+1,:] = u_exp[i,:] + dt*f(u_exp[i,:],(i+1)*dt,A) 

 

# now Backward Euler 

u_imp = np.zeros([N+1,2]) 

u_imp[0,:] = u0 

 

M = np.identity(2) - dt*A 

for i in range(N): 

    u_imp[i+1,:] = np.linalg.solve(M,u_imp[i,:]) 
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# solve with odeint 

u_odeint = odeint(f,u0,taxis,args=(A,)) 

 

# plot out results 

import matplotlib.pyplot as plt 

plt.plot(taxis,u_exp[:,0],'r') 

plt.plot(taxis,u_imp[:,0],'b') 

plt.plot(taxis,u_odeint[:,0],'k-') 

plt.xlim([0,10]) 

plt.ylim([-2.5,2.5]) 

plt.xlabel('Time') 

plt.ylabel('x') 

plt.legend(['Explicit','Implicit','odeint']) 

plt.savefig('springmass_linear_euler.jpg') 

 
Figure 1.6: Solution of the linearised spring-mass system with explicit (red) and implicit (blue) 
Euler and the exact solution (black) for comparison, obtained using 
springmass_linear_euler.py 
 
Figure 1.6 shows the resulting approximations. The same issues are present as for the 
nonlinear pendulum: explicit Euler spuriously increases amplitudes while backward Euler 
damps them. 
 

1.2 Stability 
When applied to the Carbon dating equation (1.1), forward Euler becomes 
 

𝐶14
𝑛+1 = 𝐶14

𝑛 − ∆𝑡𝜆 𝐶14
𝑛 = (1 − ∆𝑡𝜆) 𝐶14

𝑛         (1.53) 
 
If we apply this recursively, for some given starting value C0 we get 
 

𝐶14
𝑛+1 = (1 − ∆𝑡𝜆)𝑛 𝐶0         (1.54) 

 
We can see that if 
 

|1 − ∆𝑡𝜆| > 1       (1.55) 
 
the number of Carbon atoms 𝐶14

𝑛   in the numerical solution does not decay (as the exact 
solution (1.6) suggests it should) but explodes, that is 𝐶14

𝑛 → ∞ as 𝑛 → ∞ -- this is clearly very 
bad. This is an example of a numerical instability, that is a case where the real problem is 
stable but the numerical solution is not. However, we can see that if the time step Δt is small 
enough such that 
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|1 − ∆𝑡𝜆| ≤ 1         (1.56) 
 
we get, 
 

𝐶14
𝑛 → 0 as 𝑛 → ∞       (1.57) 

 
correctly mirroring the exact and physical solution. That means we need to choose the time 
step Δt such that it satisfies the condition 
 

∆𝑡 ≤  
2

|𝜆|
       (1.58) 

 
Therefore, explicit Euler is said to be conditionally stable, meaning that it is stable but only if 
the time step is small enough. In contrast, for backward Euler, we have 
 

𝐶14
𝑛+1 = 𝐶14

𝑛 − ∆𝑡𝜆 𝐶14
𝑛+1 ⇒ 𝐶14

𝑛+1 = 
1

1+∆𝑡𝜆
𝐶14
𝑛 = (

1

1+∆𝑡𝜆
)
𝑛

𝐶0          (1.59) 

 
Since both Δt and λ are positive, we have 1 + Δt λ > 1.0  and thus 
 

0 ≤ (
1

1+∆𝑡𝜆
) < 1       (1.60) 

 
Therefore, independent of what value we use for Δt, backward Euler always guarantees that 
 

𝐶14
𝑛 → 0 as 𝑛 → ∞       (1.61) 

 
 
always mirroring the correct asymptotic behaviour. Implicit Euler is said to be unconditionally stable. 
Note, however, that the solution provided will still be terribly inaccurate for very large Δt. Stability only 
guarantees that the solution does not blow up, it does not say anything about its accuracy. 
 

Self Study 
Use the example codes carbon_euler.py (given above) and carbon_euler_accuracy.py from the 
‘Fig1_8’ directory which implements forward and backward Euler for the radioactive decay equation. 
carbon_euler_accuracy.py is given below. 
 
""" 

carbon_euler_accuracy.py 

Solves the decay equation with forward and backward Euler for a range of 

time steps to analyse how the error decreases as we make dt smaller 

""" 

import numpy as np 

     

# exact solution 

def u_exact(t,r0,lam): 

    return r0*np.exp(-lam*t) 

 

# forward euler function 

def exp_euler(u0,Tend,nsteps,lam): 

    dt = Tend/nsteps 

    u = np.zeros(nsteps+1) 

    u[0] = u0 

    for i in range(nsteps): 

        u[i+1] = u[i] - dt*lam*u[i]   

    return u 
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# backward euler function 

def imp_euler(u0,Tend,nsteps,lam):     

    dt = Tend/nsteps 

    u = np.zeros(nsteps+1) 

    u[0] = u0 

    for i in range(nsteps): 

        u[i+1] = u[i]/(1 + dt*lam)   

    return u 

         

# set up problem parameters 

T = 1.0   # time up to which we compute 

lam = 1.0   # decay constant 

r0 = 1.0   # set ratio at t=0 

N = [1000,750,500,250,100,75,50,10] 

 

# allocate vectors to store for every run 

err_exp = np.zeros(len(N)) 

err_imp = np.zeros(len(N)) 

dts = np.zeros(len(N)) 

 

# exact solution 

# taxis = np.linspace(0,T,N[0]) 

# out = u_exact(taxis,r0,lam) 

 

for n in range(len(N)): 

    taxis = np.linspace(0,T,N[n]+1) 

    u_exp = exp_euler(r0,T,N[n],lam) 

    u_imp = imp_euler(r0,T,N[n],lam) 

 

    # stor the time step dt for plotting 

    dts[n] = taxis[1] - taxis[0] 

     

    # now compute the errors 

    err_exp[n] = max(np.abs(u_exp-u_exact(taxis,r0,lam))) 

    err_imp[n] = max(np.abs(u_imp-u_exact(taxis,r0,lam))) 

 

# we fit a line log(err) = p*log(N) + C through the data points for 

# reasons that will become clear later 

# build 6th order fit to build data 

p_exp = np.polyfit(np.log(dts), np.log(err_exp),1) 

p_imp = np.polyfit(np.log(dts), np.log(err_imp),1) 

 

# plot out results 

import matplotlib.pyplot as plt 

plot1 = plt.figure(1) 

plt.loglog(dts,err_exp,'ro') 

plt.loglog(dts,np.exp(np.polyval(p_exp, np.log(dts))),'r') 

plt.xlim([dts[0],dts[len(N)-1]]) 

figtext='Slope p='+str(round(p_exp[0],2)) 

plt.text(1e-2,1e-3,figtext) 

plt.xlabel(r'$\Delta t$') 

plt.ylabel('Error') 

plt.legend(['Explicit Eulwer','Linear Fit']) 

plt.savefig('carbon_euler_accuracy1.jpg') 

 

plot1 = plt.figure(2) 

plt.loglog(dts,err_imp,'bo') 

plt.loglog(dts,np.exp(np.polyval(p_imp, np.log(dts))),'b') 

plt.xlim([dts[0],dts[len(N)-1]]) 

figtext='Slope p='+str(round(p_imp[0],2)) 

plt.text(1e-2,1e-3,figtext) 

plt.xlabel(r'$\Delta t$') 

plt.ylabel('Error') 

plt.legend(['Implicit Eulwer','Linear Fit']) 

plt.savefig('carbon_euler_accuracy2.jpg') 

 

Confirm that the solution of backward Euler always goes to zero, independent of the time step. 
Confirm also that the value Δt = 2/|λ| is the threshold at which forward Euler becomes unstable. What 
happens directly at the threshold? 
 

Complex coefficients 
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Even though the interpretation as an equation modelling radioactive decay is no longer valid in that 
case, it is instructive to look at the equation 
 

𝑦̇(𝑡) = 𝑖𝑎𝑦(𝑡),   𝑦(0) = 𝑦0       (1.62) 
 
This looks like the decay equation (1.1) but with y(t) instead of C14 and a complex decay rate ia instead 
of -λ. It is easy to verify that the solution to this initial value problem is 
 

𝑦(𝑡) = 𝑦0𝑒
𝑖𝑎𝑡       (1.63) 

 
If we apply forward Euler to (1.62), we get 
 

𝑦𝑛+1 = 𝑦𝑛 + ∆𝑡𝑖𝑎𝑦𝑛 = (1 + ∆𝑡𝑖𝑎)𝑦𝑛       (1.64) 
 
From that it follows that 
 

|𝑦𝑛+1| = |1 + ∆𝑡𝑖𝑎||𝑦𝑛| = √12 + (∆𝑡𝑎)2|𝑦𝑛| = √1 + ∆𝑡2𝑎2|𝑦𝑛| = (√1 + ∆𝑡2𝑎2)
𝑛
|𝑦0|       (1.65) 

 
Because 1 + Δt2a2 > 1, we have  
 

(√1 + ∆𝑡2𝑎2 )
𝑛
 →∞ as n → ∞        (1.66) 

 
independent of the time step Δt. This means that forward Euler applied to (1.62) is unconditionally 
unstable because no matter what time step Δt > 0 we choose, we get a series of discrete 
approximations yn with absolute values going toward infinity, that is 
 

|𝑦𝑛|  →∞ as n → ∞        (1.67) 
 
This very much resembles what we diagnosed for the energy when using forward Euler for the spring-
mass system and we will see that there is a very close relation. Using a similar argument with slightly 
more complex arithmetic, one can show that the situation is reversed for backward Euler applied to 
(1.62). Here, we get 
 

|𝑦𝑛|  → 0 as n →∞     (1.68) 
 
for any time step Δt > 0. 
 

1.2.1. Stability of forward and backward Euler for the mass-spring system 
We will first analyse the stability of the Euler methods for the linear, unforced, undamped mass-spring 
systems by analysing how both methods deal with energy. First, note that for b=m=Fext=0, equation 
(1.17) simplifies to 
 

𝑥̇(𝑡) = 𝑣(𝑡); 𝑣̇(𝑡) = −
𝑘

𝑚
𝑥(𝑡)         (1.69a, 1.69b) 

 
The kinetic energy of the system is given by 
 

𝐸𝑘𝑖𝑛(𝑡) =  
1

2
𝑚𝑣2(𝑡)       (1.70) 
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and its potential energy by 
 

𝐸𝑝𝑜𝑡(𝑡) =  
1

2
𝑘𝑥2(𝑡)       (1.71) 

 
Its total energy therefore is 
 

𝐸(𝑡) =  𝐸𝑘𝑖𝑛(𝑡) + 𝐸𝑝𝑜𝑡(𝑡) =  
1

2
𝑚𝑣2(𝑡) +

1

2
𝑘𝑥2(𝑡)       (1.72) 

 
Note that E(t) is conserved in the sense that 
 

𝐸̇(𝑡) = 𝑚𝑣(𝑡)𝑣̇(𝑡) + 𝑘𝑥(𝑡)𝑥̇(𝑡) = 𝑚𝑣(𝑡)(− (
𝑘

𝑚
)𝑥(𝑡) + 𝑘𝑥(𝑡)𝑣(𝑡) = 0       (1.73) 

 
That is, if x0, v0 are the initial position and velocity, we have 
 

𝐸(𝑡) = 𝐸(0) =
1

2
𝑚𝑣0

2 +
1

2
𝑘𝑥0

2       (1.74) 

 
at any time t. The advantage of energy is that we can quantify the energy error of a numerical solution 
without having to have access to the exact solution. Let xn, vn be the approximations to position and 
velocity provided by some numerical scheme at time tn, as before. Then, we can define the discrete 
energy as 
 

𝐸𝑛 =
1

2
𝑘(𝑥𝑛)2 +

1

2
𝑚(𝑣𝑛)2       (1.75) 

 
Because x0 = x0 and v0 = v0 (since a numerical scheme will always start from the provided initial values), 
we have E0=E(0). We can then compute the energy error 
 

𝑒𝑒𝑛𝑒𝑟𝑔𝑦
𝑛 =

|𝐸𝑛−𝐸0|

𝐸0
       (1.76) 

 
If a numerical scheme were to conserve energy exactly, we would get en

energy=0 for all 0 ≤ 𝑛 ≤ 𝑁. 
Figure 1.7 shows the energy and energy error for forward Euler, backward Euler and Python's odeint, 
obtained by running oscillator.py, which is given below. 
 
""" 

oscillator.py 

Solves the oscillator problem using forward and backward Euler methods 

""" 

import numpy as np 

from scipy.integrate import odeint 

     

# define the rhs function for linear oscillator 

def f(u,t,b,k,m,F,Omega): 

    return [u[1],-(1/m)*(k*u[0] + b*u[1]) + F*np.cos(Omega*t)] 

 

# forward euler function 

def forward_euler(f,x0,Tend,nsteps,b,k,m,F,Omega): 

    dt = Tend/nsteps 

    y = np.zeros([nsteps+1,2]) 

    y[0,:] = x0 

    for i in range(nsteps): 

        t = i*dt 

        y[i+1,:] = y[i,:] + dt*np.array(f(y[i,:],t,b,k,m,F,Omega))   

     

    return y 

 

# backward euler function 
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def backward_euler(f,x0,Tend,nsteps,b,k,m,F,Omega): 

     

    # define the matrix for the oscillator problem in vector form 

    # define the matrix A 

    dt = Tend/nsteps 

    A = np.array([[0, 1], [-k/m, -b/m]]) 

    M = np.identity(2) - dt*A 

    y = np.zeros([nsteps+1,2]) 

    y[0,:] = x0 

    for i in range(nsteps): 

        y[i+1,:] = np.linalg.solve(M,y[i,:]) 

     

    return y 

         

# physical properties of the oscillator 

k = 1.0   # spring constant 

b = 0.0   # damping 

m = 1.0   # mass 

F = 0.0   # amplitude of cosine forcing 

Omega = 0.5   # frequency of cosine forcing 

 

# initial values for position and velocity 

x0 = 1.0 

v0 = 0.0 

u0 = [x0,v0] 

 

# final time and number of time steps 

Tend = 50.0    # final time until which we compute 

nsteps = 1000 

 

taxis = np.linspace(0,Tend,nsteps+1) 

dt = Tend/nsteps 

 

# initial values for position and velocity 

x0 = 1.0 

v0 = 0.0 

u0 = [x0,v0] 

 

# solve with odeint 

y_odeint = odeint(f,u0,taxis,args=(b,k,m,F,Omega,)) 

 

# solve with backward euler 

y_ie = backward_euler(f,u0,Tend,nsteps,b,k,m,F,Omega) 

 

# solve with forward euler 

y_ee = forward_euler(f,u0,Tend,nsteps,b,k,m,F,Omega) 

 

# plot out positions for all solutions 

import matplotlib.pyplot as plt 

plot1 = plt.figure(1) 

plt.plot(taxis,y_ee[:,0],'r') 

plt.plot(taxis,y_ie[:,0],'b') 

plt.plot(taxis,y_odeint[:,0],'k-') 

plt.xlim([0,50]) 

plt.ylim([-4,4]) 

plt.xlabel('Time') 

plt.ylabel('x') 

plt.legend(['Explicit','Implicit','odeint']) 

plt.savefig('oscillator1.jpg') 

 

# compute the total, potential and kinetic energy over time 

E_pot = 0.5*y_odeint[:,0]**2 

E_kin = 0.5*y_odeint[:,1]**2 

E_tot = E_pot + E_kin 

plot2 = plt.figure(2) 

plt.plot(taxis,E_pot,'r') 

plt.plot(taxis,E_kin,'b') 

plt.plot(taxis,E_tot,'k-') 

plt.xlim([0,50]) 

plt.ylim([0,0.6]) 

plt.legend(['Potential','Kinetic','Energy']) 

 

# plot out the energy over time 

E_ie = 0.5*k*y_ie[:,0]**2 + 0.5*m*y_ie[:,1]**2 

E_ee = 0.5*k*y_ee[:,0]**2 + 0.5*m*y_ee[:,1]**2 
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plot3 = plt.figure(3) 

plt.plot(taxis,E_pot+E_kin,'k-') 

plt.plot(taxis,E_ie,'b') 

plt.plot(taxis,E_ee,'r-') 

plt.xlim([0,50]) 

plt.ylim([0,7]) 

plt.legend(['odeint','Implicit Euler','Forward Euler']) 

 

 

 
Figure 1.7: Energy for the linear mass-spring system for forward Euler, backward Euler and Python's 
odeint solver, obtained using oscillator.py. 
 
In line with the results we saw previously, forward Euler does indeed artificially generate energy out of 
nothing. Its energy error grows rapidly and without bound. In contrast, backward Euler continuously 
loses energy. Note that its energy error remains bounded because eventually the numerical solution 
will approach the resting state with zero energy, at which point the energy error 
 

𝑒𝑒𝑛𝑒𝑟𝑔𝑦
𝑛 =

|0−𝐸0|

𝐸0
= 1       (1.77) 

 
We can back up this observation with mathematical analysis. Forward Euler applied to system (1.69) 
reads, in components, 
 

𝑥𝑛+1 = 𝑥𝑛 + ∆𝑡 𝑣𝑛 

𝑣𝑛+1 = 𝑣𝑛 −
∆𝑡𝑘

𝑚
 𝑥𝑛 

 
Using definition (1.75) of the discrete energy, we can compute 
 
2𝐸𝑛+1 = 𝑚(𝑣𝑛+1)2 + 𝑘(𝑥𝑛+1)2 

             = 𝑚(𝑣𝑛 − ∆𝑡(
𝑘

𝑚
)𝑥𝑛)

2
+ 𝑘(𝑥𝑛 + ∆𝑡𝑣𝑛)2 

             = 𝑚(𝑣𝑛)2 − 2𝑘∆𝑡𝑣𝑛𝑥𝑛 +
(∆𝑡𝑘𝑥𝑛)2

𝑚
+ 𝑘(𝑥𝑛)2 + 2𝑘∆𝑡𝑥𝑛𝑣𝑛 + 𝑘(∆𝑡𝑣𝑛)2 

             = 2𝐸𝑛 + (∆𝑡)2 (
(𝑘𝑥𝑛)2

𝑚
+ 𝑘(𝑣𝑛)2) > 2𝐸𝑛 



Page 23 
Copyright © 2024 University of Leeds UK. All rights reserved. 

 
 

 
That is, instead of conserving energy from time step to time step, forward Euler adds (because Cn>0) a 
small amount of energy in every time step. While we recover energy conservation in the limit Δt -> 0, 
for any finite time step Δt > 0, energy will always increase over time. When applied to the mass-spring 
system, forward Euler is unconditionally unstable. 
 
To analyse backward Euler, we need to use the matrix representation  
 

[(
1 0
0 1

) − ∆𝑡 (
0 1
−1 0

)] (𝑥
𝑛+1

𝑣𝑛+1
) = (

𝑥𝑛

𝑣𝑛
)       (1.78) 

 
where we set k = m = 1 for simplicity. The matrix in the system has the inverse 
 

(
1 −∆𝑡
∆𝑡 1

)
−1

=
1

1+(∆𝑡)2
(
1 ∆𝑡
−∆𝑡 1

)       (1.79) 

 
so that 
 

(𝑥
𝑛+1

𝑣𝑛+1
) =

1

1+(∆𝑡)2
(
1 ∆𝑡
−∆𝑡 1

) (
𝑥𝑛

𝑣𝑛
)       (1.80) 

 
Written in components, this becomes 
 

𝑥𝑛+1 =
1

1+(∆𝑡)2
(𝑥𝑛 + ∆𝑡𝑣𝑛)       (1.81) 

𝑣𝑛+1 =
1

1+(∆𝑡)2
(𝑣𝑛 − ∆𝑡𝑥𝑛)       (1.82) 

 
We can now compute the discrete energy again. 
 
2𝐸𝑛+1 = (𝑥𝑛+1)2 + (𝑣𝑛+1)2 

             =
1

(1+(∆𝑡)2)2
[(𝑥𝑛 + ∆𝑡𝑣𝑛)2 + (𝑣𝑛 − ∆𝑡𝑥𝑛)2] 

             =
1

(1+(∆𝑡)2)2
[(𝑥𝑛)2 + 2∆𝑡 𝑥𝑛𝑣𝑛 + (∆𝑡𝑣𝑛)2 + (𝑣𝑛)2 − 2∆𝑡 𝑥𝑛𝑣𝑛 + (∆𝑡𝑥𝑛)2 ] 

             =
1

(1+(∆𝑡)2)2
[2𝐸𝑛 + (∆𝑡)2𝐸𝑛] 

             =
2

1+(∆𝑡)2
𝐸𝑛 

 
Because in every numerical simulation we have Δt > 0, we have 1/(1+(Δt)2) < 1 so that for every step 
 

𝐸𝑛+1 < 𝐸𝑛       (1.83) 
 
As seen in the numerical experiment, backward Euler continuously loses energy. While we get En+1=En 
in the limit Δt->0, in every real simulation with a finite time step, backward Euler does not conserve 
energy. Therefore, as for the decay equation, backward Euler is unconditionally stable when applied to 
the mass-spring system. As seen, however, it is in a sense too stable: the loss of energy means that it 
will only provide useful numerical approximations over a relatively short time window. 
 

1.2.2 Stability and eigenvalues 
We can link the instability of forward Euler for the mass-spring system to the instability for the 
imaginary test problem. As we saw above, we can write the linear mass-spring system as 
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𝒖̇(t) = A𝐮(t)        (1.84) 
 
with the matrix A defined in (1.48). By finding its eigenvalues and eigenvectors, we can compute the 
eigendecomposition 
 

𝐴 = 𝑄𝛴𝑄−1       (1.85) 
 
with 
 

𝑄 = (𝑖√𝑚/𝑘 −𝑖√𝑚/𝑘

1 1
)       (1.86) 

 
and 
 

𝛴 = (
−𝑖√𝑘/𝑚 0

0 𝑖√𝑘/𝑚
)       (1.87) 

 
Using this, the linear mass-spring system becomes 
 

𝑄−1𝒖̇(t) = Σ𝑄−1𝐮(t)       (1.88) 
 
after multiplication with Q-1. Define the transformed solution in eigencoordinates as 
 

𝐳(t) = 𝑄−1𝐯(t)       (1.89) 
 
It satisfies the differential equation 
 

𝐳̇(t) = Σ𝐳(t)       (1.90) 
 

or, written in components z(t)=(z1(t),z2(t)), 
 

𝑧1̇ = −𝑖√
𝑘

𝑚
𝑧1(𝑡)       (1.91a) 

𝑧2̇ = 𝑖√
𝑘

𝑚
𝑧2(𝑡)       (1.91b) 

 
We can make two observations: first, in eigencoordinates the equations for both components are 
decoupled. z1(t) evolves independently of z2(t) and vice versa. For both components, the resulting 
equations have the form of the complex scalar test equation (1.62) for which we know forward Euler to 
be unstable. Therefore, we can explain the instability of forward Euler for the linear mass-spring 
system by the fact that the matrix A has imaginary eigenvalues which gives rise to equations (1.91) in 
eigencoordinates for which we know forward Euler to be unstable. 
 

1.3 Accuracy 
Stability helps us to see if a method fails catastrophically, like forward Euler for the oscillator. 
However, even a stable method does not necessarily guarantee accurate results. Therefore, we will 
now investigate how the global error, e, of a method decreases as we make the time step smaller. 
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Of course, any reasonable numerical method should retrieve the correct solution in the limit Δt->0. 
Because very small time steps will translate into high computational cost, using an arbitrarily small step 
is not an efficient strategy. 

 
1.3.1 Error and order of accuracy 
The order of accuracy p of a time stepping method describes how the error is reduced as the time step 
Δt is made smaller. Here, error denotes how far from the exact solution the approximate solution 
provided by the method is. For example, for the radioactive decay problem, the exact solution was 
 

𝐶(𝑡) = 𝐶0𝑒
𝜆𝑡       (1.92) 

 
If C1 ≈ C(Δt), C2 ≈ C(2Δt) etc. be approximations of the exact solution produced e.g. by a forward Euler 
method. The error at the end of the simulation would then be 
   

𝑒𝑔𝑙𝑜𝑏𝑎𝑙(∆𝑡) = max
𝑛=1,…,𝑁

|𝐶14
𝑛 − 𝐶14(𝑡𝑛)|       (1.93) 

 
compare for (1.35). Note that we make the dependence of eglobal on Δt explicit now, because we will 
study systemically how it changes with time step length. Figure 1.8 shows the error from explicit Euler 
(left) and implicit Euler (right) when applied to the decay equation with N time steps, that is a time 
step Δt=1/N. Note that both the x- and y-axis are scaled logarithmically. Figure 1.8 is generated by 
running carbon_euler_accuracy.py, given below. 

 
Figure 1.8: Error of forward Euler (left) and backward Euler (right) depending on the number N of time 
steps, obtained using carbon_euler_accuracy.py. 
 
""" 

carbon_euler_accuracy.py 

Solves the decay equation with forward and backward Euler for a range of 

time steps to analyse how the error decreases as we make dt smaller 

""" 

import numpy as np 

     

# exact solution 

def u_exact(t,r0,lam): 

    return r0*np.exp(-lam*t) 

 

# forward euler function 

def exp_euler(u0,Tend,nsteps,lam): 

    dt = Tend/nsteps 

    u = np.zeros(nsteps+1) 

    u[0] = u0 

    for i in range(nsteps): 

        u[i+1] = u[i] - dt*lam*u[i]   

    return u 
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# backward euler function 

def imp_euler(u0,Tend,nsteps,lam):     

    dt = Tend/nsteps 

    u = np.zeros(nsteps+1) 

    u[0] = u0 

    for i in range(nsteps): 

        u[i+1] = u[i]/(1 + dt*lam)   

    return u 

         

# set up problem parameters 

T = 1.0   # time up to which we compute 

lam = 1.0   # decay constant 

r0 = 1.0   # set ratio at t=0 

N = [1000,750,500,250,100,75,50,10] 

 

# allocate vectors to store for every run 

err_exp = np.zeros(len(N)) 

err_imp = np.zeros(len(N)) 

dts = np.zeros(len(N)) 

 

# exact solution 

# taxis = np.linspace(0,T,N[0]) 

# out = u_exact(taxis,r0,lam) 

 

for n in range(len(N)): 

    taxis = np.linspace(0,T,N[n]+1) 

    u_exp = exp_euler(r0,T,N[n],lam) 

    u_imp = imp_euler(r0,T,N[n],lam) 

 

    # stor the time step dt for plotting 

    dts[n] = taxis[1] - taxis[0] 

     

    # now compute the errors 

    err_exp[n] = max(np.abs(u_exp-u_exact(taxis,r0,lam))) 

    err_imp[n] = max(np.abs(u_imp-u_exact(taxis,r0,lam))) 

 

# we fit a line log(err) = p*log(N) + C through the data points for 

# reasons that will become clear later 

# build 6th order fit to build data 

p_exp = np.polyfit(np.log(dts), np.log(err_exp),1) 

p_imp = np.polyfit(np.log(dts), np.log(err_imp),1) 

 

# plot out results 

import matplotlib.pyplot as plt 

plot1 = plt.figure(1) 

plt.loglog(dts,err_exp,'ro') 

plt.loglog(dts,np.exp(np.polyval(p_exp, np.log(dts))),'r') 

plt.xlim([dts[0],dts[len(N)-1]]) 

figtext='Slope p='+str(round(p_exp[0],2)) 

plt.text(1e-2,1e-3,figtext) 

plt.xlabel(r'$\Delta t$') 

plt.ylabel('Error') 

plt.legend(['Explicit Eulwer','Linear Fit']) 

plt.savefig('carbon_euler_accuracy1.jpg') 

 

plot1 = plt.figure(2) 

plt.loglog(dts,err_imp,'bo') 

plt.loglog(dts,np.exp(np.polyval(p_imp, np.log(dts))),'b') 

plt.xlim([dts[0],dts[len(N)-1]]) 

figtext='Slope p='+str(round(p_imp[0],2)) 

plt.text(1e-2,1e-3,figtext) 

plt.xlabel(r'$\Delta t$') 

plt.ylabel('Error') 

plt.legend(['Implicit Eulwer','Linear Fit']) 

plt.savefig('carbon_euler_accuracy2.jpg') 

 
Self-study 
Use carbon_euler_accuracy.py and redo the plots without the logarithmic axes scaling. Why is this not 
a particularly useful way to visualise the error? 
 
For comparison, a straight line 
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𝑙𝑜𝑔𝑒 (𝑒𝑔𝑙𝑜𝑏𝑎𝑙(∆𝑡)) = 𝑝 𝑙𝑜𝑔𝑒(∆𝑡) + 𝑎       (1.94) 

 
is fitted through the data, using Python's numpy polyfit function. Clearly, the obtained data points line 
up excellently with the fit which has a slope of approximately p=1. Applying the exponential function 
on both sides yields 
 

𝑒𝑙𝑜𝑔𝑒(𝑒𝑔𝑙𝑜𝑏𝑎𝑙(∆𝑡)) = (𝑒𝑙𝑜𝑔𝑒(∆𝑡))
𝑝
𝑒𝑎       (1.95) 

 
or 
 

𝑒𝑔𝑙𝑜𝑏𝑎𝑙(∆𝑡) = 𝐶 (∆𝑡)
𝑝       (1.96) 

 
with C = ea>0. 
 

Remark 3. 
Using carbon_euler_accuracy.py to produce a plot like the ones in Figure 1.8 to verify that a method 
gives the expected order of accuracy is one good way to validate that a method has been correctly 
implemented. 
 
This motivates the following definition. 
 
Definition 1 
A numerical method is said to be of order p if its error is proportional to (Δt)p, that is 
 

𝑒𝑔𝑙𝑜𝑏𝑎𝑙(∆𝑡) ≤ 𝐶(∆𝑡)
𝑝       (1.97) 

 
for some positive number C>0 that does not depend on Δt. From our observation above, we can 
conclude that both Euler methods are first order accurate, that is they satisfy (1.97) with p=1. Note 
that for a method of order p, reducing the time step by half results in 
 

𝑒𝑔𝑙𝑜𝑏𝑎𝑙 (
∆𝑡

2
) ≈ 𝐶

(∆𝑡)𝑝

2𝑝
≈

1

2𝑝
𝑒𝑔𝑙𝑜𝑏𝑎𝑙(∆𝑡)       (1.98) 

 
Therefore, for a first order method with p=1, halving the time step will also reduce the error by half. 
For a second order method with p=2, halving Δt will reduce the error by a factor of 4. For p=3, it will 
reduce the error by a factor of 8 and so on. 
 
A simple method with order better than one is Heun's method. It relies on a forward Euler predictor 
step  
 

𝒖̃n+1 = 𝒖𝒏 + ∆t 𝒇(𝒖𝒏, tn)       (1.99) 
 
but then follows that up with a second step 
 

𝒖𝒏+𝟏 = 𝒖𝒏 +
∆t

2
(𝒇(𝒖𝒏, tn) + 𝒇( 𝒖̃

n+1, tn+1))      (1.100) 

 
In terms of computational cost, Heun's method is roughly twice as expensive as a forward Euler step, 
because it has to evaluate the right hand side function f twice whereas Euler has to evaluate it only 
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once. However, because the error decays much faster as Δt becomes small because of the higher 
order, Heun's method can be more efficient than forward Euler. 
 
Using carbon_euler_heun_workprecision.py, given below, Figure 1.9 shows the error achieved by 
forward Euler and Heun's method depending on the total number of evaluations of f required. 

 
Figure 1.9: Error versus number of evaluations of the right hand side function f for forward Euler and 
Heun’s method, obtained using carbon_euler_heun_workprecision.py. 
 
Note that the x-axis now shows total computational work measured in how often the method has to 
evaluate the right hand side function f. 
 
carbon_euler_heun_workprecision.py 
 
""" 

carbon_euler_heun_workprecision.py 

Solves the decay equation with forward and backward Euler for a range of 

time steps to analyse how the error decreases as we make dt smaller 

""" 

import numpy as np 

   

############################################################################ 

# Functions 

############################################################################  

# exact solution 

def u_exact(t,r0,lam): 

    return r0*np.exp(-lam*t) 

 

# forward euler function 

def exp_euler(u0,Tend,nsteps,lam): 

    dt = Tend/nsteps 

    u = np.zeros(nsteps+1) 

    u[0] = u0 

    for i in range(nsteps): 

        u[i+1] = u[i] - dt*lam*u[i]   

    return u 

 

# backward euler function 

def imp_euler(u0,Tend,nsteps,lam):     

    dt = Tend/nsteps 

    u = np.zeros(nsteps+1) 

    u[0] = u0 

    for i in range(nsteps): 

        u[i+1] = u[i]/(1 + dt*lam)   

    return u 
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# function definition of time derivative 

def f(u,lam): 

    return -lam*u 

 

# heun's method 

def heun(u0,Tend,nsteps,lam):     

    dt = Tend/nsteps 

    u = np.zeros(nsteps+1) 

    u[0] = u0 

    for i in range(nsteps): 

        utemp = u[i] + dt*f(u[i],lam) 

        u[i+1] = u[i] + 0.5*dt*(f(u[i],lam) + f(utemp,lam)) 

         

    return u 

 

############################################################################ 

     

# set up problem parameters 

T = 1.0   # time up to which we compute 

lam = 1.0   # decay constant 

r0 = 1.0   # set ratio at t=0 

N = [1000,750,500,250,100,75,50,10] 

 

# allocate vectors to store for every run 

err_exp = np.zeros(len(N)) 

err_heun = np.zeros(len(N)) 

 

# Instead of dt, we now store the workload, measured in the number of times 

# that a method has to evaluate the right hand side function 

workload_exp = np.zeros(len(N)) 

workload_heun = np.zeros(len(N)) 

 

for n in range(len(N)): 

    taxis = np.linspace(0,T,N[n]+1)   # add +1 to account for t=0 

    u_exp = exp_euler(r0,T,N[n],lam) 

    u_heun = heun(r0,T,N[n],lam) 

 

    # stor the time step dt for plotting 

    workload_exp[n] = N[n] 

    workload_heun[n] = 2*N[n] 

     

    # now compute the errors 

    err_exp[n] = max(np.abs(u_exp-u_exact(taxis,r0,lam))) 

    err_heun[n] = max(np.abs(u_heun-u_exact(taxis,r0,lam))) 

 

# Find slope of lines for Euler and Heun's method 

p_exp = np.polyfit(np.log(workload_exp), np.log(err_exp),1) 

p_heun = np.polyfit(np.log(workload_heun), np.log(err_heun),1) 

 

# plot out results 

import matplotlib.pyplot as plt 

plot1 = plt.figure(1) 

plt.loglog(workload_exp,err_exp,'ro-') 

plt.loglog(workload_heun,err_heun,'go-') 

txt_exp='Slope p='+str(round(p_exp[0],2)) 

plt.text(7e2,1e-3,txt_exp) 

txt_heun='Slope p='+str(round(p_heun[0],2)) 

plt.text(7e2,1e-6,txt_heun) 

plt.xlabel('Workload') 

plt.ylabel('Error') 

plt.legend(['Explicit Euler','Heun\'s method']) 

plt.savefig('carbon_euler_precision.jpg') 

 

However, because workload grows as time step Δt shrinks, the lines are now sloping in the opposite 
direction compared to Fig 1.8 and values for p are now negative. The first important observation is that 
Heun's method does indeed provide a line with a slope of p=2, in contrast to forward Euler with p=1. 
This confirms that it is indeed second order accurate. Furthermore, Heun's method is clearly more 
efficient than forward Euler. If, say, a precision of eglobal(Δt) < 10-3 were required, Heun's method can 
deliver this with 20 evaluations of f whereas forward Euler would need around 200, that is ten times 
more. This motivates the search for methods that have a higher order of accuracy. 
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1.4 Modelling Homogeneous Chemical Reactions in CO2 pipeline corrosion 

Dissolved CO2 in pipeline systems leads to corrosive attack of the pipeline due to formation of Carbonic 

Acid and associated reactions. 

NOTE: The reaction rate constants below are not all expressed in terms of the SI units, so when these 

equations are finally solved, these have been converted for concentrations written in terms of the SI 

units, mol/m3. In the code example, all reaction rate constants are taken from the paper: S. Nordsveen, 

S. Nesic, R. Nyborg, A. Stangeland. A mechanistic model for carbon dioxide corrosion of mild steel in the 

presence of protective iron carbonate films – part 1: theory and validation, Corrosion, vol. 59(5), 2003, 

443-456, table 2, p 447. 

The reactions are summarised by the following steps.  

Step 1: Dissolution of CO2 

The dissolution of CO2 in water is represented by the reaction: 

𝐶𝑂2(𝑔) ⇔  𝐶𝑂2 (𝑎𝑞)      (1.101) 

The partial pressure of CO2 enables the initial concentration of CO2 (aq) to be calculated via: 

𝐾𝑠𝑜𝑙 =
𝑐𝐶𝑂2

𝑃𝐶𝑂2
      (1.102) 

where 𝑐𝐶𝑂2  is the concentration of dissolved CO2 in moles/litre and pCO2 is the partial pressure of CO2 in bar. There 

are numerous possible expressions that can be used for Ksol but here the following expression is used for Ksol with 

units moles/(litre. bar): 

𝐾𝑠𝑜𝑙 =
14.5

1.00258
 10𝑒𝑥𝑝  where 𝑒𝑥𝑝 = −(2.27 + 0.00565𝑇𝑓 − 8.06 × 10

−6𝑇𝑓
2 + 0.075𝐼)       (1.103) 

where Tf is the temperature in degrees Fahrenheit and I is the ionic strength in moles/litre.  

The ionic strength, I, of the electric field in a solution, is equal to the sum of the molarities of each type of ion 

present multiplied by the square of the charges.  

𝐼 =
1

2
∑𝑐𝑖𝑧𝑖

2

𝑛

𝑖=1

 

where ci = molar concentration of ion i (mol/litre) and zi = charge number of ion i. 

Example: To calculate the ionic strength of 0.05M Na2SO4 and 0.02M KCl solution: 

𝐼 =
1

2

(

 
 

[𝑁𝑎2𝑆𝑂4]  × (#𝑁𝑎 𝑖𝑜𝑛𝑠) × (𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑁𝑎 𝑖𝑜𝑛)
2 + 

[𝑁𝑎2𝑆𝑂4]  × (#𝑆𝑂4 𝑖𝑜𝑛𝑠) × (𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑆𝑂4 𝑖𝑜𝑛)
2

+ [𝐾𝐶𝑙]  × (#𝐾 𝑖𝑜𝑛𝑠) × (𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝐾 𝑖𝑜𝑛)2 +

[𝐾𝐶𝑙]  × (#𝐶𝑙 𝑖𝑜𝑛𝑠) × (𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝐶𝑙 𝑖𝑜𝑛)2 )

 
 

 

𝐼 =
1

2
(

0.05 × 2 × 12 + 
0.05 × 1 × (−2)2

+ 0.02 × 1 × 12 +
0.02 × 1 × (−1)2

) = 0.17𝑀 

In the code example solved here I=0.1711 and Tf=68oF. 

Combining the above equations yields an estimate for the initial concentration of CO2, 𝑐𝐻2𝐶𝑂3 , in SI units: 
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𝑐𝐶𝑂2 = 1000 𝐾𝑠𝑜𝑙𝑝𝐶𝑂2      (1.104) 

 

Step 2: Carbonic Acid Hydration 

The carbonic acid hydration reaction is given by:  

𝐶𝑂2 + 𝐻2𝑂 ⇔ 𝐻2𝐶𝑂3        (1.105) 

The rate of production of carbonic acid, H2CO3, is given by the following differential equation: 

𝑅𝐻2𝐶𝑂3 =
𝑑

𝑑𝑡
(𝑐𝐻2𝐶𝑂3) =  𝐾𝑓,ℎ𝑦𝑐𝐶𝑂2𝑐𝐻2𝑂 − 𝐾𝑏,ℎ𝑦 𝑐𝐻2𝐶𝑂3        (1.106) 

In terms of the forward reaction rate Kf,hy and backward reaction rate, Kb,hy. In practice, carbonic acid never 

represents more than 1% of the total dissolved CO2 as Kb,hy >> Kf,hy. Here, we assume that  

𝐾ℎ𝑦 =
𝐾𝑓,ℎ𝑦

𝐾𝑏,ℎ𝑦
= 0.00258         (1.107) 

is independent of temperature. The forward reaction rate constant, 𝐾𝑓,ℎ𝑦, is given by 

𝐾𝑓,ℎ𝑦 =
14.5

1.00258
 10𝑒𝑥𝑝 where 𝑒𝑥𝑝 = (329.85 − 110.541𝑙𝑜𝑔10(𝑇𝐾) − (

17265.4

𝑇𝐾
))              (1.108) 

Combining the latter two equations yields the following estimate of the initial value of 𝑐𝐻2𝐶𝑂3  (in SI units) is given 

by: 

𝑐𝐻2𝐶𝑂3 =  1000 𝐾ℎ𝑦𝐾𝑠𝑜𝑙𝑝𝐶𝑂2          (1.109) 

In the code example solved here TK=293.15K. 

 

Step 3: Carbonic Acid Dissociation 

The carbonic acid dissociation reaction is given by: 

𝐻2𝐶𝑂3 ⇔ 𝐻+ +𝐻𝐶𝑂3
−          (1.110) 

In terms of the forward reaction rate Kf,ca, and the backward reaction rate Kb,ca the rate of production of H2CO3 is 

given by: 

𝑅𝐻2𝐶𝑂3 =
𝑑

𝑑𝑡
(𝑐𝐻2𝐶𝑂3) =  −(𝐾𝑓,𝑐𝑎  𝑐𝐻2𝐶𝑂3  − 𝐾𝑏,𝑐𝑎𝑐𝐻+𝑐𝐻𝐶𝑂3−)         (1.111) 

Here we use the expressions: 

Kf,ca= 10exp s-1, where exp=5.71+0.0526TC-2.94x10-4TC
2+7.91x10-7TC

3          (1.112) 

in terms of the temperature in degrees Celsius, Tc. The steady-state value is taken to be 

𝐾𝑐𝑎 =
𝐾𝑓,𝑐𝑎

𝐾𝑏,𝑐𝑎
= 387.6 × 10−𝑒𝑥𝑝  molar         (1.113) 

where exp=(6.41-1.594x10-3Tf+8.52x10-6Tf
2-3.07x10-5p-0.4772I0.5-0.118I) in terms of pressure p (in psi), ionic 

strength I in molar and Tf, the temperature in degrees Fahrenheit. 

In the code example solved here TC=20oC, p=14.9 psi, I=0.1711 and Tf=68oF. 

 

Step 4: Bicarbonate Ion Dissociation 
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This reaction is given by: 

𝐻𝐶𝑂3
−  ⇔  𝐻+ + 𝐶𝑂3

2−        (1.114) 

and leads to the differential equation 

𝑅𝐻𝐶𝑂3− =
𝑑

𝑑𝑡
(𝑐𝐻𝐶𝑂3−) =  −(𝐾𝑓,𝑏𝑖  𝑐𝐻𝐶𝑂3−  − 𝐾𝑏,𝑏𝑖𝑐𝐻+𝑐𝐶𝑂32−)        (1.115) 

in terms of the forward reaction rate Kf,bi, and backward reaction rate Kb,bi. Here, 

𝐾𝑏𝑖 =
𝐾𝑓,𝑏𝑖

𝐾𝑏,𝑏𝑖
= 10𝑒𝑥𝑝 molar        (1.116) 

where 

exp=-(10.61-4.97x10-3Tf+1.331x10-5Tf
2-2.624x10-5p-1.166I0.5+0.3466I).         (1.117) 

The forward reaction rate: Kf,bi=109 s-1 is assumed to be independent of temperature. 

In the code example solved here p=14.9 psi, I=0.1711 and Tf=68oF. 

 

Step 5: Water Dissociation  

The water dissociation reaction is given by: 

𝐻2𝑂 ⇔  𝐻+ + 𝑂𝐻−       (1.118) 

The rate of production of H2O is given by  

𝑅𝐻2𝑂 =
𝑑

𝑑𝑡
(𝑐𝐻2𝑂) =  −(𝐾𝑓,𝑤𝑎𝑐𝐻2𝑂 − 𝐾𝑏,𝑤𝑎𝑐𝐻+𝑐𝑂𝐻−)        (1.119) 

In terms of the forward reaction rate constant, K f,wa, and the backward reaction rate constant K b,wa. The rate of 

production of H+ ions, RH
+, and OH- ions, ROH

-, from this reaction are given by  

𝑅𝐻+ = 𝑅𝑂𝐻− = −𝑅𝐻2𝑂.        (1.120) 

𝐾𝑤𝑎 = 10
−𝑒𝑥𝑝 molar2, where 𝑒𝑥𝑝 =(29.3868-0.0737549TK+7.47881x10-5 TK

2) 

in terms of the absolute temperature in Kelvin, TK. 

The backward reaction rate constant, Kb,wa is independent of temperature and takes the value Kb,wa=7.85x1010M-1s-

1. This enables the forward reaction rate constant, Kf,wa to be determined from 

𝐾𝑓,𝑤𝑎 = 𝐾𝑤𝑎 × 𝐾𝑏,𝑤𝑎        (1.121) 

In the code example solved here TK=293.15K. 

 

Step 6: Charge Balance 

The final relationship is obtained by the assumption of charge balance throughout the bulk liquid hence 

𝐶𝐻+ = 𝐶𝐻𝐶𝑂3− + 2𝐶𝐶𝑂32− + 𝐶𝑂𝐻
−        (1.122) 

The final set of equations are obtained by adding up all the reaction rates across all the reaction equations. 

 

Total Reaction Rate of CO2 
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CO2 only reacts via carbon dioxide hydration, hence 

𝑅𝐶𝑂2 = −𝑅𝐻2𝐶𝑂3 =
𝑑

𝑑𝑡
(𝑐𝐶𝑂2) =  (𝐾𝑏,ℎ𝑦 𝑐𝐻2𝐶𝑂3  − 𝐾𝑓,ℎ𝑦𝑐𝐶𝑂2𝑐𝐻2𝑂)         (1.123) 

 

Total Reaction Rate of H2CO3 

H2CO3 reacts via carbon dioxide hydration and carbonic acid dissociation. Hence,  

𝑅
𝐻2𝐶𝑂3

=
𝑑𝑐
𝐻2𝐶𝑂3

𝑑𝑡
= −(𝐾𝑏,ℎ𝑦 𝑐𝐻2𝐶𝑂3  − 𝐾𝑓,ℎ𝑦𝑐𝐶𝑂2𝑐𝐻2𝑂) − (𝐾𝑓,𝑐𝑎  𝑐𝐻2𝐶𝑂3  − 𝐾𝑏,𝑐𝑎𝑐𝐻+𝑐𝐻𝐶𝑂3−)       (1.124) 

 

Total Reaction Rate of 𝐇𝐂𝐎𝟑
− ions 

HCO3
− ions are created by carbonic acid dissociation and bicarbonate ion dissociation. Hence, 

𝑅𝐻𝐶𝑂3− =
𝑑𝑐𝐻𝐶𝑂3

−

𝑑𝑡
= (𝐾𝑓,𝑐𝑎 𝑐𝐻2𝐶𝑂3  − 𝐾𝑏,𝑐𝑎𝑐𝐻+𝑐𝐻𝐶𝑂3−) − (𝐾𝑓,𝑏𝑖  𝑐𝐻𝐶𝑂3−  − 𝐾𝑏,𝑏𝑖𝑐𝐻+𝑐𝐶𝑂32−)       (1.125) 

 

Total Reaction Rate of 𝐂𝐎𝟑
𝟐− ions 

CO3
2− ions are only created by bicarbonate ion dissociation. Hence, 

𝑅𝐶𝑂32− =
𝑑𝑐
𝐶𝑂3
2−

𝑑𝑡
= (𝐾𝑓,𝑏𝑖  𝑐𝐻𝐶𝑂3−  − 𝐾𝑏,𝑏𝑖𝑐𝐻+𝑐𝐶𝑂32−)       (1.126) 

 

Total Reaction Rate of OH- ions 

𝑂𝐻− ions are only created by water dissociation. Hence, 

𝑅𝑂𝐻− =
𝑑𝑐𝑂𝐻−

𝑑𝑡
= −𝑅𝐻2𝑂 = 𝐾𝑓,𝑤𝑎𝑐𝐻2𝑂 − 𝐾𝑏,𝑤𝑎𝑐𝐻+𝑐𝑂𝐻−        (1.127) 

 

Total Reaction Rate of H+ ions 

H+ ions are created by carbonic acid dissociation, bicarbonate ion dissociation and water dissociation. Hence, 

𝑅𝐻+ =
𝑑𝑐
𝐻+

𝑑𝑡
= (𝐾𝑓,𝑐𝑎  𝑐𝐻2𝐶𝑂3  − 𝐾𝑏,𝑐𝑎𝑐𝐻+𝑐𝐻𝐶𝑂3−) + (𝐾𝑓,𝑏𝑖  𝑐𝐻𝐶𝑂3−  − 𝐾𝑏,𝑏𝑖𝑐𝐻+𝑐𝐶𝑂32−) + (𝐾𝑓,𝑤𝑎𝑐𝐻2𝑂 −

𝐾𝑏,𝑤𝑎𝑐𝐻+𝑐𝑂𝐻−)         (1.128) 

 

Numerical Solution of the Chemical Equations 

Introducing the chemical concentrations in SI units (mol/m3): 

𝑥1 = 𝑐𝐶𝑂2 , 𝑥2 = 𝑐𝐻2𝐶𝑂3 , 𝑥3 = 𝑐𝐻𝐶𝑂3− , 𝑥4 = 𝑐𝐶𝑂32−,𝑥5 = 𝑐𝑂𝐻
− , 𝑥6 = 𝑐𝐻+  

and  

𝑐1 = 𝐾𝑏,ℎ𝑦 , 𝑐2 = −𝐾𝑓,ℎ𝑦 , 𝑐3 = 𝐾𝑓,𝑐𝑎 , 𝑐4 =
−𝐾𝑏,𝑐𝑎
1000

, 𝑐5 = −𝐾𝑓,𝑏𝑖 , 𝑐6 =
𝐾𝑏,𝑏𝑖
1000

, 𝑐7 = 𝐾𝑓,𝑏𝑖,  
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𝑐8 =
−𝐾𝑏,𝑏𝑖
1000

, 𝑐9 = 1000 𝐾𝑓,𝑤𝑎 , 𝑐10 =
−𝐾𝑏,𝑤𝑎
1000

 

gives the following system of coupled first order odes for the concentrations in SI units: 

𝑑𝑥1

𝑑𝑡
= 𝑐1𝑥2 + 𝑐2𝑥1       (1.129) 

𝑑𝑥2

𝑑𝑡
= −𝑐1𝑥2 − 𝑐2𝑥1−𝑐3𝑥2−𝑐4𝑥3𝑥6         (1.130) 

𝑑𝑥3

𝑑𝑡
= 𝑐3𝑥2 + 𝑐4𝑥3𝑥6 + 𝑐5𝑥3 + 𝑐6𝑥4𝑥6       (1.131) 

𝑑𝑥4

𝑑𝑡
= 𝑐7𝑥3 + 𝑐8𝑥4𝑥6        (1.132) 

𝑑𝑥5

𝑑𝑡
= 𝑐9 + 𝑐10𝑥5𝑥6        (1.133) 

𝑥6 = 𝑥6 + 2𝑥4 + 𝑥5       (1.134) 

These should be integrated subject to the initial conditions, at t=0:  

𝑥1 = 1000 𝐾𝑠𝑜𝑙𝑝𝐶𝑂2 , 𝑥2 =  1000 𝐾ℎ𝑦𝐾𝑠𝑜𝑙𝑝𝐶𝑂2 , 𝑥3 = 𝑥4 = 𝑥5 = 𝑥6 = 0         (1.135) 

The coupled system of odes (1.129)-(1.134) are solved subject to the initial conditions (1.135) using the 

Python programs in the main, driver program, v1homogeneous_chemistry.py using the functions 

contained in chemical_functions.py. These are available under the Fig1_10 directory. 

v1homogeneous_chemistry.py  

# Program to calculate homogeneous chemistry based on theory developed by Nesic 

# and co-workers. Theory being used from following references: 

# Nordsveen et al. Corrosion 59(5), 443-456. 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import odeint 

from chemical_functions import set_chemistry, dxdt_5_pHvariable 

 

# define chemistry data dictionary 

chemparam = set_chemistry() 

cFe = 0.0   # Fe2+ concentration = 0 in bulk solution 

 

# define arrays for solution of chemical equations 

ndim = 5  # number of independent chemical reactions 

 

# create constants for use in the implicit solution scheme 

c1 = chemparam['c1'] 

c2 = chemparam['c2'] 

c3 = chemparam['c3'] 
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c4 = chemparam['c4'] 

c5 = chemparam['c5'] 

c6 = chemparam['c6'] 

c7 = chemparam['c7'] 

c8 = chemparam['c8'] 

c9 = chemparam['c9'] 

c10 = chemparam['c10'] 

 

def f(y, t): 

     

        x1 = y[0]   # concentration of cO2 (mol/m3) 

        x2 = y[1]   # concentration of H2CO3 (mol/m3) 

        x3 = y[2]   # concentration of HCO3- (mol/m3) 

        x4 = y[3]   # concentration of CO32- (mol/m3) 

        x5 = y[4]   # concentration of OH- (mol/m3) 

         

        [f0,f1,f2,f3,f4]= dxdt_5_pHvariable(x1,x2,x3,x4,x5,chemparam,0.0) 

        return [f0, f1, f2, f3, f4] 

 

# initialise the concentrations CO2, H2CO3, HCO3-, CO32- and COH-. in practice the  

# solutions are not found to be sensitive to these specific values 

xb0 = 10**-4              

cCO2_init = chemparam['cCO2_init']                 

y0 = [cCO2_init, xb0, xb0, xb0, xb0]        

 

# t  = np.linspace(0,1)   # time grid 

t  = np.linspace(0,1.0,101)   # time grid 

 

# solve the time dependent chemical equations using PYTHON functions 

soln = odeint(f, y0, t) 

cCO2 = soln[:, 0]   # concentration of CO2 at ith time step 

cH2CO3 = soln[:, 1]   # concentration of H2CO3 at ith time step 

cHCO3 = soln[:, 2]   # concentration of HCO3- at ith time step 

cCO3 = soln[:, 3]   # concentration of CO32- at ith time step 

cOH = soln[:, 4]   # concentration of OH-- at ith time step 

# calculate concentration of H+ by  charge balance equation 

cH = np.zeros(len(cOH),dtype=float) 

for j in range(len(cOH)): 
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    cH[j] = cHCO3[j] + 2*cCO3[j] + cOH[j] 

 

# set steady state concentrations in bulk 

cCO2_steady = cCO2[-1] 

cH2CO3_steady = cH2CO3[-1] 

cHCO3_steady = cHCO3[-1] 

cCO3_steady = cCO3[-1] 

cOH_steady = cOH[-1] 

cH_steady = cH[-1] 

pH_steady = -np.log10(cH_steady/1000) 

print("cCO2 steady = {0:10.5e}".format(cCO2_steady)) 

print("cH2CO3 steady = {0:10.5e}".format(cH2CO3_steady)) 

print("CHCO3 steady = {0:10.5e}".format(cHCO3_steady)) 

print("cCO3 steady = {0:10.5e}".format(cCO3_steady)) 

print("cOH steady = {0:10.5e}".format(cOH_steady)) 

print("cH steady = {0:10.5e}".format(cH_steady)) 

print("pH steady = {0:10.5e}".format(pH_steady)) 

 

# plot out chemical concentrations 

plt.ion() 

fig=plt.figure() 

plt.semilogy(t,cCO2,'k-',markersize=5,label='CO2')          

plt.semilogy(t,cH2CO3,'b-',markersize=5,label='H2CO3')          

plt.semilogy(t,cHCO3,'r-',markersize=5,label='HC03-')          

plt.semilogy(t,cCO3,'g-',markersize=5,label='C032-')          

plt.semilogy(t,cOH,'m-',markersize=5,label='OH-') 

plt.semilogy(t,cH,'y-',markersize=5,label='H+') 

 

plt.legend(loc='best') 

plt.xlabel('time (secs)',style='italic') 

plt.ylabel('Species concentrations (mol/m3)',style='italic') 

 

chemical_functions.py  

# functions used to set us equations for homoegeneous chemical reactions 

import numpy as np 

def dxdt_5_pHvariable(x1,x2,x3,x4,x5,chemparam,cFe): 

 

    # set parameters from dictionary  
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    c1 = chemparam['c1'] 

    c2 = chemparam['c2'] 

    c3 = chemparam['c3'] 

    c4 = chemparam['c4'] 

    c5 = chemparam['c5'] 

    c6 = chemparam['c6'] 

    c7 = chemparam['c7'] 

    c8 = chemparam['c8'] 

    c9 = chemparam['c9'] 

    c10 = chemparam['c10']    

     

    x6 = x3 + 2*x4 + x5 - 2*cFe  # cH 

    # rate of change of CO2 

    dx1dt = c1*x2 + c2*x1 

    # rate of change of H2CO3 

    dx2dt = -dx1dt -c3*x2 -c4*x3*x6 

    # rate of change of HCO3- 

    dx3dt = c3*x2 + c4*x3*x6 + c5*x3 + c6*x4*x6 

    # rate of change of CO32- 

    dx4dt = c7*x3+c8*x4*x6 

    # rate of change of OH- 

    dx5dt = c9 + c10*x5*x6 

     

    return [dx1dt,dx2dt,dx3dt,dx4dt,dx5dt] 

 

# function to set chemical parameters needed in solutions of chemical equations 

def set_chemistry(): 

                                          

    # pH not specified but determined from chemical reaction equations 

    # set ionic strength 

    I=0.1711   # value for 1% NaCl  

    Tc=20 

    pCO2=1   # 1 bar 

 

    # total pressure P = PH2O + PCO2 

    # PH2O calculated using steam tables at Tc. E.g. 25oC, PH2O = 0.0313 Atm 

    P=14.8   # total pressure expressed in p.s.i. 

    # PH=4     # specify pH and hence H+ concentration 
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    T=Tc+273.15   # Kelvin 

    Tf=Tc*9/5 +32   # Fahrenheit 

    Tk=Tc+273.15   # Kelvin 

 

    # Calculate steady state chemistry in bulk solution 

    #***************************************************** 

    #CO2 aqueous. Ksol taken from Nordsveen et al (2003), Table 2, p 447. 

    Ksol= (14.5/1.00258)*10**-(2.27+0.00565*Tf-8.06*(10**-6)*(Tf**2) 

    +0.075*I) 

 

    #dissociation of water. Reaction constants taken from Nordsveen et al (2003), 

    # table 2, p 447. 

    Kwa= 10**-(29.3868-0.0737549*Tk+7.47881*(10**-5)*Tk**2) 

    Kbwa= 7.85* 10**10 *(Tc/Tc) 

    Kfwa=Kwa*Kbwa 

 

    #hydration of H2CO3. Reaction constants taken from Nordsveen et al (2003), 

    # table 2, p 447. 

    Khy=2.58*(10**-3) *(Tc/Tc) 

    Kfhy=10**(329.85-110.541*np.log10(Tk)-(17265.4/Tk)) 

    Kbhy=Kfhy/Khy 

 

    #dissociation of H2CO3. Reaction constants taken from Nordsveen et al (2003), 

    # table 2, p 447. 

    Kca=387.6*10**-(6.41-1.594*(10**(-3))*Tf 

    +(8.52* 10**(-6) *Tf**(2))-3.07*10**(-5)*P-0.4772*(I**0.5)+0.118*I) 

    Kfca= 10**(5.71+0.0526*Tc-2.94*10**-4 *Tc**2 +7.91*10**-7*Tc**3) 

    Kbca= (Kfca/Kca) 

 

    #dissociation of HCO3-(matched depends on variables). Reaction constants  

    # taken from Nordsveen et al (2003), table 2, p 447. 

    Kbi = 10**-(10.61-4.97*(10**-3)*Tf+1.331*(10**-5)*(Tf**2)-2.624*(10**-5)*P- 

    1.166*(I**0.5)+0.3466*I) 

    Kfbi=10**9 *(Tc/Tc) 

    Kbbi= Kfbi/Kbi  

 

    # calculate steady state concentrations of CO2, H2CO3 in mol/m3 
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    cCO2_init = pCO2*Ksol*1000 

    cH2CO3_init = pCO2*Ksol*Khy*1000 

 

    # create constants for use in the implicit solution scheme 

    c1 = Kbhy 

    c2 = -Kfhy 

    c3 = Kfca 

    c4 = -Kbca*0.001 

    c5 = -Kfbi 

    c6 = Kbbi*0.001 

    c7 = Kfbi 

    c8 = -Kbbi*0.001 

    c9 = Kfwa*1000 

    c10 = -Kbwa*0.001 

 

    # set chemistry dictionary values 

    chemparam = dict([('I',I),('Tc',Tc),('pcO2',pCO2),('P',P),('T',T),('Tf',Tf), 

                      ('Tk',Tk),('cCO2_init',cCO2_init),('cH2CO3_init',cH2CO3_init), 

                      ('c1',c1),('c2',c2),('c3',c3),('c4',c4),('c5',c5),('c6',c6), 

                      ('c7',c7),('c8',c8),('c9',c9),('c10',c10)]) 

    return chemparam 

 

This results in the following figure, showing the evolution of each of the chemical species towards a 

steady state. 
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Figure 1.10: Evolution of the chemical species during the homogeneous chemical reactions during CO2 
corrosion, obtained using v1homogeneous_chemistry.py and chemical_functions.py. 
1.5 Modelling of Flow-Induced Vibration (FIV) 

1.5.1 Introduction 

Pipelines conveying fluids play a significant role in modern industry, including chemical processing, 

power generation and the transportation of commodities such as oil and gas. These are safety critical 

since system failures can lead to the spillage of fluids which are detrimental to human health and the 

environment. They are also of enormous economic significance too, so there is clearly a need to identify 

and address the root causes of failure in pipeline systems. Flow-induced vibration fatigue and failure is 

one of the most common causes of failure in pipeline systems, accounting for more than 15% of all 

pipeline failures in Western Europe, Mpofu (2023). 

In many practical applications, the operators aim to operate at the highest possible flow velocities to 

maximise production and profits, however these are associated with more severe vibrations and 

therefore higher pipe failure rates, Paidoussis (2008). Hence it is very important to be able to identify 

the safe and optimal operating ranges for a piping system. Studies show that vibration of pipelines results 

from interactions between a fluid and a structural component, and are thereby influenced by the 

physical and structural properties of both the fluid and the pipe. The support conditions for the pipes 

are also found to be very important too. The most stable case is the clamped-clamped condition where 

the ends of the pipes are rigidly attached to physical supports, whereas the least stable support method 

is the simply supported-simply supported condition, where the pipe simply lies on top of a support 

structure but is not rigidly attached to it. The precise form of support method has a large influence on 

key aspects of pipeline stability, such as the critical flow velocity above which the pipeline becomes 

unstable and is therefore prone to large FIV and failure. 

This section aims to give a brief introduction to mathematical and computational methods that can be 

used to analyse FIV and covers key areas of model development including model validation and 

verification. 
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1.5.2. Mathematical Modelling 
A general equation of motion for the vibration of a pipe which is supported for 0≤x≤L is given by 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4
+𝑚𝑓𝑉

2 𝜕
2𝑦

𝜕𝑥2
+ 2𝑚𝑓𝑉

𝜕2𝑦

𝜕𝑥𝜕𝑡
+ (𝑚𝑓 +𝑚𝑝)

𝜕2𝑦

𝜕𝑡2
= 0      (1.136) 

where y(x,t) is the lateral displacement of the pipe at position x and time t, E is the Young’s modulus of 

the pipe material (Pa), I is the moment of area of the pipe (m4), mp is the mass of the pipe per unit 

length (kg/m), mf is the mass of the fluid per unit length (kg/m), V is the mean velocity of the fluid flow 

inside the pipe (m/s).  

The first term 𝐸𝐼
𝜕4𝑦

𝜕𝑥4
 represents the flexural restoring force. The second term, 𝑚𝑓𝑉

2 𝜕
2𝑦

𝜕𝑥2
, centrifugal 

force due to flow in the curved pipe, the third, 2𝑚𝑓𝑉
𝜕2𝑦

𝜕𝑥𝜕𝑡
, the Coriolis force arising from the relative 

motion of the pipe and the fluid and the final term, (𝑚𝑓 +𝑚𝑝)
𝜕2𝑦

𝜕𝑡2
, the inertial force of the pipe and 

fluid system. 

This mathematical model is based on the assumptions that: 

1. The pipe behaves like a perfectly elastic beam so that the Young’s modulus is constant 

2. The pipe is slender which implies that the amplitude of vibration is small compared to the 

length 

3. The fluid flow is fully developed 

4. The fluid is incompressible 

Although the fluid is not idealised as inviscid, the equation does not have any term with a viscosity 

coefficient. It has been shown by Paidoussis (2008) that fluid viscosity does not have a significant effect 

on the motion. 

A further key simplifying assumption is that the Coriolis force term 2𝑚𝑓𝑉
𝜕2𝑦

𝜕𝑥𝜕𝑡
 can be neglected in 

comparison with the other three terms in the equation of motion. This can be justified since many 

previous studies have neglected the Coriolis term from the equation of motion, e.g. Udoetek (2018) 

and Yi-min et al (2010), and have found that this leads to an error typically less than 3% in the 

prediction of natural frequencies that are needed to predict the onset of FIV instabilities.  

The next section will consider the simply supported-simply supported condition.  

In your assignment, you will develop the equivalent mathematical model and Python programs for 

clamped-clamped conditions. 

1.5.2. Mathematical Modelling of the Simply Supported-Simply Supported Case 
The boundary conditions are obtained from the nature of the end supports. The case considered here 

is with a simply supported-simply supported pipe as shown in Figure 1.11. 
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Fig 1.11: A simply supported-simply supported pipe system. 

The boundary conditions to be applied in this case are: 𝑦 =
𝜕2𝑦

𝜕𝑥2
= 0 at the ends x=0, x=L. Note the 

second derivative condition indicates that the bending moment=0 at the simply-supported ends. 

Finite Difference Discretisation 

The finite difference method was used to represent the continuous pipe system as a discrete system. A 

uniform discretisation was used for the time and spatial domains, as shown in Figure 1.12. Finite 

Difference approximations were applied at these discrete nodes. 

 

Fig 1.12: Uniform spatial discretisation of a simply-supported pipe system. 

Second order discretisations for the second and fourth order derivative terms are used: 

𝑑2𝑦

𝑑𝑥2
≈
𝑦𝑖−1−2𝑦𝑖+𝑦𝑖+1

(∆𝑥)2
      (1.137) 

𝑑4𝑦

𝑑𝑥4
≈
𝑦𝑖−2−4𝑦𝑖−1+6𝑦𝑖−4𝑦𝑖+1+𝑦𝑖+2

(∆𝑥)4
         (1.138) 

where 𝑦𝑖  represents the value of y at the ith node x=xi and Δx is the grid spacing. The same second 

order expression is used for the second order time derivative. 

Computation of the Natural Frequency 

Since the equation of motion varies in both space and time, the method of separation of variables can 

be used to obtain an equation in space from which the natural frequency was then computed using the 

finite difference method. This approach has been used successfully in similar beam models, Rao (2011). 

The solution 𝑦(𝑥, 𝑡) is written as 

𝑦(𝑥, 𝑡) = 𝑌(𝑥)𝑇(𝑡)       (1.139) 

The equation of motion then becomes 
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𝐸𝐼
𝑑4𝑌

𝑑𝑥4
𝑇 +𝑚𝑓𝑉

2 𝑑
2𝑌

𝑑𝑥2
𝑇 + (𝑚𝑓 +𝑚𝑝)

𝑑2𝑇

𝑑𝑡2
𝑌 = 0         (1.140) 

This can be re-written as  

1

(𝑚𝑓+𝑚𝑝)𝑌
(𝐸𝐼

𝑑4𝑌

𝑑𝑥4
𝑇 +𝑚𝑓𝑉

2 𝑑
2𝑌

𝑑𝑥2
) = −

1

𝑇

𝑑2𝑇

𝑑𝑡2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝜆         (1.141) 

Hence 

𝐸𝐼

𝑚𝑡𝑜𝑡

𝑑4𝑌

𝑑𝑥4
+
𝑚𝑓𝑉

2

𝑚𝑡𝑜𝑡

𝑑2𝑌

𝑑𝑥2
− 𝜆𝑌 = 0          (1.142) 

where 𝑚𝑡𝑜𝑡 = 𝑚𝑓 +𝑚𝑝 is the total mass of the pipe and fluid per unit length. 

Applying a uniform spatial discretisation leads to: 

𝐸𝐼

𝑚𝑡𝑜𝑡
(
𝑌𝑖−2−4𝑌𝑖−1+6𝑌𝑖−4𝑌𝑖+1+𝑌𝑖+2

(∆𝑥)4
) +

𝑚𝑓𝑉
2

𝑚𝑡𝑜𝑡
(
𝑌𝑖−1−2𝑌𝑖+𝑌𝑖+1

(∆𝑥)2
) − 𝜆𝑌𝑖 = 0        (1.143) 

Let 𝑎 =
𝐸𝐼

𝑚𝑡𝑜𝑡(∆𝑥)
4 and 𝑏 =

𝑚𝑓𝑉
2

𝑚𝑡𝑜𝑡(∆𝑥)
2 and simplifying the equation leads to: 

𝑎𝑌𝑖−2 + (𝑏 − 4𝑎)𝑌𝑖−1 + (6𝑎 − 2𝑏 − 𝜆)𝑌𝑖 + (𝑏 − 4𝑎)𝑌𝑖+1 + 𝑎𝑌𝑖+2 = 0       (1.144) 

Putting  𝐶1 = 𝑎, 𝐶2 = 𝑏 − 4𝑎, 𝐶3 = 6𝑎 − 2𝑏, 𝐶4 = 𝑏 − 4𝑎, 𝐶5 = 𝑎 this equation can be rewritten as 

𝐶1𝑌𝑖−2 + 𝐶2𝑌𝑖−1 + (𝐶3 − 𝜆)𝑌𝑖 + 𝐶4𝑌𝑖+1 + 𝐶5𝑌𝑖+2 = 0      (1.145) 

This was then applied to the internal nodes i=2 to i=N-1, giving the following linear equations: 

For i=2:           𝐶1𝑌0 + 𝐶2𝑌1 + (𝐶3 − 𝜆)𝑌2 + 𝐶4𝑌3 + 𝐶5𝑌4 = 0       (1.146) 

For i=3:           𝐶1𝑌1 + 𝐶2𝑌2 + (𝐶3 − 𝜆)𝑌3 + 𝐶4𝑌4 + 𝐶5𝑌5 = 0       (1.147) 

For i=4 to i= N-3: 

𝐶1𝑌𝑖−2 + 𝐶2𝑌𝑖−1 + (𝐶3 − 𝜆)𝑌𝑖 + 𝐶4𝑌𝑖+1 + 𝐶5𝑌𝑖+2 = 0         (1.148) 

For i=N-2 

𝐶1𝑌𝑁−4 + 𝐶2𝑌𝑁−3 + (𝐶3 − 𝜆)𝑌𝑁−2 + 𝐶4𝑌𝑁−1 + 𝐶5𝑌𝑁 = 0        (1.149) 

For i=N-1 

𝐶1𝑌𝑁−3 + 𝐶2𝑌𝑁−2 + (𝐶3 − 𝜆)𝑌𝑁−1 + 𝐶4𝑌𝑁 + 𝐶5𝑌𝑁+1 = 0        (1.150) 

We can now simplify these using the boundary conditions, which are: 𝑌1 = 𝑌𝑁 = 0. The second 

condition is that the bending moment is zero at both simply-supported ends, leading to the second 

derivative boundary condition that 
𝑑2𝑌

𝑑𝑥2
= 0 at the clamped ends leads to: 

𝑌2−2𝑌1+𝑌0

2∆𝑥
= 0 => 𝑌2 = −𝑌0        (1.151) 

𝑌𝑁+1−2𝑌𝑁+ 𝑌𝑁−1

2∆𝑥
= 0 => 𝑌𝑁+1 = −𝑌𝑁−1          (1.152) 

The equations and boundary conditions can then be expressed in the following matrix form: 

C3-C1-λ C4 C5 0 … … 0 Y2  0 
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C2 C3-λ C4 C5 0 … … Y3  0 

C1 C2 C3-λ C4 C5 0 … Y4  0 

0 … … … … … … Y5  0 

… … … … … … … … = 0 

 … … … … … … … …  0 

… 0 C1 C2 C3-λ C4 C5 YN-3  0 

… … 0 C1 C2 C3-λ C4 YN-2  0 

0 … … 0 C1 C2 C3-C5-λ YN-1  0 

 

This is a sparse pentadiagonal matrix of size (N-2)x(N-2) which can be expressed in the form M – 𝜆𝐼 

where I is the identify matrix and M is an (N-2)x(N-2) matrix given by: 

C3-C1 C4 C5 0 … … 0 

C2 C3 C4 C5 0 … … 

C1 C2 C3 C4 C5 0 … 

0 … … … … … … 

… … … … … … … 

… … … … … … … 

… 0 C1 C2 C3 C4 C5 

… … 0 C1 C2 C3 C4 

0 … … 0 C1 C2 C3-C5 

 

It can be observed that the constant 𝜆 is the eigenvalue which is equal to 𝜔2, where 𝜔 is the natural 

frequency. The natural frequencies are found by solving the eigenvalue problem ⌈𝑀 − 𝜆𝐼⌉ = 0 so that  

𝜔𝑖 = √𝜆𝑖         (1.153) 

NOTE: The critical velocity at which the pipe loses stability is computed by the condition that one of 

natural frequencies becomes zero.  

A Python program was developed to determine the 1st and 2nd natural frequencies.  

Verification and Validation of the Finite Difference Solver 

The effect of grid density on the computed natural frequency for an experimental case due to Dodds & 

Runyan (1965), also reported in Dangal & Ghimire (2019), of an aluminium pipe with L=3.048m, E=68.9 

GPa. I=8.73x10-9 (kgm2), mf=0.38 kg/m, mtot=0.715 kg/m, V=13.10 m/s. The grid convergence study in 

Figure 1.13 showed the effect of the number of nodes on the calculated natural frequency. This is 

obtained by running the Python program gridconvergence_FIV_natural_frequency_fdm.py in the 

Fig1_13 directory. 

gridconvergence_FIV_natural_frequency_fdm.py 

""" 

 FIV_natural_frequency_fdm.py 

 Carries of grid convergence studies for the  natural frequencies in a  

 FIV system with simply supported-simply supported ends  

""" 
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import numpy as np 

 

########################################################################## 

def gridconv_natural_frequencies(E,L,I,mtot,mf,V,Nx): 

     

    ########################################################################## 

    # discretisation of pipe 

    deltax = L/(Nx-1)    # spatial grid spacing 

 

    ########################################################################## 

    # defining the constants for the set of linear finite difference euqations 

    a = (E*I)/(mtot*(deltax)**4) 

    b = (mf*(V**2))/(mtot*(deltax)**2) 

    C1 = a 

    C2 = b-4*a 

    C3 = 6*a-2*b 

    C4 = C2 

    C5 = C1 

 

    # creation of FDM matrix M 

    n = Nx-2 

    M = np.zeros([n,n]) 

    M[0][0]=C3-C1 

    M[0][1]=C4 

    M[0][2]=C5 

 

    M[1][0]=C2 

    M[1][1]=C3 

    M[1][2]=C4 

    M[1][3]=C5 

 

    for k in range(2,n-2): 

        M[k][k-2]=C1 

        M[k][k-1]=C2 

        M[k][k]=C3 

        M[k][k+1]=C4 

        M[k][k+2]=C5 
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    M[n-2][n-4]=C1 

    M[n-2][n-3]=C2 

    M[n-2][n-2]=C3 

    M[n-2][n-1]=C4 

    M[n-1][n-3]=C1 

    M[n-1][n-2]=C2 

    M[n-1][n-1]=C3-C5 

 

    # calculate natural frequencies from the real parts of the first two eigenvalues of M 

    evals, evecs = np.linalg.eig(M) 

    omega_natural = np.sqrt(evals) 

    omega_1 = omega_natural[n-1].real 

    omega_2 = omega_natural[n-2].real 

     

    return omega_1,omega_2 

 

# problem parameters from Dangal & Ghimire 

steel_pipe = 1; aluminium_pipe = 2; CPVC_pipe = 3 

material = 2 

V = 13.1 

if (material == steel_pipe): 

    # Steel pipe 

    E = 207e9       # Young's modules of pipe (Pa) 

    L = 3.048       # pipe clamp spacing (m) 

    I = 8.73e-9     # moment of area of pipe (m^4) 

    mtot = 1.386    # total mass of pipe and fluid per unit length (kg/m) 

    mf = 0.38       # mass of fluid per unit length (kg/m) 

elif (material == aluminium_pipe): 

    # Aluminium pipe 

    E = 68.9e9       # Young's modules of pipe (Pa) 

    L = 3.048       # pipe clamp spacing (m) 

    I = 8.73e-9     # moment of area of pipe (m^4) 

    mtot = 0.715    # total mass of pipe and fluid per unit length (kg/m) 

    mf = 0.38       # mass of fluid per unit length (kg/m) 

elif (material == CPVC_pipe): 

    # CPVC pipe 

    E = 2.9e9       # Young's modules of pipe (Pa) 

    L = 3.048       # pipe clamp spacing (m) 
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    I = 8.73e-9     # moment of area of pipe (m^4) 

    mtot = 0.574    # total mass of pipe and fluid per unit length (kg/m) 

    mf = 0.38       # mass of fluid per unit length (kg/m) 

     

########################################################################## 

# discretisation of pipe 

Nx = [10,20,30,40,50,60,70] 

 

# allocate vectors to store errors for every run 

omega_1 = np.zeros(len(Nx)) 

 

for n in range(len(Nx)): 

    om_1,om_2 = gridconv_natural_frequencies(E,L,I,mtot,mf,V,Nx[n]) 

    omega_1[n] = om_1 

 

print('Fine grid natural frequency= {0:6.3f}'.format(omega_1[len(Nx)-1])) 

 

# plot out results 

import matplotlib.pyplot as plt 

plot1 = plt.figure(1) 

plt.plot(Nx,omega_1,'b-o') 

plt.xlabel('Number of nodes along the pipe') 

plt.ylabel('Natural frequency (rad/s)') 

plt.text(20,29.05,'fine grid frequency={0:6.2f}'.format(omega_1[len(Nx)-1])) 

plt.title('Natural Frequencies of a simply-supported aluminium pipe, V=13.10m/s') 

plt.savefig('al_gridconvergence_FIV_natural_frequency_fdm.jpg') 

 

# Calculation of the order of accuracy of the method 

Nxcoarse = 40; Nxmedium = 80; Nxfine = 160; r = 0.5; 

omega_coarse,om_2 = gridconv_natural_frequencies(E,L,I,mtot,mf,V,Nxcoarse) 

omega_medium,om_2 = gridconv_natural_frequencies(E,L,I,mtot,mf,V,Nxmedium) 

omega_fine,om_2 = gridconv_natural_frequencies(E,L,I,mtot,mf,V,Nxfine) 

p = np.log((omega_fine-omega_medium)/(omega_medium-omega_coarse))/np.log(r) 

print('Estimate of order of convergence, p = {0:6.3f}'.format(p)) 
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Figure 1.13: Effect of grid density on the natural frequency of a simply supported-simply supported 

Aluminium pipe considered by Dodds & Runyan (1965). 

It can be seen that the solutions have converged for Nx>50. 

The computed fine grid natural frequency of 29.19 rad/s compares with the experimental value of 

Dodds & Runyan (1965) of 26.10 rad/s: an error of 11.8%. The other experimental cases considered by 

Dodds & Runyan (1965) are for: 

 V=23.485 m/s, the predicted value of 25.25 rad/s compares with the experimental value of 

24.11 rad/s – a 4.7% error 

 V=29.722 m/s, the predicted value of 21.22 rad/s compares with the average experimental 

value of 19.93 rad/s – a 6.5% error.  

These can be summarised in the following table, which also includes the numerical predictions of 

Dangal & Ghimire (2019) who used a Finite Element method. Table 1 shows that the numerical method 

is generally reasonably accurate and compares well with previous relevant studies. 

Flow velocity m/s Experiment (Dodds & 
Runyan (1965) rad/s 

Finite Element (Dangal & 
Ghimire (2019) rad/s 

Finite Difference 
model rad/s 

13.10 26.10 29.00 29.19 

23.485 24.11 24.73 25.25 

29.722 19.93 20.47 21.11 

Table 1: Validation of effect of flow velocity on natural frequency for a simply supported-simply 

supported pipe. 

Order of Accuracy of the Numerical Method  
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The order of accuracy of the numerical method can be estimated as follows. If 𝜔𝑓𝑖𝑛𝑒 , 𝜔𝑚𝑒𝑑𝑖𝑢𝑚 and 

𝜔𝑐𝑜𝑎𝑟𝑠𝑒 refer to the natural frequencies calculated using three different grid levels with the same node 

spacing reduction rate, r, such that the respective grid spacings are ∆𝑥𝑓𝑖𝑛𝑒 = 𝑟
2∆𝑥𝑐𝑜𝑎𝑟𝑠𝑒,   ∆𝑥𝑚𝑒𝑑𝑖𝑢𝑚 =

𝑟 ∆𝑥𝑐𝑜𝑎𝑟𝑠𝑒, then if 𝜔𝑎𝑐𝑡𝑢𝑎𝑙 is the actual value of the natural frequency then 

 𝜔𝑓𝑖𝑛𝑒 −𝜔𝑚𝑒𝑑𝑖𝑢𝑚

𝜔𝑚𝑒𝑑𝑖𝑢𝑚 −𝜔𝑐𝑜𝑎𝑟𝑠𝑒
=
(𝜔𝑓𝑖𝑛𝑒 − 𝜔𝑎𝑐𝑡𝑢𝑎𝑙) − (𝜔𝑚𝑒𝑑𝑖𝑢𝑚 − 𝜔𝑎𝑐𝑡𝑢𝑎𝑙)

(𝜔𝑚𝑒𝑑𝑖𝑢𝑚 −𝜔𝑎𝑐𝑡𝑢𝑎𝑙) − (𝜔𝑐𝑜𝑎𝑟𝑠𝑒 − 𝜔𝑎𝑐𝑡𝑢𝑎𝑙)

=
𝐶(𝑟2∆𝑥𝑐𝑜𝑎𝑟𝑠𝑒)

𝑝 − 𝐶(𝑟∆𝑥𝑐𝑜𝑎𝑟𝑠𝑒)
𝑝

𝐶(𝑟∆𝑥𝑐𝑜𝑎𝑟𝑠𝑒)
𝑝 − 𝐶(∆𝑥𝑐𝑜𝑎𝑟𝑠𝑒)

𝑝
=
𝑟2𝑝 − 𝑟𝑝

𝑟𝑝 − 1
= 𝑟𝑝 

Hence, taking logarithms of both sides, gives 

𝑝 =
𝑙𝑛 (

 𝜔𝑓𝑖𝑛𝑒 −𝜔𝑚𝑒𝑑𝑖𝑢𝑚
𝜔𝑚𝑒𝑑𝑖𝑢𝑚 −𝜔𝑐𝑜𝑎𝑟𝑠𝑒

)

ln 𝑟
 

Comparing the errors using 40, 80 and 160 nodes for the coarse, medium and fine grids, gives an 

estimate of p=2.04 => indicating it is second order accurate, as expected since these are based on 

second order finite difference approximations. 

Critical Velocities 

As the velocity of the fluid in the pipe increases, the natural frequency decreases. The critical velocity 

for instability is the velocity for which the natural frequency first becomes equal to zero. The analysis 

for predicting the natural frequency described above can then be used to predict the critical velocity. 

 

Figure 1.14: Effect of flow velocity on the natural frequency of a simply supported-simply supported 

steel pipe considered by Dangal & Ghimire (2019). 
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The following table compares the predictions of critical velocities for the simply-supported simply-

supported case, using the present Finite Difference model with Nx=60 nodes (implemented in the 

Python program criticalvelocity_FIV_fdm.py on the Fig1_14 directory) against the Finite Element 

predictions of Dangal & Ghimire (2019). 

Critical velocity 
m/s 

Finite Element (Dangal & 
Ghimire (2019) 

Finite Difference 
model 

Steel pipe 70.72 71.07 

Aluminium pipe 41.25 41.00 

CPVC pipe 8.46 8.41 

Table 2: Comparison of the predictions of critical velocities for simply supported-simply supported 

steel, aluminium and CPVC pipes, with Nx=60 against the FE predictions of Dangal & Ghimire (2019). 

Again, the agreement between the two methods is very good. 

criticalvelocity_FIV_fdm.py 

""" 

 FIV_natural_frequency_fdm.py 

 Calculates the critical velocity for instability of a 

 FIV system with clamped-clamped ends  

""" 

import numpy as np 

 

########################################################################## 

def natural_frequencies(E,L,I,mtot,mf,V,Nx): 

     

    ########################################################################## 

    # discretisation of pipe 

    deltax = L/(Nx-1)    # spatial grid spacing 

 

    ########################################################################## 

    # defining the constants for the set of linear finite difference euqations 

    a = (E*I)/(mtot*(deltax)**4) 

    b = (mf*(V**2))/(mtot*(deltax)**2) 

    C1 = a 

    C2 = b-4*a 

    C3 = 6*a-2*b 

    C4 = C2 

    C5 = C1 

 

    # creation of FDM matrix M 

    n = Nx-2 
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    M = np.zeros([n,n]) 

    M[0][0]=C3-C1 

    M[0][1]=C4 

    M[0][2]=C5 

 

    M[1][0]=C2 

    M[1][1]=C3 

    M[1][2]=C4 

    M[1][3]=C5 

 

    for k in range(2,n-2): 

        M[k][k-2]=C1 

        M[k][k-1]=C2 

        M[k][k]=C3 

        M[k][k+1]=C4 

        M[k][k+2]=C5 

 

    M[n-2][n-4]=C1 

    M[n-2][n-3]=C2 

    M[n-2][n-2]=C3 

    M[n-2][n-1]=C4 

    M[n-1][n-3]=C1 

    M[n-1][n-2]=C2 

    M[n-1][n-1]=C3-C5 

 

    # calculate natural frequencies from the real parts of the first two eigenvalues of M 

    evals, evecs = np.linalg.eig(M) 

    omega_squared = evals[n-1] 

    omega_natural = np.sqrt(evals) 

    omega_1 = omega_natural[n-1].real 

    omega_2 = omega_natural[n-2].real 

     

    return omega_1,omega_2,omega_squared 

 

# problem parameters from Dangal & Ghimire 

steel_pipe = 1; aluminium_pipe = 2; CPVC_pipe = 3 

material = 1; 

if (material == steel_pipe): 
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    # Steel pipe 

    E = 207e9       # Young's modules of pipe (Pa) 

    L = 3.048       # pipe clamp spacing (m) 

    I = 8.73e-9     # moment of area of pipe (m^4) 

    mtot = 1.386    # total mass of pipe and fluid per unit length (kg/m) 

    mf = 0.38       # mass of fluid per unit length (kg/m) 

elif (material == aluminium_pipe): 

    # Aluminium pipe 

    E = 68.9e9       # Young's modules of pipe (Pa) 

    L = 3.048       # pipe clamp spacing (m) 

    I = 8.73e-9     # moment of area of pipe (m^4) 

    mtot = 0.715    # total mass of pipe and fluid per unit length (kg/m) 

    mf = 0.38       # mass of fluid per unit length (kg/m) 

elif (material == CPVC_pipe): 

    # CPVC pipe 

    E = 2.9e9       # Young's modules of pipe (Pa) 

    L = 3.048       # pipe clamp spacing (m) 

    I = 8.73e-9     # moment of area of pipe (m^4) 

    mtot = 0.574    # total mass of pipe and fluid per unit length (kg/m) 

    mf = 0.38       # mass of fluid per unit length (kg/m) 

     

########################################################################## 

# discretisation of pipe 

Nx = 60 

 

# allocate vectors to store errors for every run 

Npts = 101 

omega_squared = np.zeros(Npts) 

V = np.linspace(50,100,Npts) 

 

for n in range(Npts): 

    om_1,om_2,om_squared = natural_frequencies(E,L,I,mtot,mf,V[n],Nx) 

    omega_squared[n] = om_squared 

 

# find velocity where square of natural frequency becomes negative 

om1 = omega_squared[0] 

crit_velocity = 0 

for n in range(Npts-1): 
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    product = omega_squared[n]*omega_squared[n+1] 

    if (product < 0):    # use linear interpolation for greater accuracy 

        fac1 = np.abs(omega_squared[n]) 

        fac2 = np.abs(omega_squared[n+1])       

        critical_velocity = (fac2*V[n]+fac1*V[n+1])/(fac1+fac2) 

        break 

 

 

# plot out results 

import matplotlib.pyplot as plt 

plot1 = plt.figure(1) 

plt.plot(V,omega_squared,'b-') 

plt.xlabel('Fluid velocity') 

plt.ylabel('Natural frequency^2 (rad/s)') 

plt.title('Effect of velocity on stability of Flow Induced Vibration in a steel pipe') 

plt.text(50,-100,'critical velocity={0:6.2f}'.format(critical_velocity)) 

plt.savefig('steel_velocity_stability_fdm.jpg') 

YOUR NUMERICAL MODELLING ASSIGNMENT: THE CLAMPED-CLAMPED CASE 

To test your understanding of the numerical modelling concepts introduced above, and to give you 

some experience of developing your own Python programs, we would like you to extend the analysis 

and programs for the Simply Supported-Simply Supported Case to the case where the pipe is clamped 

at both ends – referred to as Clamped-Clamped conditions. 

The boundary conditions are obtained from the nature of the end supports. The clamped-clamped case 

considered here is with fixed ends as shown in Figure 1.15. 

 

Fig 1.15: Pipe with clamped ends showing the boundary conditions at the clamps, Mpofu (2023). 

Finite Difference Discretisation 

The finite difference method was used to represent the continuous pipe system as a discrete system. 

Once again a uniform discretisation was used for the spatial domain, as shown in Figure 1.16. Finite 

Difference approximations were applied at these discrete nodes as described in the simply supported-

simply supported case described above. 
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Fig 1.16: Uniform spatial discretisation of the clamped pipe system, Mpofu (2023). 

The analysis proceeds as for the simply supported-simply supported case but with different boundary 

conditions. Using the boundary conditions, which are: 𝑌1 = 𝑌𝑁 = 0. The derivative boundary condition 

that 
𝑑𝑌

𝑑𝑥
= 0 at the clamped ends leads to: 

𝑌2 − 𝑌0
2∆𝑥

= 0 => 𝑌2 = 𝑌0 

𝑌𝑁+1 − 𝑌𝑁−1
2∆𝑥

= 0 => 𝑌𝑁+1 = 𝑌𝑁−1 

For the clamped-clamped case, your tasks are to: 

 Derive the matrix form of the finite difference equations 

 Write a Python program that plots out the natural frequency for between 10 and 70 nodes 

along the pipe 

 Write a Python program that shows the effect of flow velocity on the natural frequency of the 

clamped-clamped steep pipe considered by Dangal & Ghimire (2019) 

 Write a Python program that determines the critical velocity for the steel, Aluminimu and CPVC 

pipe considered by Dangal & Ghimire (2019) 
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