
Page 1
Copyright © 2024 University of Leeds UK. All rights reserved.

Introduction to Design Optimization

Harvey Thompson

Page 2
Copyright © 2024 University of Leeds UK. All rights reserved.

Chapter 1

Introduction to Design Optimization

1.0 Introduction

The process of design and manufacture has developed over the centuries. Complex systems

such as: buildings, bridges, cars, aircraft, space vehicles, are an excellent demonstration of

the design process. However, the evolution of these systems has been slow.

The entire process is time-consuming and costly, requiring substantial human and material

resources. Therefore, the procedure has been to design, manufacture and use a system,

regardless of whether it is the best one. Improvements to these systems have been made only

after a substantial investment has been recovered. The thing to appreciate is that several

systems can usually accomplish the same task, and that some systems are better than others.

For example: The purpose of a bridge is to provide movement of people or vehicles from one

side of a river or road to the other. Different types of bridges can serve this purpose. However,

to analyse and design all possibilities can be time-consuming and costly. Usually one type is

selected based on some preliminary analyses and then it is designed in detail.

Figures 1.1 to 1.5 show different solutions to the task of designing a foot bridge.

Figure 1.1: BP Pedestrian Bridge: concealed box girder footbridge Chicago, USA

Page 3
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 1.2: Millennium bridge, on the river Thames, London.

Figure 1.3: Gateshead Millennium Bridge on Newcastle upon Tyne

Page 4
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 1.4: Arched Pedestrian Bridge, Hachaturyana street, Moscow

Figure 1.5: Pedestrian footbridge based on Leonardo da Vinci’s single span bridge near

the town of Ås in Norway

In order to describe optimization concepts and methods, it is necessary to generate a

mathematical statement for the optimum design problem. Such a mathematical model is

defined as the minimization of a cost function while satisfying all equality and inequality

constraints. This is the standard design optimization model used throughout this course.

Page 5
Copyright © 2024 University of Leeds UK. All rights reserved.

1.1 Standard Design Optimization Model

The standard design optimization model, requires determining the values of a vector of n

design variables = (x1, x2, . . ., xn) in order to:

Minimize:

 the cost function:    nxxxfxf ,,, 21  (1.1)

Subject to:

m inequality constraints:     mtoixxxgxg nii 1;0,,, 21   (1.2)

and p equality constraints:     ptojxxxhxh njj 1;0,,, 21   (1.3)

Note that the limits on the design variables 0ix or iUiiL xxx  where xiL and xiU are the

lower and higher limits for xi, are included as inequality constraints. So, in its simplest form, a

standard optimization problem is given by (1.4).

Minimize:  xf

(1.4)
Subject to:   mtoixg i 1;0 

   ptojxh j 1;0 

where: ntoixorxxx iiUiiL 1;0 

1.1.1 How to Treat Maximization Problems

The general design model treats only minimization problems. This is not a problem, since

the maximization of a function F(x) is the same as minimization of the transformed function

f(x)= –F(x). Considering the plot of Figure 1.6, of a function of 1 variable, with a maximum

at x*, this is the same as the minimum of the negative of the function to maximise.

(a) (b)

Figure 1.6: Plot of function of 1 variable: a) normal function showing the maximum at x*, b) the negative
of the same function showing now the minimum at x*

Maximum = Minimum

   f x F x 

Page 6
Copyright © 2024 University of Leeds UK. All rights reserved.

1.1.2 Greater Than (≥) Constraints

The standard design optimization model only treats “Less Than (≤)” types of inequality

constraints. But it is equally as likely for an optimization problem to have “Greater Than ≥ ”

type inequality constraints. It is relatively easy to convert from a “greater than” to “less than”

type of inequality constraint.

So, if (1.5) is a greater than type of inequality constraint, all that is required, is to multiply

(1.5) by –1, to convert it to the less than inequality constraint of (2.6).

  0xG j (1.5)

    0 xGxg jj (1.6)

1.1.3 Issues about the Standard Optimization Model

The following 6 issues need to be understood about the standard optimization model:

1. All functions f(x), hj(x), and gi(x) must depend on some or all of the design variables.

Functions not depend on design variables can be ignored!

2. The number of equality constraints must be less than, or at the most equal to, the

number of design variables np  . If p > n, the system is overdetermined and some of

the equality constraints are either redundant or inconsistent.

a. If redundant: Constraints can be deleted until p < n, so that a solution is

possible.

b. If inconsistent: the design problem doesn’t have a solution and the problem

formulation needs to be re-examined. This means that two or more equations

require different values for the same design variables, for example:

2

121

1
,

x
xandxx 

c. If p = n, no optimization of the system is necessary because the roots of the

equality constraints are the only solution to the optimum design.

3. No restriction on number of inequality constraints. At the optimum, the total number

of active constraints must be less than or at the most equal to the number of design

variables.

4. Unconstrained problems: Some design problems may not have any constraints.

5. Linear programming problems: If all of the functions f(x), hj(x), and gi(x) are linear

with respect to the design variables x, then the problem is called a linear

programming problem (LP). If any of these functions is nonlinear, the problem is

called a nonlinear programming problem (NLP).

6. Scaling of problem functions: The cost function can be scaled by multiplying it with a

positive constant. This has no effect on the optimum design. However, the optimum

cost function value will change. Constants can also be added to the cost function

without affecting the optimum design. Similarly, the inequality constraints can be

scaled by any positive constant and the equalities by any constant.

Page 7
Copyright © 2024 University of Leeds UK. All rights reserved.

1.1.4 Discrete and Integer Design Variables

Design variables xi can have any numerical value within the feasible region. However,

sometimes, these values may need to be discrete or integer, depending on the problem. So

both need to be defined:

a) Discrete Design Variables: are those whose value must be selected from a given

finite set of values. For example: A plate thickness must be one that is available

commercially: 1/8”, 1/4", 3/8”, 1/2", 5/8”, 3/4", 1”, etc.

b) Integer Design Variables: Must have an integer value. For example: the number of

bolts used, the number of coils in a spring, the number of items to be shipped, the

number of pistons in an engine, etc. Problems with these design variables are called

discrete and integer programming problems.

1.1.5 Types of Optimization Problems

The standard design optimization model can represent many different problem types. It can

be used to represent unconstrained, constrained, linear programming, and nonlinear

programming optimization problems.

It is also important to know other optimization problems encountered in practical

applications. Many times, these problems can be transformed into the standard model and

solved by the optimization methods presented.

There are a couple more types of optimization problems that need to be considered:

1. Continuous/Discrete-Variable Optimization Problems

2. Smooth/Non-smooth Optimization Problems.

1.1.5.1 Continuous/Discrete-Variable Optimization Problems

When the design variables can have any numerical value within their allowable range, the

problem is called a continuous-variable optimization problem. When the problem has only

discrete/integer variables, it is called a discrete/integer-variable optimization problem. When

the problem has both continuous and discrete variables, it is called a mixed variable

optimization problem.

1.1.5.2 Smooth/Non-smooth Optimization Problems

When the functions are continuous and differentiable, the problem is referred to as smooth

(differentiable). There are also many practical applications where the problem functions are

not differentiable or even discontinuous. Such problems are called nonsmooth

(nondifferentiable). Numerical methods to solve these two classes of problems can be

different. Theory and numerical methods for smooth problems are well developed.

Therefore, it is most desirable to formulate the problem with continuous and differentiable

functions as far as possible.

Page 8
Copyright © 2024 University of Leeds UK. All rights reserved.

1.2 Example of Structural Optimization Design Problem

Consider the design of the cross-sectional dimensions of the rectangular beam of Figure 1.7
in order to minimize the area. At the same time it is desired to minimize the maximum shear
stress in the beam corresponding to a unit shear force. Based on some physical constraints,
the two variables, w and h, which are the width and height of the cross-section are limited to
be in the range 0.5 < w, h < 30 mm.

Figure 1.7: Beam cross-section to be minimised

The equation for the area and maximum shear stress are given by

  hwhwf ,1 (1.7)

 
hw

V
hwf




2

3
,2 (1.8)

Assume for this problem that we have an applied load which produces a shear force of V =

1000N. The contour lines for both objective functions are given by Figures 1.8 and 1.9.

Figure 1.8: Design of beam cross-section for minimum area

The individual minima for the two functions are at the opposite corners of the design space,

with the following values,
* *

1 1 0.5w h mm  for minimum area and
* *

2 2 30w h mm 

for minimum shear stress with the associated function values of  * * * 2

1 1 1, 0.25f w h mm and

 * * *

2 2 2, 1.667f w h MPa respectively.

Page 9
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 1.9: Design of beam cross-section for minimum shear stress

One way to solve this problem is to use the weighted objective function approach with equal

weights for both objective functions, which results in the minimization of function (1.9).

 
hw

V
hwhwF




2

3
, (1.9)

Since design variables w and h appear everywhere in the form of a product, we can treat this

product as a single variable (x1), changing this equation into (1.10). The contour line for the

new objective function is given in Figure 1.10.

 
1

11
2

3

x

V
xxF  (1.10)

Differentiating (1.10) and solving for the minimum gives:

 

 

2

3

2

3

0
2

3
1

2

3

1

2

1

2

1

1

1

1

11

V
x

V
x

x

V
xF

dx

d

x

V
xxF









For V = 1000N,

 

2

1

1

11

73.381500
2

10003

2

3

2

3

mm
V

x

x

V
xxF








Which gives that * * 6.22w h mm  , with objective function values of
* 2

1 38.78f mm

and
*

2 38.78f MPa

Page 10
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 1.10: Design of beam cross-section for minimum equal weighted objective function

Alternatively, it may be more desirable to minimize the Euclidean norm between the

individual minima and the final value. Which means minimising function (1.11).

 

2

2

667.1

667.1
2

3

25.0

25.0
,



























 
 wh

V
wh

hwF (1.11)

The product wh, can again be treated as a single value to give (1.12). The contour line for

the new objective function zoomed into the minimum region is given in Figure 1.11.

 

2

2

2

2
2

667.1

667.1
2

3

25.0

25.0



























 


x

V

x
xF (1.12)

Figure 1.11: Design of beam cross-section for minimum Euclidean norm between the

individual minima

Page 11
Copyright © 2024 University of Leeds UK. All rights reserved.

Graphically, the optimum is found at
* 2

2 15x mm which gives that * * 3.87w h mm  ,

with the objective function values of
* 2

1 15f mm and
*

2 100f MPa .

Both of these designs are appropriate and optimal, but in different ways. Later on, when we

look at Pareto Optimality, this will make more sense. Everything depends on how the

optimization problem is formulated, which is what we are going to look at next.

1.3 Formulation of the Optimum Design Problem

To properly define and formulate an optimization problem, it takes approximately 50% of the

total effort required to solve it. It is therefore necessary to follow a well-defined procedure for

formulating the design optimization problems. Remember that the optimum solution will be

only as good as the formulation. For example:

a. If a critical constraint is not included, then it will most probably be violated.

b. If there are too many constraints, or if they are inconsistent, then a solution may not

be possible.

However, once the problem is properly formulated, good software is usually available to deal

with it. For most design optimization problems, the formulation procedure requires the

following 6 steps:

1. Project/problem description

2. Data and information collection

3. Definition of design variables

4. Optimization criterion

5. Formulation of constraints

6. Formulate the optimization problem

1.3.1 Project/Problem Description

The formulation process begins by developing a descriptive statement for the project/

problem, usually by the project’s owner/sponsor. The statement describes the overall

objectives of the project and the requirements to be met. This is also called the statement of

work.

1.3.2 Data and Information Collection

To develop a mathematical formulation for the problem, it is necessary to obtain all available

information on the: material properties, performance requirements, resource limits, cost of

raw materials, etc. It is also necessary to determine how to analyse the designs. Therefore,

the analysis procedures and tools must also be identified at this stage. For example: the

finite-element analysis is commonly used for structural analysis, so the relevant software tool

available needs to be identified. In many cases, the project statement is vague, and

assumptions about modelling of the problem need to be made in order to formulate and

solve it.

Page 12
Copyright © 2024 University of Leeds UK. All rights reserved.

1.3.3 Definition of Design Variables

Identify a set of variables that describe the system, called the design variables. These are

the optimization variables and are free so that any value can be assigned to them. The

number of independent design variables gives the design degrees of freedom for the

problem.

Design variables should be independent of each other as far as possible. If they are not,

there must be some equality constraints between them. There must be a minimum number

of design variables to properly formulate a design optimization problem. A numerical value

should be given to each identified design variable to determine if a trial design of the system

is specified.

1.3.4 Optimization Criterion

The optimization criterion is a scalar function which produces a numerical value once a

design is specified; i.e. when the design variable vector x is substituted into it. This criterion

is called the objective function for the optimum design problem, and it needs to be

maximized or minimized depending on the problem. The selection of a proper objective

function is an important decision in the design process. Some objective functions are: Cost

(minimized); Profit (maximized), Weight (minimized), Energy expenditure (minimized),

Vehicle ride quality (maximized).

1.3.5 Formulation of Constraints

All restrictions on the design are called constraints. It is necessary to identify all constraints

and develop expressions for them. Most realistic systems must be designed and

manufactured with the given resources and must meet performance requirements. For

example:

a. Structural members should not fail under normal operating loads.

b. Structural vibration frequencies must be different from the operating frequency of the

machine it supports; otherwise, resonance can occur and cause catastrophic failure.

c. Members must fit into the available space.

d. These constraints must depend on the design variables.

e. A meaningful constraint must be a function of at least one design variable.

1.3.6 Formulate the Optimization Problem

This is where everything from steps 2, 3, 4 and 5 are put together to formulate the

optimization problem in the form of (1.4).

Minimize:  xf

(1.4) Subject to:   mtoixg i 1;0 

   ptojxh j 1;0 

Page 13
Copyright © 2024 University of Leeds UK. All rights reserved.

Chapter 2

Graphical Method of Optimization

2.0 Introduction

Optimization problems having only two design variables can be solved by observing how they

are graphically represented. All constraint functions are plotted, and a set of feasible designs

(the feasible set) for the problem is identified. Objective function contours are then drawn, and

the optimum design is determined by visual inspection. In this section, the graphical solution

process will be introduced as well as several concepts related to optimum design problems.

The method will be introduced using a simple example of profit maximisation followed by a

further example.

2.1 Defining a Profit Maximization Example

Step 1: Project Description

A company manufactures two machines, A and B. Using available resources, either 28 A or

14 B can be manufactured daily. The sales department can sell up to 14 A machines or 24 B

machines. The shipping facility can handle no more than 16 machines per day. The company

makes a profit of £400 on each A machine and £600 on each B machine. How many A and B

machines should the company manufacture every day to maximize its profit?

STEP 2: Data and information collection

Is all the information available to solve the problem? Data and information are defined in the

project statement.

STEP 3: Definition of design variables

The following two design variables are identified in the problem statement:

 x1=Number of A machines made each day

 x2=Number of B machines made each day

STEP4: Optimization criterion:

The objective is to maximize daily profit, which can be expressed in terms of design variables

as (2.1)

21 600400 xxP  (2.1)

Page 14
Copyright © 2024 University of Leeds UK. All rights reserved.

STEP 5: Formulation of constraints

Design constraints are placed on manufacturing capacity, on sales personnel and on shipping

and handling facility. The constraint on the shipping and handling facility is quite

straightforward and is given by (2.2).

Shipping and Handling Constraints

1621  xx (2.2)

Constraints on manufacturing and sales facilities are a bit tricky. First, consider the

manufacturing limitation. It is assumed that if the company is manufacturing x1 A machines

per day, then the remaining resources and equipment can be proportionately used to

manufacture x2 B machines, and vice versa. Therefore, noting that x1/28 is the fraction of

resources used to produce A and x2/14 is the fraction used to produce B, the constraint is

expressed as (2.3).

Manufacturing Constraint

1
1428

21 
xx

 (2.3)

Similarly, the constraint on sales department resources is given as (2.4).

Sales limitation

1
2414

21 
xx

 (2.4)

Finally, the design variables must be non-negative, given in (2.5).

0, 21 xx (2.5)

Note that for this problem, the formulation remains valid even when a design variable has zero

value. The problem has two design variables and five inequality constraints. All functions of

the problem are linear in variables x1 and x2. Therefore, it is a linear programming problem.

Note also that for a meaningful solution, both design variables must have integer values at the

optimum point.

2.2 Step by Step Graphical Solution Procedure

STEP 1: Coordinate system set-up

The first step in the solution process is to set up an origin for the x-y coordinate system and

scales along the x- and y-axes. By looking at the constraint functions, a coordinate system for

the profit maximization problem can be set up using a range of 0 to 25 along both the x and y

axes, Figure 2.1 In some cases, the scale may need to be adjusted after the problem has

been graphed because the original scale may provide too small or too large a graph for the

problem.

Page 15
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 2.1: x-y coordinate system with the range of 0 to 25 along both the x and y axes.

STEP 2: Inequality constraint boundary plot

To illustrate the graphing of a constraint, let us consider the inequality 1621  xx given

in (2.2). To represent the constraint graphically, we first need to plot the constraint boundary;

that is, the points that satisfy the constraint as an equality 1621  xx . This is a linear

function of the variables x1 and x2. To plot such a function, we need two points that satisfy the

equation 1621  xx . Let these points be calculated as (16, 0) and (0, 16). Locating them

on the graph and joining them by a straight line produces the line F-J, as shown in Figure 2.2.

Line F-J then represents the boundary of the feasible region for the inequality constraint

1621  xx . Points on one side of this line violate the constraint, while those on the other

side satisfy it.

Figure 2.2: Constraint boundary for the inequality 1621  xx in the profit

maximization problem.

Page 16
Copyright © 2024 University of Leeds UK. All rights reserved.

STEP 3: Identification of the feasible region for an inequality

The next task is to determine which side of constraint boundary F-J is feasible for the constraint

1621  xx . To accomplish this, we select a point on either side of F-J and evaluate the

constraint function there. For example, at point (0,0), the left side of the constraint has a value

of 0. Because the value is less than 16, the constraint is satisfied and the region below F-J is

feasible. We can test the constraint at another point on the opposite side of F-J, say at point

(10, 10). At this point the constraint is violated because the left side of the constraint function

is 20, which is larger than 16. Therefore, the region above F-J is infeasible with respect to the

constraint, as shown in Figure 2.3. The infeasible region is “shaded-out,” a convention that is

used throughout this text. Note that if this were an equality constraint 1621  xx , the

feasible region for it would only be the points on line F-J. Although there are infinite points on

F-J, the feasible region for the equality constraint is much smaller than that for the same

constraint written as an inequality. This shows the importance of properly formulating all the

constraints of the problem.

Figure 2.3: Feasible/infeasible side for the inequality 1621  xx in the profit

maximization problem.

STEP 4: Identification of the feasible region By following the procedure that is described in

step 3, all inequalities are plotted on the graph and the feasible side of each one is identified

(if equality constraints were present, they would also be plotted at this stage). Note that the

constraints 0, 21 xx restrict the feasible region to the first quadrant of the coordinate

system. The intersection of feasible regions for all constraints provides the feasible region for

the profit maximization problem, indicated as ABCDE in Figure 2.4. Any point in this region or

on its boundary provides a feasible solution to the problem.

STEP 5: Plotting of objective function contour

The next task is to plot the objective function on the graph and locate its optimum points. For

the present problem, the objective is to maximize the profit 21 600400 xxP  , which

involves three variables: P, x1, and x2. The function needs to be represented on the graph so

Page 17
Copyright © 2024 University of Leeds UK. All rights reserved.

that the value of P can be compared for different feasible designs to locate the best design.

However, because there are infinite feasible points, it is not possible to evaluate the objective

function at every point. One way of overcoming this impasse is to plot the contours of the

objective function.

Figure 2.4: Feasible region for the profit maximization problem.

A contour is a curve on the graph that connects all points having the same objective function

value. A collection of points on a contour is also called the level set. If the objective function is

to be minimized, the contours are also called isocost curves. To plot a contour through the

feasible region, we need to assign it a value. To obtain this value, consider a point in the

feasible region and evaluate the profit function there. For example, at point (6,4), P is

480046006400 P . To plot the P=4800 contour, we plot the function

4800600400 21  xx .This contour is a straight line, as shown in Figure 2.5.

STEP 6: Identification of the optimum solution

To locate an optimum point for the objective function, we need at least two contours that pass

through the feasible region. We can then observe trends for the values of the objective function

at different feasible points to locate the best solution point. Contours for P=2400, 4800, and

7200 are plotted in Figure 2.6. We now observe the following trend: As the contours move up

toward point D, feasible designs can be found with larger values for P. It is clear from

observation that point D has the largest value for P in the feasible region. We now simply read

the coordinates of point D (4, 12) to obtain the optimum design, having a maximum value for

the profit function as P=8800. Thus, the best strategy for the company is to manufacture 4 A

and 12 B machines to maximize its daily profit. The inequality constraints in (2.2) and (2.3) are

active at the optimum; that is, they are satisfied at equality. These represent limitations on

shipping and handling facilities, and on manufacturing. The company can think about relaxing

these constraints to improve its profit. All other inequalities are strictly satisfied and therefore

inactive. Note that in this example the design variables must have integer values. Note also

that for this example all functions are linear in design variables. Therefore, all curves in Figures

2.2 through 2.6 are straight lines. In general, the functions of a design problem may not be

Page 18
Copyright © 2024 University of Leeds UK. All rights reserved.

linear, in which case curves must be plotted to identify the feasible region, and contours or

isocost curves must be drawn to identify the optimum design. To plot a nonlinear function, a

table of numerical values for xl and x2 must be generated. These points must be then plotted

on a graph and connected by a smooth curve.

Figure 2.5: Plot of P=4800 objective function contour for the profit maximization problem.

Figure 2.6: Graphical solution to the profit maximization problem: optimum point D = (4,

12); maximum profit, P = 8800.

2.3 Design Problem with Multiple Solutions

A situation can arise in which a constraint is parallel to the cost function. If the constraint is

active at the optimum, there are multiple solutions to the problem. To illustrate this situation,

consider the design problem of (2.6).

Minimize:   21 5.0 xxxf  (2.6)

Page 19
Copyright © 2024 University of Leeds UK. All rights reserved.

Subject to: 1232 21  xx

 82 21  xx

where: 21 0;0 xx 

In this problem, the second constraint is parallel to the cost function. Therefore, there is a

possibility of multiple optimum designs. Figure 2.7 provides a graphical solution to the

problem. It is seen that any point on the line B-C gives an optimum design, giving the

problem infinite optimum solutions.

Figure 2.7: Example problem with multiple solutions

2.4 Design Problem with Unbounded Solutions

Some design problems may not have a bounded solution. This situation can arise if we forget

a constraint or incorrectly formulate the problem. To illustrate such a situation, consider the

design problem of (2.7).

Minimize:   21 2xxxf 

(2.7)
Subject to: 02 21  xx

 632 21  xx

where: 21 0;0 xx 

The feasible set for the problem is shown in Figure 2.8 with several cost function contours.

It is seen that the feasible set is unbounded. Therefore, there is no finite optimum solution,

and we must re-examine the way the problem was formulated to correct the situation.

Figure 2.8 shows that the problem is underconstrained.

Page 20
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 2.8: Example problem with unbounded solutions

2.5 Design Problem with Infeasible Solutions

If we are not careful in formulating it, a design problem may not have a solution, which happens

when there are conflicting requirements or inconsistent constraint equations. There may also

be no solution when we put too many constraints on the system; that is, the constraints are so

restrictive that no feasible solution is possible. These are called infeasible problems. To

illustrate them, consider the design problem of (2.8).

Minimize:   21 2xxxf 

(2.8)
Subject to: 623 21  xx

 1232 21  xx

where: 0;0;5;5 2121  xxxx

Constraints for the problem are plotted in Figure 2.9 and their infeasible side is shaded out.

It is evident that there is no region within the design space that satisfies all constraints; that is,

there is no feasible region for the problem. Thus, the problem is infeasible. Basically, the first

two constraints impose conflicting requirements. The first requires the feasible design to be

below the line A-G, whereas the second requires it to be above the line C-F. Since the two

lines do not intersect in the first quadrant, the problem has no feasible region.

Page 21
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 2.9: Example problem with infeasible solutions

2.6 Summary of Steps to Solve an Optimization Problem Graphically

The 6 steps outlined in section 2.2, related to solving the problem defined in section 2.1,

which consisted of only inequality constraints. However, as optimization problems can have

both equality and inequality constraints, the steps in solving a graphical optimization problem

are best summarised as follow:

1) Select a suitable coordinate system, and choose an appropriate range for the

optimization variables.

2) Plot a contour for each equality and inequality constraint function to define the

boundaries of the design domain. If required, adjust the range of values to plot for the

design variables.

3) Identify the feasible region for each inequality constraint function plotted.

4) Identify the feasible design domain region.

5) Plot several contours of the objective function, for different decreasing (if

minimization) or increasing (if maximization) values of the objective function.

6) Identity the optimal solution. Read from the graph, or manipulate the constraint

equations and the objective function to obtain the optimal solution.

2.7 Example

Solve the optimization problem of (2.9) graphically.

Minimize:   2 2

1 2 1 1 2 24 5f x x x x x x  

(2.9) Subject to:   2

1 2 1 2, 2 0g x x x x   

  1 2 1 2, 6 0h x x x x   

Page 22
Copyright © 2024 University of Leeds UK. All rights reserved.

Following the 6 steps outlined in section 2.6, the solution to this problem is as follows:

1) Select a suitable coordinate system.

In looking at the objective function and constraints, all are a function of design variables x1

and x2. Consequently in solving this graphically, it is customary to place the design variable x2

on the vertical axis, and the variable x1 on the horizontal axis.

Note that: There are no limits placed on the design variables. Therefore, they could both be

either positive or negative and have any value from -∞ to +∞. However, let’s start by defining

a plausible range for x1, then substitute into the constraint as if they were all equality

constraints to define a range for x2.

Let’s assume the range for x1 to be: 110 10x   . Now, rearrange the equality and inequality

constraint equations, to calculate x2 from the range of x1.

  2 2

1 2 1 2 1 2

2

2 1

, 2 0 2 0

2

g x x x x x x

x x

       

  

(a)

 1 2 1 2

2 1

, 6 0

6

h x x x x

x x

   

  

(b)

Now substitute the limits of x1, into (a) and (b) to solve for the limits of x2.

At x1 = -10

2

2 1

2

2

2;

10 2 102

x x

x

 

   

2 1

2

6 ;

6 10 16

x x

x

 

   

At x1 = 10

2

2 1

2

2

2;

10 2 102

x x

x

 

  

2 1

2

6 ;

6 10 4

x x

x

 

   

Which then means that the range of values for x2 is: 24 102x  

And the design domain area is then that given by Figure 2.10, where these limits have been

rounded to the nearest 10, so from -10 up to 110.

Page 23
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 2.10: Coordinate system for problem (2.9).

2) Plot a contour for each equality and inequality constraint function

With the rearranged equations (a) and (b), now calculate values of x2 in the range for x1 of

110 10x   .

Table 2.1: Calculated values of x2
from range of x1

 g h

x1 x2 (g) x2 (h)

-10 102.0 16

-9 83.0 15

-8 66.0 14

-7 51.0 13

-6 38.0 12

-5 27.0 11

-4 18.0 10

-3 11.0 9

-2 6.0 8

-1 3.0 7

0 2.0 6

1 3.0 5

2 6.0 4

3 11.0 3

4 18.0 2

5 27.0 1

6 38.0 0

7 51.0 -1

8 66.0 -2

9 83.0 -3

10 102.0 -4

The values from table 2.1 are then plotted in Figure 2.11 to show the contours of the equality

and inequality constraint. In looking at this figure, since the solution to the optimization

Page 24
Copyright © 2024 University of Leeds UK. All rights reserved.

problem must lie on the equality constraint, it is easy to see, that the range of values for both

design variables needs to be changed.

Figure 2.11: Coordinate system for problem (2.9).

The range to plot is therefore now changed to be 13 2x   , and 20 10x  .

Figure 2.12: Coordinate system for problem (2.9) with new range for the design variables.

In looking at Figure 2.12, the plot of the constraint equations is not very smooth, so more

points are required. Instead of the gap between each point set at 1, a new set of values was

calculated with a gap between values of 0.1, to generate the smoother plot of Figure 2.13.

3) Identify the feasible region for each inequality constraint.

Now that the equality and inequality constraints have been plotted, we can identify the

feasible region of the inequality constraint. To do this, we need to rearrange the inequality

constraint to determine which values of x2 are in the feasible domain.

Page 25
Copyright © 2024 University of Leeds UK. All rights reserved.

  2

1 2 1 2

2

1 2

2

2 1

, 2 0

2

2

g x x x x

x x

x x

   

  

  

(c)

Figure 2.13: Coordinate system for problem (2.9) with smoother plot than Figure 2.12.

From equation (c) we can see that all values of x2, greater than or equal to the boundary for

the plot of x2 in Figure 2.13, corresponds with the feasible domain for this inequality

constraint. This is now shown in Figure 2.14 with a shaded area for the infeasible domain.

Figure 2.14: Plot of constraint equations showing the feasible region for the inequality

constraint equation.

Page 26
Copyright © 2024 University of Leeds UK. All rights reserved.

4) Identify the feasible design domain region.

Since the feasible region is above the plot of equation (a), and since the problem has an

equality constraint, then the feasible design domain is that part of the plot of equation (b)

within the feasible region. Figure 2.15, shows the feasible resign region.

Figure 2.15: Plot of constraint equations showing the feasible region for the inequality

constraint equation.

5) Plot several contours of the objective function

In order to plot contours of the objective function, it needs to be manipulated so that we can

calculate values of x2, as a function of values of x1. So, rearranging the objective function

gives:

 

   

2 2

1 2 1 1 2 2

2 2

1 1 2 2

2 2

2 1 2 1

2 2

2 1 2 1

4 5

4 5 0

5 4 0

5 4 0

f x x x x x x

x x x x f

x x x x f

x x x x f

  

   

   

    

(d)

Equation (d) is in the form of a quadratic equation of the form of equation (e).

2

2 2 0ax bx c   (e)

where:

2

1 11, 5 , 4a b x c x f     (f)

and where the solution to equation (e) is found using equation (g)

2

2

4

2

b b ac
x

a

  
 (g)

Page 27
Copyright © 2024 University of Leeds UK. All rights reserved.

Now substituting (f) into (g) gives equation (h), which will allow for the calculation of x2, at

different values of x1, for different objective function values of f. Thus allowing for the

generation of contour plots for different values of f.

     
2 2

2
1 1 1

2

2 2

1 1 1

2

2

1 1

2

5 5 4 1 44

2 2 1

5 25 4 16

2

5 9 4

2

x x x fb b ac
x

a

x x f x
x

x x f
x

         
 



  
 

 
 

(h)

When equation (h) is plotted, for different values of f, the plot of Figure 2.17 is generated. To

begin with, different values of f were tried until the plots of the contours started to appear

within the feasible domain. Then only plots for values of f = 100, 50, 10, 0 and -5 were

plotted.

Figure 2.17: Contour plots of the objective function using equation (h).

As can clearly be seen from Figure 2.17, the contour of the objective function decrease in

value as they get closer to the intersection of both constraints on the right hand quadrant of

plot. Such that the contour for f = –5 is the lowest value which is within the feasible line

region.

6) Identity the optimal solution

From Figure 2.17, we can see that the optimum value is at the intersection of both

constraints on the right hand quadrant of plot. If both constraint equations (a) and (b) are

now solved, we can find the values of x1, x2 and f, which will be the optimum value for this

problem.

Page 28
Copyright © 2024 University of Leeds UK. All rights reserved.

As (a) and (b) are both equal to x2, both equations are therefore equal to each other, which

gives:

2

2 1 1

2

1 1

2

1 1

2 6

2 6 0

4 0

x x x

x x

x x

   

   

   

(i)

Solving the quadratic equation (i) gives:

 

2

1 1

2

1

1

4 0

1 1 4 1 4 1 1 16

2 1 2

1 17 1 4.1231
2.5616 1.5616

2 2

x x

x

x or

  

        
 



   
    

(i)

And from Figure 2.17, since x1 has to be positive, then the value of x1 is 1.5616, substituting

into (b), and then into the objective function gives that the optimal values for the design

variables and the optimum value for the objective function are:

1

2

1.5616

4.4384

5.20125

x

x

f





 

These are then plotted onto Figure 2.18 to show the optimal solution to this problem

Figure 2.18: Contour plots of the objective function showing the optimal solution

Page 29
Copyright © 2024 University of Leeds UK. All rights reserved.

Chapter 3

Unconstrained Optimization Methods

3.0 Introduction

This chapter looks at some methods for solving unconstrained nonlinear optimization

problems.

3.1 The Bisector Method

In the interval halving method, exactly one-half of the current interval of uncertainty is

deleted in every stage. It requires three experiments in the first stage and two experiments in

each subsequent stage. The procedure can be described by the following four steps:

1. Divide the initial interval  ba, of uncertainty abL 0 into four equal parts

  4abx  and label the middle point xax  20 and the quarter-interval points

xax 1 and xax  32 .

2. Evaluate the function f (x) at the three interior points to obtain  11 xff  ,  00 xff  , and

 22 xff  .

3. There are then 3 cases to consider corresponding with Figure 3.1, these are:

a) If 102 fff  as shown in Figure 3.1(a), delete the interval (x0, b), label x1 and x0 as

the new x0 and b, respectively, and go to step 4.

b) If 102 fff  as shown in Figure 3.1(b), delete the interval (a, x0), label x2 and x0 as

the new x0 and a, respectively, and go to step 4.

c) If 01 ff  and 02 ff  as shown in Figure 3.1(c), delete both the intervals (a, x1)

and (x2, b), label x1 and x2 as the new a and b, respectively, and go to step 4.

4. Test whether the new interval of uncertainty, abL  , satisfies the convergence

criterion L ≤ ε, where ε is a small quantity. If the convergence criterion is satisfied, stop

the procedure. Otherwise, set the new LL 0 and go to step 1.

Remarks:

1. In this method, the function value at the middle point of the interval of uncertainty,
0f , will

be available in all the stages except the first stage.

2. The interval of uncertainty remaining at the end of n experiments (n ≥ 3 and odd) is given

by (3.1).
 

0

2

1

2

1
LL

n

n 











 (3.1)

Page 30
Copyright © 2024 University of Leeds UK. All rights reserved.

(a) (b)

(c)
Figure 3.1: Possibilities in the interval halving method: (a)

102 fff  ; (b)
102 fff  ; (c)

01 ff  and
02 ff  .

Bisector Example Problem 1: Problem 45 in Worked Examples

Minimize 𝑓(𝑥) = 7𝑥2 − 20𝑥 + 22 for −2 ≤ 𝑥 ≤ 4 with Bisector Search Parameters: xmin=-2,
xmax=4, convergence tolerance = 0.01. Calculations:
iteration 1 of bisector search, domain length = 6.00000
a=-2.000 f(a)=90.000
x1=-0.500 f(x1)=33.750
x0= 1.000 f(x0)= 9.000
x2= 2.500 f(x2)=15.750
b= 4.000 f(b)=54.000
iteration 2 of bisector search, domain length = 3.00000
a=-0.500 f(a)=33.750
x1= 0.250 f(x1)=17.438
x0= 1.000 f(x0)= 9.000
x2= 1.750 f(x2)= 8.438
b= 2.500 f(b)=15.750
iteration 3 of bisector search, domain length = 1.50000
a= 1.000 f(a)= 9.000
x1= 1.375 f(x1)= 7.734
x0= 1.750 f(x0)= 8.438
x2= 2.125 f(x2)=11.109
b= 2.500 f(b)=15.750
iteration 4 of bisector search, domain length = 0.75000
a= 1.000 f(a)= 9.000
x1= 1.188 f(x1)= 8.121
x0= 1.375 f(x0)= 7.734
x2= 1.563 f(x2)= 7.840
b= 1.750 f(b)= 8.438
iteration 5 of bisector search, domain length = 0.37500
a= 1.188 f(a)= 8.121
x1= 1.281 f(x1)= 7.866
x0= 1.375 f(x0)= 7.734
x2= 1.469 f(x2)= 7.726
b= 1.563 f(b)= 7.840
iteration 6 of bisector search, domain length = 0.18750
a= 1.375 f(a)= 7.734
x1= 1.422 f(x1)= 7.715
x0= 1.469 f(x0)= 7.726

Page 31
Copyright © 2024 University of Leeds UK. All rights reserved.

x2= 1.516 f(x2)= 7.767
b= 1.563 f(b)= 7.840
iteration 7 of bisector search, domain length = 0.09375
a= 1.375 f(a)= 7.734
x1= 1.398 f(x1)= 7.721
x0= 1.422 f(x0)= 7.715
x2= 1.445 f(x2)= 7.716
b= 1.469 f(b)= 7.726
iteration 8 of bisector search, domain length = 0.04688
a= 1.398 f(a)= 7.721
x1= 1.410 f(x1)= 7.717
x0= 1.422 f(x0)= 7.715
x2= 1.434 f(x2)= 7.714
b= 1.445 f(b)= 7.716
iteration 9 of bisector search, domain length = 0.02344
a= 1.422 f(a)= 7.715
x1= 1.428 f(x1)= 7.714
x0= 1.434 f(x0)= 7.714
x2= 1.439 f(x2)= 7.715
b= 1.445 f(b)= 7.716
iteration 10 of bisector search, domain length = 0.01172
a= 1.422 f(a)= 7.715
x1= 1.425 f(x1)= 7.714
x0= 1.428 f(x0)= 7.714
x2= 1.431 f(x2)= 7.714
b= 1.434 f(b)= 7.714
search completed after 10 iterations xmin= 1.42773 fmin= 7.71429

Bisector Example Problem 2: Problem 46 in Worked Examples

Minimize 𝑓(𝑥) = 𝑥3 + 𝑥2 − 𝑥 − 2 for −1 ≤ 𝑥 ≤ 2 with Bisector Search Parameters: xmin=-1,
xmax=2, convergence tolerance = 0.01. Calculations:

iteration 1 of bisector search, domain length = 3.00000
a=-1.000 f(a)=-1.000
x1=-0.250 f(x1)=-1.703
x0= 0.500 f(x0)=-2.125
x2= 1.250 f(x2)= 0.266
b= 2.000 f(b)= 8.000
iteration 2 of bisector search, domain length = 1.50000
a=-0.250 f(a)=-1.703
x1= 0.125 f(x1)=-2.107
x0= 0.500 f(x0)=-2.125
x2= 0.875 f(x2)=-1.439
b= 1.250 f(b)= 0.266
iteration 3 of bisector search, domain length = 0.75000

Page 32
Copyright © 2024 University of Leeds UK. All rights reserved.

a= 0.125 f(a)=-2.107
x1= 0.313 f(x1)=-2.184
x0= 0.500 f(x0)=-2.125
x2= 0.688 f(x2)=-1.890
b= 0.875 f(b)=-1.439
iteration 4 of bisector search, domain length = 0.37500
a= 0.125 f(a)=-2.107
x1= 0.219 f(x1)=-2.160
x0= 0.313 f(x0)=-2.184
x2= 0.406 f(x2)=-2.174
b= 0.500 f(b)=-2.125
iteration 5 of bisector search, domain length = 0.18750
a= 0.219 f(a)=-2.160
x1= 0.266 f(x1)=-2.176
x0= 0.313 f(x0)=-2.184
x2= 0.359 f(x2)=-2.184
b= 0.406 f(b)=-2.174
iteration 6 of bisector search, domain length = 0.09375
a= 0.266 f(a)=-2.176
x1= 0.289 f(x1)=-2.181
x0= 0.313 f(x0)=-2.184
x2= 0.336 f(x2)=-2.185
b= 0.359 f(b)=-2.184
iteration 7 of bisector search, domain length = 0.04688
a= 0.313 f(a)=-2.184
x1= 0.324 f(x1)=-2.185
x0= 0.336 f(x0)=-2.185
x2= 0.348 f(x2)=-2.185
b= 0.359 f(b)=-2.184
iteration 8 of bisector search, domain length = 0.02344
a= 0.324 f(a)=-2.185
x1= 0.330 f(x1)=-2.185
x0= 0.336 f(x0)=-2.185
x2= 0.342 f(x2)=-2.185
b= 0.348 f(b)=-2.185
iteration 9 of bisector search, domain length = 0.01172
a= 0.330 f(a)=-2.185
x1= 0.333 f(x1)=-2.185
x0= 0.336 f(x0)=-2.185
x2= 0.339 f(x2)=-2.185
b= 0.342 f(b)=-2.185
search completed after 9 iterations xmin= 0.33301 fmin= -2.18518

Page 33
Copyright © 2024 University of Leeds UK. All rights reserved.

3.2 The Golden Section Method

The Golden Section Method is one of the better methods in the class of interval-reducing

methods. The basic idea of the method is as follows: Evaluate the function at predetermined

points, compare them to find the minimum. Then converge on the minimum point by

systematically reducing the interval of uncertainty. The method uses fewer function

evaluations to reach the minimum point compared with other similar methods.

The different steps of the Golden Search Algorithm used for the minimization of a single
value function in the interval  ba, are as follow:

1) If this is the first iteration define the search interval  00,ba to be the specified interval in

which to search for the minimum, given by (3.2).

 bbaa  00 , (3.2)

2) Calculate two intermediate points  11,ba in the interval  00,ba , using (5.3) and (5.4):

 0001 abaa   (3.3)

 0001 abbb   (3.4)

38197.0
2

53
: 


where

3) Evaluate the function at the two intermediate points  11,ba to obtain    11 bfandaf :

4) Determine the new search limit by the following comparisons:

a) If (3.5) is satisfied, the minimum point lies between a0 and b1, so the new search interval

is then given by becomes (3.6). Go to step 5.

   11 bfaf  (3.5)

 1000 , bbaa  (3.6)

b) If (3.7) is satisfied, the minimum point lies between a1 and b0, then the new search

interval becomes (5.8). Go to step 5.

   11 bfaf  (3.7)

 0010 , bbaa  (3.8)

Page 34
Copyright © 2024 University of Leeds UK. All rights reserved.

c) If (3.9) is satisfied, the minimum point lies between a1 and b1, then the new search

interval becomes (3.10). Go to step 5

   11 bfaf  (3.9)

 1010 , bbaa  (3.10)

5) Calculate the Interval of Uncertainty (I), using (3.11).

00 abI  (3.11)

6) Check limit to stop algorithm. If (I) is equal to, or smaller than the specified minimum

range (3.12), using (3.13) calculate the optimal functional value and stop, else go to

step 2.

RangeI  (3.12)

2
00 ba

xOptimum


 (3.13)

Golden Search Example Problem 1: Problem 45 in Worked Examples

Minimize 𝑓(𝑥) = 7𝑥2 − 20𝑥 + 22 for −2 ≤ 𝑥 ≤ 4 with Golden Search Parameters: xmin=-2,
xmax=4, tol=0.01. Calculations:

iteration 1 of golden section, domain length = 6.00000
a0=-2.000 f(a0)=90.000
a1= 0.292 f(a1)=16.760
b1= 1.708 f(b1)= 8.262
b0= 4.000 f(bo)=54.000
iteration 2 of golden section, domain length = 3.70820
a0= 0.292 f(a0)=16.760
a1= 1.708 f(a1)= 8.262
b1= 2.584 f(b1)=17.053
b0= 4.000 f(bo)=54.000
iteration 3 of golden section, domain length = 2.29180
a0= 0.292 f(a0)=16.760
a1= 1.167 f(a1)= 8.193
b1= 1.708 f(b1)= 8.262
b0= 2.584 f(bo)=17.053
iteration 4 of golden section, domain length = 1.41641
a0= 0.292 f(a0)=16.760
a1= 0.833 f(a1)=10.199
b1= 1.167 f(b1)= 8.193
b0= 1.708 f(bo)= 8.262
iteration 5 of golden section, domain length = 0.87539
a0= 0.833 f(a0)=10.199
a1= 1.167 f(a1)= 8.193
b1= 1.374 f(b1)= 7.735
b0= 1.708 f(bo)= 8.262
iteration 6 of golden section, domain length = 0.54102
a0= 1.167 f(a0)= 8.193
a1= 1.374 f(a1)= 7.735
b1= 1.502 f(b1)= 7.752
b0= 1.708 f(bo)= 8.262
iteration 7 of golden section, domain length = 0.33437
a0= 1.167 f(a0)= 8.193

Page 35
Copyright © 2024 University of Leeds UK. All rights reserved.

a1= 1.295 f(a1)= 7.839
b1= 1.374 f(b1)= 7.735
b0= 1.502 f(bo)= 7.752
iteration 8 of golden section, domain length = 0.20665
a0= 1.295 f(a0)= 7.839
a1= 1.374 f(a1)= 7.735
b1= 1.423 f(b1)= 7.715
b0= 1.502 f(bo)= 7.752
iteration 9 of golden section, domain length = 0.12772
a0= 1.374 f(a0)= 7.735
a1= 1.423 f(a1)= 7.715
b1= 1.453 f(b1)= 7.718
b0= 1.502 f(bo)= 7.752
iteration 10 of golden section, domain length = 0.07893
a0= 1.374 f(a0)= 7.735
a1= 1.404 f(a1)= 7.719
b1= 1.423 f(b1)= 7.715
b0= 1.453 f(bo)= 7.718
iteration 11 of golden section, domain length = 0.04878
a0= 1.404 f(a0)= 7.719
a1= 1.423 f(a1)= 7.715
b1= 1.434 f(b1)= 7.715
b0= 1.453 f(bo)= 7.718
iteration 12 of golden section, domain length = 0.03015
a0= 1.423 f(a0)= 7.715
a1= 1.434 f(a1)= 7.715
b1= 1.441 f(b1)= 7.715
b0= 1.453 f(bo)= 7.718
iteration 13 of golden section, domain length = 0.01863
a0= 1.423 f(a0)= 7.715
a1= 1.430 f(a1)= 7.714
b1= 1.434 f(b1)= 7.715
b0= 1.441 f(bo)= 7.715
iteration 14 of golden section, domain length = 0.01152
a0= 1.423 f(a0)= 7.715
a1= 1.427 f(a1)= 7.714
b1= 1.430 f(b1)= 7.714
b0= 1.434 f(bo)= 7.715
Golden section completed after 14 iterations xmin= 1.43058 fmin= 7.71431

Page 36
Copyright © 2024 University of Leeds UK. All rights reserved.

Golden Search Example Problem 2: Problem 46 in Worked Examples

Minimize 𝑓(𝑥) = 𝑥3 + 𝑥2 − 𝑥 − 2 for −1 ≤ 𝑥 ≤ 2 with Golden Search Parameters: xmin=-1,
xmax=2, convergence tolerance = 0.01. Calculations:

iteration 1 of golden section, domain length = 3.00000
a0=-1.000 f(a0)=-1.000
a1= 0.146 f(a1)=-2.122
b1= 0.854 f(b1)=-1.502
b0= 2.000 f(bo)= 8.000
iteration 2 of golden section, domain length = 1.85410
a0=-1.000 f(a0)=-1.000
a1=-0.292 f(a1)=-1.648
b1= 0.146 f(b1)=-2.122
b0= 0.854 f(bo)=-1.502
iteration 3 of golden section, domain length = 1.14590
a0=-0.292 f(a0)=-1.648
a1= 0.146 f(a1)=-2.122
b1= 0.416 f(b1)=-2.171
b0= 0.854 f(bo)=-1.502
iteration 4 of golden section, domain length = 0.70820
a0= 0.146 f(a0)=-2.122
a1= 0.416 f(a1)=-2.171
b1= 0.584 f(b1)=-2.044
b0= 0.854 f(bo)=-1.502
iteration 5 of golden section, domain length = 0.43769
a0= 0.146 f(a0)=-2.122
a1= 0.313 f(a1)=-2.184
b1= 0.416 f(b1)=-2.171
b0= 0.584 f(bo)=-2.044
iteration 6 of golden section, domain length = 0.27051
a0= 0.146 f(a0)=-2.122
a1= 0.249 f(a1)=-2.172
b1= 0.313 f(b1)=-2.184
b0= 0.416 f(bo)=-2.171
iteration 7 of golden section, domain length = 0.16718
a0= 0.249 f(a0)=-2.172
a1= 0.313 f(a1)=-2.184
b1= 0.353 f(b1)=-2.184

Page 37
Copyright © 2024 University of Leeds UK. All rights reserved.

b0= 0.416 f(bo)=-2.171
iteration 8 of golden section, domain length = 0.10333
a0= 0.313 f(a0)=-2.184
a1= 0.353 f(a1)=-2.184
b1= 0.377 f(b1)=-2.181
b0= 0.416 f(bo)=-2.171
iteration 9 of golden section, domain length = 0.06386
a0= 0.313 f(a0)=-2.184
a1= 0.337 f(a1)=-2.185
b1= 0.353 f(b1)=-2.184
b0= 0.377 f(bo)=-2.181
iteration 10 of golden section, domain length = 0.03947
a0= 0.313 f(a0)=-2.184
a1= 0.328 f(a1)=-2.185
b1= 0.337 f(b1)=-2.185
b0= 0.353 f(bo)=-2.184
iteration 11 of golden section, domain length = 0.02439
a0= 0.328 f(a0)=-2.185
a1= 0.337 f(a1)=-2.185
b1= 0.343 f(b1)=-2.185
b0= 0.353 f(bo)=-2.184
iteration 12 of golden section, domain length = 0.01507
a0= 0.328 f(a0)=-2.185
a1= 0.334 f(a1)=-2.185
b1= 0.337 f(b1)=-2.185
b0= 0.343 f(bo)=-2.185
Golden section completed after 12 iterations xmin= 0.33282 fmin= -2.18518

3.3 Fibonacci Search Method

The Fibonacci sequence F1, F2, F3,...,Fn is defined as follows. Starting with the following two

values: 01 F and 10 F

Then for values of 0k we have that (3.14) defined the Fibonacci sequence:

11   kkk FFF (3.14)

The first 10 values of the Fibonacci sequence are then given in Table 5.1.

Page 38
Copyright © 2024 University of Leeds UK. All rights reserved.

Table 5.1: Fibonacci Sequence

k Fk

-1 0

0 1

1 1

2 2

3 3

4 5

5 8

6 13

7 21

8 34

9 55

10 89

Instead of using the a constant value of)38197.0( , as was the case for the Golden search

method, for the Fibonacci search, the value of k changes with iteration number and is given

by the sequence of (3.15). Note that the sequence of k is in reverse order to the Fibonacci

number sequence, and that you always need one more Fibonacci sequence number than the

number of iterations required!!

2

1

2

1

1
2

1

1

1

1

1

1

F

F

F

F

F

F

F

F

N

kN

kN
k

N

N

N

N




























 (3.15)

Fibonacci Search Example Problem 1: Problem 45 in Worked Examples

Minimize 𝑓(𝑥) = 7𝑥2 − 20𝑥 + 22 for −2 ≤ 𝑥 ≤ 4 with Fibonacci Search Parameters: N=8
Fibonacci terms (i.e. 7 Fibonacci iterations), xmin=-2, xmax=4. Calculations:

iteration 1 of fibonacci, rho = 0.38182 domain length = 6.00000
a0=-2.000 f(a0)=90.000
a1= 0.291 f(a1)=16.774
b1= 1.709 f(b1)= 8.265
b0= 4.000 f(bo)=54.000
iteration 2 of fibonacci, rho = 0.38235 domain length = 3.70909
a0= 0.291 f(a0)=16.774
a1= 1.709 f(a1)= 8.265
b1= 2.582 f(b1)=17.024
b0= 4.000 f(bo)=54.000
iteration 3 of fibonacci, rho = 0.38095 domain length = 2.29091
a0= 0.291 f(a0)=16.774
a1= 1.164 f(a1)= 8.206

Page 39
Copyright © 2024 University of Leeds UK. All rights reserved.

b1= 1.709 f(b1)= 8.265
b0= 2.582 f(bo)=17.024
iteration 4 of fibonacci, rho = 0.38462 domain length = 1.41818
a0= 0.291 f(a0)=16.774
a1= 0.836 f(a1)=10.169
b1= 1.164 f(b1)= 8.206
b0= 1.709 f(bo)= 8.265
iteration 5 of fibonacci, rho = 0.37500 domain length = 0.87273
a0= 0.836 f(a0)=10.169
a1= 1.164 f(a1)= 8.206
b1= 1.382 f(b1)= 7.730
b0= 1.709 f(bo)= 8.265
iteration 6 of fibonacci, rho = 0.40000 domain length = 0.54545
a0= 1.164 f(a0)= 8.206
a1= 1.382 f(a1)= 7.730
b1= 1.491 f(b1)= 7.741
b0= 1.709 f(bo)= 8.265
iteration 7 of fibonacci, rho = 0.33333 domain length = 0.32727
a0= 1.164 f(a0)= 8.206
a1= 1.273 f(a1)= 7.884
b1= 1.382 f(b1)= 7.730
b0= 1.491 f(bo)= 7.741
Fibonacci search completed with xmin= 1.38182 fmin= 7.72959

Fibonacci Search Example Problem 2: Problem 46 in Worked Examples

Minimize 𝑓(𝑥) = 𝑥3 + 𝑥2 − 𝑥 − 2 for −1 ≤ 𝑥 ≤ 2 with with Fibonacci Search Parameters: N=8
Fibonacci terms (i.e. 7 Fibonacci iterations), xmin=-2, xmax=4. Calculations:

iteration 1 of fibonacci, rho = 0.38182 domain length = 3.00000
a0=-1.000 f(a0)=-1.000
a1= 0.145 f(a1)=-2.121
b1= 0.855 f(b1)=-1.500
b0= 2.000 f(bo)= 8.000
iteration 2 of fibonacci, rho = 0.38235 domain length = 1.85455
a0=-1.000 f(a0)=-1.000
a1=-0.291 f(a1)=-1.649
b1= 0.145 f(b1)=-2.121

Page 40
Copyright © 2024 University of Leeds UK. All rights reserved.

b0= 0.855 f(bo)=-1.500
iteration 3 of fibonacci, rho = 0.38095 domain length = 1.14545
a0=-0.291 f(a0)=-1.649
a1= 0.145 f(a1)=-2.121
b1= 0.418 f(b1)=-2.170
b0= 0.855 f(bo)=-1.500
iteration 4 of fibonacci, rho = 0.38462 domain length = 0.70909
a0= 0.145 f(a0)=-2.121
a1= 0.418 f(a1)=-2.170
b1= 0.582 f(b1)=-2.046
b0= 0.855 f(bo)=-1.500
iteration 5 of fibonacci, rho = 0.37500 domain length = 0.43636
a0= 0.145 f(a0)=-2.121
a1= 0.309 f(a1)=-2.184
b1= 0.418 f(b1)=-2.170
b0= 0.582 f(bo)=-2.046
iteration 6 of fibonacci, rho = 0.40000 domain length = 0.27273
a0= 0.145 f(a0)=-2.121
a1= 0.255 f(a1)=-2.173
b1= 0.309 f(b1)=-2.184
b0= 0.418 f(bo)=-2.170
iteration 7 of fibonacci, rho = 0.33333 domain length = 0.16364
a0= 0.255 f(a0)=-2.173
a1= 0.309 f(a1)=-2.184
b1= 0.364 f(b1)=-2.183
b0= 0.418 f(bo)=-2.170
iteration 8 of fibonacci, rho = 0.50000 domain length = 0.10909
a0= 0.255 f(a0)=-2.173
a1= 0.309 f(a1)=-2.184
b1= 0.309 f(b1)=-2.184
b0= 0.364 f(bo)=-2.183
Fibonacci completed with xmin= 0.33636 fmin= -2.18517

3.4 Steepest-Descent Method

The steepest-descent method is the simplest numerical method for unconstrained

optimization. The aim of the method is to find the direction d, at the current iteration, in which

Page 41
Copyright © 2024 University of Leeds UK. All rights reserved.

the cost function f(x) decreases most rapidly, at least locally. The steepest-descent method is

a first-order method since only the gradient of the cost function is calculated and used to

evaluate the search direction.

The gradient of a scalar function f(x1, x2, . . ., xn) as the column vector is given by (3.16).

T

nx

f

x

f

x

f




















 

21

fc (3.16)

The vector c is used to represent the gradient of the cost function f(x); represented by (3.17).

i

i
x

f
c




 (3.17)

The point xk at which this vector is then calculated is represented by (3.18).

    
   T

i

k
kk

x

xf
xcc 












 (3.18)

The gradient at a point x points is the direction of maximum increase in the cost function. Thus

the direction of maximum decrease is opposite to that, that is, negative of the gradient vector.

Any small move in the negative gradient direction will result in the maximum local rate of

decrease in the cost function. The negative gradient vector thus represents a direction of

steepest descent for the cost function and is represented by (3.19).

ntoi
x

f
cdor

i

ii 1,, 



 cd (3.19)

Since d = – c , the descent condition of inequality is always satisfied due to (5.20).

  0
2
 cdc (3.20)

The Steepest-Descent Algorithm is then given by the following 6 steps:

Step 1: Estimate a starting design  0x and set the iteration counter 0k . Select a

convergence parameter 0 .

Step 2: Calculate the gradient of  xf at the current point
 kx as     kk xfc  .

Step 3: Calculate the length of
 kc as

 kc . If
  kc , then stop the iterative process

because  kxx * is a local minimum point. Otherwise, continue.

Step 4: Let the search direction at the current point  kx be    kk cd  .

Step 5: Calculate a step size
k that minimizes       kkxff d  in the direction  kd

Any one-dimensional search algorithm may be used to determine
k .

Step 6: Update the design using
     kkk xx d1

. Set 1 kk and go to Step 2.

Page 42
Copyright © 2024 University of Leeds UK. All rights reserved.

The basic idea of the steepest-descent method is quite simple. We start with an initial estimate

for the minimum design. The direction of steepest descent is computed at that point. If the

direction is nonzero, we move as far as possible along it to reduce the cost function. At the

new design point, we calculate the steepest-descent direction again and repeat the entire

process.

3.5 What is a Simplex

The simplex can be thought of as a polygon with n + 1 vertices. Where n is the number of

design variables. So, if there are 2 design variables, n = 2, the simplex has 3 vertices and is

a triangle, Figure 3.2.

Figure 3.2: A Simplex which represents 2 design variables consists of 3 points and is a

triangle.

If there are 3 design variables, then n = 3 and the simplex has 4 vertices and is now a

tetrahedron, Figure 3.3.

Figure 3.3: A Simplex which represents 3 design variables consists of 4 points and is a

tetrahedron.

When the points are equidistant, the simplex is said to be regular. Basically, it has one more

point than the number of design variables which represents the number of dimensions.

3.6 Nelder-Mead Simplex Method

The Nelder and Mead simplex method carries out a search in nth dimensional space using

heuristic ideas. Also known as nonlinear simplex.

The strengths of this method are:

1) Does NOT require derivatives of the Objective Function

2) The Objective Function does not have to be smooth.

Page 43
Copyright © 2024 University of Leeds UK. All rights reserved.

The weakness of the method are that it is:

1) Not very efficient, particularly for problems with more than about 10 design variables;

2) Above n = 10, convergence becomes increasingly difficult

The basic idea in the simplex method is to compare the values of the objective function at the

n + 1 vertices of a general simplex. Then move the simplex gradually toward the optimum

point using an iterative process with 5 simple operations. The sequence of operations is

chosen based on the relative values of the objective function at each of the points.

The Steps of the Nelder-Mead Simplex Method are:

1) Find the n+1 points of the simplex

2) Evaluate and sort the points

3) Carry out the 5 Simplex Operations:

i) Reflection,

ii) Expansion,

iii) Inside and Outside Contraction

iv) Shrinking

v) Convergence

We are now going to look at these 3 steps and 5 operations. Appreciate that each of the

operations generates a new point. The sequence of operations carried out in each iteration

depends on the value of the objective function at the new point relative to the other key points.

Let's now start with determining the initial Simplex, that is, the n+1 points

3.6.1 Step 1: Find the n+1 points of the simplex
The 1st step is to find the n+1 points of the simplex from an initial guess starting position x0.

Then add a step size to each component of x0 to generate n+1 new points. Generating a

simplex with equal length edges is preferable. Start by assuming that the length of all sides is

defined as c and that the initial guess, x0 is the (n + 1)th point. The remaining points, i = 1...n

can be computed by adding a vector to x0. With all components  1,2, 1, 1,i i i n   equal

to b, apart for the ith component which is a. The equations to calculate a and b are given in

(5.21) and (3.22).

3 (3.21)

2

c
a b  (3.22)

where n is the number of design variables.

Let us assume that we have 2 design variables, x1 and x2. That means that we need to

generate 3 points. Let us also assume that the point x0 is given by an initial guess:
0

0

1

0

2

x
x

x

 
  
  

And let's assume a step size of c units.

Since n = 2, then b and a become (i) and (ii):

     1 1 2 1 1 3 1 0.25882
2 2 2 2 2

c c c
b n c

n
         (i)

Page 44
Copyright © 2024 University of Leeds UK. All rights reserved.

0.25882 0.96593
2 2

c c
a b c c     (ii)

The two new points, x1 and x2 then become (iii) and (iv).

0 0

0 0

1 1

1

2 2

0.96593

0.25882

x a x c
x

x b x c

    
    

       

 (iii)

0 0

0 0

1 1

2

2 2

0.25882

0.96593

x b x c
x

x a x c

    
    

       

 (iv)

So, if c = 3 and 0

1.5

1
x

 
  
 

, then x1 and x2 become (v) and (vi).

0

0

1

1

2

0.96593 1.5 0.96593 3 4.398

0.25882 1 0.25882 3 1.776

x c
x

x c

      
       

       

 (v)

0

0

1

2

2

0.25882 1.5 0.25882 3 2.276

0.96593 1 0.96593 3 3.898

x c
x

x c

      
       

       

 (vi)

So the 3 points of the simplex are then given by (vii). And graphically, these 3 points generate

the Simplex of Figure 3.4.

0 1 2

1.5 4.398 2.276
; ;

1 1.776 3.898
x x x

     
       
     

 (vii)

Figure 3.4: The triangular Simplex showing the generated points about x0.

Page 45
Copyright © 2024 University of Leeds UK. All rights reserved.

If we have a problem with 3 design variables, x1, x2 and x3. That means that we need to

generate 4 points.

If the initial guess point x0 is
0 0 00 1 2 3

T

x x x x   
 and assuming a step size of c units, then

since n = 3, then b and a become (viii) and (ix).

     1 1 3 1 1 4 1 0.23570
2 3 2 3 2

c c c
b n c

n
         (viii)

0.23570 0.94281
2 2

c c
a b c c     (ix)

The three new points, x1, x2 and x3 then become (x).

0 0

0 0

0 0

1 1

1 2 2

3 3

0.94281

0.23570

0.23570

x a x c

x x b x c

x b x c

    
   

      
   

       

,

0

0

0

1

2 2

3

x b

x x a

x b

 
 

  
 

  

and

0

0

0

1

3 2

3

x b

x x b

x a

 
 

  
 

  

 (x)

Table 3.2 gives the calculated values for a and b from equations (3.21) and (3.22) to calculate

the vertices of the initial Simplex for problems of up to 10 design variables

Table 3.2: Values of a and b for up to 10 design variables
 n a b
 2 0.96593c 0.25882c
 3 0.94281c 0.23570c
 4 0.92561c 0.21851c
 5 0.91210c 0.20499c
 6 0.90106c 0.19395c
 7 0.89181c 0.18470c
 8 0.88388c 0.17678c
 9 0.87699c 0.16988c
 10 0.87092c 0.16381c

3.6.2 Step 2: Evaluate and Sort the points

After generating the initial simplex, the objective function needs to be evaluated at each of its

vertices. Then all of the points need to be sorted from best (lowest valued) to worst (highest

valued). Such that the points are arranged as per (3.23).

       L i T Hf x f x f x f x     (3.23)

Three points then need to be identified:

1) The point with the highest (worst) values of the objective function: (xH)

2) The point which is next to the highest (worst) values of the objective function: (xT)

3) The point with the lowest (best) values of the objective function: (xL)

The following five (5) Simplex operations now need to be carried out:

Page 46
Copyright © 2024 University of Leeds UK. All rights reserved.

3.6.3 Step 3: Carry out the 5 Simplex Operations

3.6.3.1 Reflection

Calculate the centroid of all the points xi, excluding the worst point (when i = H) using equation

(3.24). Graphically, for the case of n = 2, it looks like Figure 3.5. Note that for the Simplex with

2 design variables (n=3), x2 is also the next to highest point xT.
1

1

1 n

Ce i
i

i H

x x
n







 
(3.24)

After computing xCe, we know that the line from xH to xCe is a descent direction, Figure 3.6. A

new point can then be found on this line by reflection, which means that we reflect the distance

from H to Ce about Ce.

Figure 3.5: Simplex showing the position of the centroid point.

Figure 3.6: Simplex showing the descent direction from xH towards xCe.

This gives the new point XR, which is calculated using equation (3.25) and is shown in Figure

3.7.

   1R Ce H Ce Ce Hx x x x x x        (3.25)

where:  is the reflection coefficient It always has a value greater than 0 but less than 1,

although it is usually given the value 1. It is defined by (3.26).

distance between and

distance between and
R Ce

H Ce

x x

x x
  (3.26)

Page 47
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 3.7: Simplex showing the reflected new point xR.

Since the direction of movement of the simplex is always away from the worst result, we will

be moving in a favourable direction.

Depending on the value of the objective function at the reflected point xR, there are 4 choices

which can be made of what to do next, these are:

1) If f(xR) lies between f(xT) and f(xL) such that       L R Tf x f x f x  , then xH is replaced

by xR. A new simplex is started, and therefore we need to check for convergence. So go

to Section 3.6.3.5 Convergence.

2) If f(xR) is less than f(xL) such that     R Lf x f x , then the reflection produced a new

minimum. This suggests that moving further in the same direction pointing from xCe to xR

might produce a new minimum. Which means we need to carry out the Expansion

Operation, so go to Section 3.6.3.2 Expansion.

3) If f(xR) is greater than f(xT) and less than f(xH) such that       T R Hf x f x f x  . This

suggests that the reflected point is between the two worst points. Which means we need

to carry out the Outside Contraction Operation, so go to Section 5.6.3.3 Outside

Contraction.

4) If f(xR) is greater than f(xH) such that     R Hf x f x , this means that the reflection

produced a point worse than the worst. This suggests that there might be a point inside

the original points which might be better. Which means we need to carry out Inside

Contraction Operation (iii), so go to Section 3.6.3.3a Inside Contraction

3.6.3.2 Expansion

To expand xR to xE , it is necessary to use equation (3.27), where the expansion process is

shown in Figure 3.8.

   1E R Ce Ce R Cex x x x x x        (3.27)

where:  is the expansion coefficient It always has a value greater than 1, although it is usually

given the value 2. It is defined by (3.28).

distance between and
1

distance between and
E Ce

R Ce

x x

x x
   (3.28)

Page 48
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 3.8: Simplex showing the expansion new point xE.

Depending on the value of the objective function at the expansion point xE, there are 2 choices

which can be made of what to do next, these are:

1) If f(xE) is less than f(xR) such that f(xE) < f(xR), then we need to replace xH with xE. A new

simplex is started, and therefore we need to check for convergence. So go to Section

3.6.3.5 Convergence.

2) If f(xE) is greater than f(xR) such that f(xE) > f(xR), this means that the Expansion process

was NOT successful. So, need to replace xH with xR and. A new simplex is started, and

therefore we need to check for convergence. So go to Section 3.6.3.5 Convergence.

3.6.3.3 Outside Contraction

To carry out Outside Contraction it is necessary to use equation (3.29), where the outside

contraction process is shown in Figure 3.9.

 OC Ce R Cex x x x   (3.29)

where:  is the contraction coefficient It always has a value less than 1, although it is usually

given the value 0.5. It is defined by (3.30).

distance between and
1

distance between and
OC Ce

R Ce

x x

x x
   (3.30)

Figure 3.9: Simplex showing the outside contraction new point xOC.

Page 49
Copyright © 2024 University of Leeds UK. All rights reserved.

Depending on the value of the objective function at the Outside Contraction point xOC, there

are 2 choices which can be made of what to do next, these are:

1) If f(xOC) is less than f(xR) such that     OC Rf x f x , then replace xH with xOC. A new

simplex is started, and therefore we need to check for convergence. So go to Section

3.6.3.5 Convergence.

2) Otherwise the Shrinking Operation needs to be carried out, so go to Section 3.6.3.4

Shrinking.

3.6.3.3a Inside Contraction

To carry out Inside Contraction it is necessary to use equation (3.31), where the inside

contraction process is shown in Figure 3.10.

 IC Ce R Cex x x x   (3.31)

where:  is the contraction coefficient It always has a value less than 1, although it is usually

given the value 0.5. It is defined by (3.32).

distance between and
1

distance between and
IC Ce

R Ce

x x

x x
   (3.32)

Figure 3.10: Simplex showing the inside contraction new point xIC.

Depending on the value of the objective function at the Outside Contraction point xIC, there

are 2 choices which can be made of what to do next, these are:

1) If f(xIC) is less than f(xH)     IC Hf x f x , then replace xH with xIC. A new simplex is

started, and therefore we need to check for convergence. So go to Section 3.6.3.5

Convergence.

2) Otherwise the Shrinking Operation needs to be carried out, so go to Section 3.6.3.4

Shrinking.

3.6.3.4 Shrinking

If Reflection, Expansion and both Contractions failed, it will be necessary to resort to the

Shrinking operation. This operation retains the best point (xL) and shrinks the Simplex about

Page 50
Copyright © 2024 University of Leeds UK. All rights reserved.

that point. To shrink all points about the best point, (xL) it is necessary to use equation (3.33)

and this process is shown in Figure 3.11.

For 2 1i n   :  i L i Lx x x x   (3.33)

where:  is the shrinking coefficient It always has a value less than 1, although it is usually

given the value 0.5. It is defined by (3.34).

distance between and
1

distance between and
Newi L

H L

x x

x x
   (3.34)

As a new simplex is generated, we need to check for convergence. So go to Section 3.6.3.5

Convergence.

Figure 5.11: Simplex showing the shrinking new points xi.

5.6.3.5 Convergence

Two convergence criteria can be used:

1) The size of the Simplex needs to be less than a tolerance  S , given by equation (3.35).

1
1

n

i i S

i

s x x 




   (3.35)

2) The standard deviation of the function value in all vertices of the Simplex needs to be less

than a small quantity   , given by equation (3.36).

    
1

2

1

1

n

i Ce

i

f x f x

n
 







 




(3.36)

To determine what to do next, 2 choices are available, these are:

1) If the convergence tolerance has been satisfied:  Ss  or    , the solution has

converged, so stop the algorithm.

2) The solution has not converged so need to sort point and start the cycle again, so go to

Section 3.6.2 Evaluate and Sort the points

Page 51
Copyright © 2024 University of Leeds UK. All rights reserved.

3.6.3 Example

Minimize the function (a) starting from the point (b) with a step size of c = 2

Minimize:      
2 22

1 2 2 1 1, 100 1f x x x x x    (a)

 0

1.2

1.0
x

 
  
 

 (b)

Use the following parameters to solve this problem:   , , , 1,0.5,2,0.5    

Step 1: Find the n+1 points of the simplex:

We have previously calculated these values to be (c) and (d).

0 0

0 0

1 1

1

2 2

0.96593

0.25882

x a x c
x

x b x c

    
    

       

 (c)

0 0

0 0

1 1

2

2 2

0.25882

0.96593

x b x c
x

x a x c

    
    

       

 (d)

Substituting for x0 and c gives (e) and (f).

1

1.2 0.96593 2 0.732

1.0 0.25882 2 1.518
x

     
    

    
 (e)

2

1.2 0.25882 2 0.682

1.0 0.96593 2 2.932
x

c

      
    

    
 (f)

Therefore the 3 points of the simplex are given in (g), and plotted in Figure 3.12.

0

1.2

1.0
x

 
  
 

, 1

0.732

1.518
x

 
  
 

and 2

0.682

2.932
x

 
  
 

 (g)

Page 52
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 3.12: Initial Simplex for this problem.

Step 2: Evaluate and Sort the points

Substituting the 3 values from (g) into the function (a), gives the results of (h).

 
0

1.2,1.0 24.2xf   ,  
1

0.732,1.518 96.51xf  and  
2

0.682,2.932 611.06xf   (h)

Which coincidentally happen to be aligned in increasing order such that, the new names for

the points are given in (i).

1.2

1.0
Lx

 
  
 

,
0.732

1.518
Tx

 
  
 

 and
0.682

2.932
Hx

 
  
 

 (i)

So, now need to carry out the Reflection Operation

Step 3: Operation (i) Refection

Now need to calculate the centroid of all the points xi, excluding the worst point. This is done

by substituting xL and x1 into equation (3.24), which gives the coordinates in (j).

 

 

1

1

1.2 0.732

0.2341 2

1.2591.0 1.518

2

n

Ce i
i

i H

x x
n







  
   
     
   
 
 

 (j)

Evaluate this point, gives (k).

Page 53
Copyright © 2024 University of Leeds UK. All rights reserved.

 0.234,1.259 146.49Cef   (k)

Calculate the reflection point using  = 1, using the points in (l).

0.234

1.259
Cex

 
  
 

and
0.682

2.932
Hx

 
  
 

 (l)

Substituting these values into equation (3.25) gives (m).

   
0.234 0.682 0.214

1 1 1 1
1.259 2.932 0.414

0.214

0.414

R Ce H

R

x x x

x

 
      

            
     

 
   

 

 (m)

Evaluate this point, gives (n).

 0.214, 0.414 21.79Rf   (n)

We now need to compare the value of f(xR) with those of the other points of the Simplex, and

using the rules set in section 3.6.3.1 Reflection, we can then decide what needs to happen

next.

Since     R Lf x f x , the next step to follow is Step 3: (ii) Expansion.

Step 3: Operation (ii) Expansion

Calculate the expansion point using  = 2, using the points in (o).

0.234

1.259
Cex

 
  
 

and
0.214

0.414
Rx

 
  

 
 (o)

Substituting these values into equation (3.27) gives (p).

   
0.214 0.234 0.663

1 2 1 2
0.414 1.259 2.087

E R Cex x x 
     

             
      

 (p)

Evaluate this point, gives (q).

 0.663, 2.087 638.26Ef   (q)

We now need to compare the value of f(xE) with those of the other points of the Simplex, and

using the rules set in section 3.6.3.2 Expansion, we can then decide what needs to happen

next.

Page 54
Copyright © 2024 University of Leeds UK. All rights reserved.

Since     E Lf x f x this means that the Expansion process was not successful. So, replace

xH with xR and generate the new Simplex (shown in Figure 3.13), and then go to Step 3: (v)

Convergence

Figure 3.13: New Simplex generated by replacing xH with xR.

Step 3: Operation (v) Convergence

When putting the new Simplex together, arrange it in increasing order (r).

0.214

0.414
Lx

 
  

 
,

1.2

1.0
Tx

 
  
 

 and
0.732

1.518
Hx

 
  
 

(r)

 0.214, 0.414 21.79Lf   ,  1.2,1.0 24.20Tf   and  0.732,1.518 98.28Hf 

Now need to calculate the standard deviation of the function value in all vertices of the Simplex

using equation (3.36). But firstly, must calculate the centroid and function evaluation of the

centroid point of the new Simplex using equation (3.24), the points xL and x1 which is calculated

in (s).

 

 

1

1

0.214 1.2

0.4931 2

0.2930.414 1.0

2

n

Ce i
i

i H

x x
n







 
   
     
    
 
 

 (s)

Evaluating this point gives (t).

 0.493,0.293 2.48Cef   (t)

Page 55
Copyright © 2024 University of Leeds UK. All rights reserved.

Substituting all of these function values to (3.36) gives (u).

    

     

1
2

1

2 2 2

1

21.79 2.48 24.20 2.48 98.28 2.48

3

32.8

n

i Ce
i

f x f x

n













    


 



(u)

As we haven’t specified a tolerance, at this stage we can’t check if the problem has converged.

So the next step, now that we have a new Simplex is to carry out another Reflection.

Step 3: Operation (i) Reflection

As we have already calculated the position of the centroid in the previous step. We can now

calculate the reflection point using  = 1, using the points in (v).

0.493

0.293
Cex

 
  
 

and
0.732

1.518
Hx

 
  
 

 (v)

Substituting these values into equation (3.25) gives (w).

   
0.493 0.732

1 1 1 1
0.293 1.518

1.718

0.932

R Ce H

R

x x x

x

 
   

         
   

 
   

 

 (w)

Evaluate this point, gives (x).

 1.718, 0.932 1514.5Rf    (x)

We now need to compare the value of f(xR) with those of the other points of the Simplex, and

using the rules set in section 3.6.3.1 Reflection, we can then decide what needs to happen

next.

Since     R Hf x f x , need to carry out Operation (iii) Inside Contraction.

Step 3: Operation (iii) Inside Contraction

Calculate the Inside contraction using point using  = 0.5. Substituting the values of xCE and

xR of (y) into equation (5.31) gives (z).

0.493

0.293
Cex

 
  
 

and
1.718

0.932
Rx

 
  

 
 (y)

Page 56
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 5.14: New Simplex generated by replacing xH with xIC.

     
0.493 1.718

1 1 0.5 0.5
0.293 0.932

0.119

0.905

IC Ce R Ce Ce R

IC

x x x x x x

x

  
    

            
   

 
  
 

 (z)

And evaluating this point, gives (aa).

 0.119,0.905 80.16ICf  (aa)

We now need to compare the value of f(xRIC) with those of the other points of the Simplex, and

using the rules set in section 3.6.3.3a Inside Contraction, we can then decide what needs to

happen next.

Since     IC Hf x f x then replace xH with xIC and generate the new Simplex (shown in

Figure 3.14), and go to Step 3: (v) Convergence.... and keep going!

Figure 3.15, shows the plot of the function (a) superimposed on the Simplex of Figure 3.14.

Page 57
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 3.15: Plot of the contour of the function superimposed on the Simplex

Nelder-Mead Simplex Worked Example 1

Minimise 𝑓(𝑥1, 𝑥2) = 100 (𝑥2 − 𝑥1)
2 + (1 − 𝑥1)

2 using the following parameters:

Starting point 𝑥0 = [𝑥1 𝑥2] = [−1.2 1.0]
Initial step size c=2
𝛼 = 1.0, 𝛽 = 0.5, 𝛾 = 2.0, 𝜌 = 0.5
tol = 0.0001.
This takes a total of 70 iterations to converge. The calculations for the first 10 iterations give:

Initial simplex
xL= -1.200 1.000, fL=2.420e+01
xM= 0.732 1.518, fM=9.651e+01
xH= -0.682 2.932, fH=6.111e+02
After 1 iterations, simplex is given by:
xL= 0.214 -0.414, fL=2.179e+01
xM= -1.200 1.000, fM=2.420e+01
xH= 0.732 1.518, fH=9.651e+01
After 2 iterations, simplex is given by:
xL= 0.214 -0.414, fL=2.179e+01
xM= -1.200 1.000, fM=2.420e+01
xH= 0.119 0.905, fH=8.016e+01
After 3 iterations, simplex is given by:
xL= 0.214 -0.414, fL=2.179e+01
xM= -1.200 1.000, fM=2.420e+01
xH= -0.187 0.599, fH=3.324e+01
After 4 iterations, simplex is given by:
xL= -0.340 0.446, fL=1.272e+01
xM= 0.214 -0.414, fM=2.179e+01
xH= -1.200 1.000, fH=2.420e+01
After 5 iterations, simplex is given by:

Page 58
Copyright © 2024 University of Leeds UK. All rights reserved.

xL= -0.631 0.508, fL=3.856e+00
xM= -0.340 0.446, fM=1.272e+01
xH= 0.214 -0.414, fH=2.179e+01
After 6 iterations, simplex is given by:
xL= -0.631 0.508, fL=3.856e+00
xM= -1.185 1.368, fM=4.913e+00
xH= -0.340 0.446, fH=1.272e+01
After 7 iterations, simplex is given by:
xL= -0.631 0.508, fL=3.856e+00
xM= -1.185 1.368, fM=4.913e+00
xH= -0.624 0.692, fH=1.179e+01
After 8 iterations, simplex is given by:
xL= -0.631 0.508, fL=3.856e+00
xM= -1.051 1.061, fM=4.386e+00
xH= -1.185 1.368, fH=4.913e+00
After 9 iterations, simplex is given by:
xL= -0.497 0.201, fL=2.448e+00
xM= -0.631 0.508, fM=3.856e+00
xH= -1.051 1.061, fH=4.386e+00
After 10 iterations, simplex is given by:
xL= -0.497 0.201, fL=2.448e+00
xM= -0.807 0.708, fM=3.580e+00
xH= -0.631 0.508, fH=3.856e+00

The evolution of the final solution is shown in the following figure:

Plot of the Nelder-Mead Simplex solution from the calculations above.

Nelder-Mead Simplex Worked Example 2

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥1 − 3)2 + (𝑥2 + 1)2 using the following parameters:

Starting point 𝑥0 = [𝑥1 𝑥2] = [0 0]
Initial step size c=2

𝛼 = 1.0, 𝛽 = 0.5, 𝛾 = 2.0, 𝜌 = 0.5
tol = 0.001.

Page 59
Copyright © 2024 University of Leeds UK. All rights reserved.

Initial simplex
xL= 1.932 0.518, fL=3.444e+00
xM= 0.000 0.000, fM=1.000e+01
xH= 0.518 1.932, fH=1.476e+01
After 1 iterations, simplex is given by:
xL= 1.414 -1.414, fL=2.686e+00
xM= 1.932 0.518, fM=3.444e+00
xH= 0.000 0.000, fH=1.000e+01
After 2 iterations, simplex is given by:
xL= 3.346 -0.897, fL=1.305e-01
xM= 1.414 -1.414, fM=2.686e+00
xH= 1.932 0.518, fH=3.444e+00
After 3 iterations, simplex is given by:
xL= 3.346 -0.897, fL=1.305e-01
xM= 2.604 -1.992, fM=1.140e+00
xH= 1.414 -1.414, fH=2.686e+00
After 4 iterations, simplex is given by:
xL= 3.346 -0.897, fL=1.305e-01
xM= 3.756 -1.459, fM=7.820e-01
xH= 2.604 -1.992, fH=1.140e+00
After 5 iterations, simplex is given by:
xL= 3.346 -0.897, fL=1.305e-01
xM= 3.078 -1.585, fM=3.482e-01
xH= 3.756 -1.459, fH=7.820e-01
After 6 iterations, simplex is given by:
xL= 2.668 -1.022, fL=1.107e-01
xM= 3.346 -0.897, fM=1.305e-01
xH= 3.078 -1.585, fH=3.482e-01
After 7 iterations, simplex is given by:
xL= 3.042 -1.272, fL=7.586e-02
xM= 2.668 -1.022, fM=1.107e-01
xH= 3.346 -0.897, fH=1.305e-01
After 8 iterations, simplex is given by:
xL= 3.101 -1.022, fL=1.060e-02
xM= 3.042 -1.272, fM=7.586e-02
xH= 2.668 -1.022, fH=1.107e-01
After 9 iterations, simplex is given by:
xL= 3.101 -1.022, fL=1.060e-02
xM= 2.870 -1.085, fM=2.413e-02
xH= 3.042 -1.272, fH=7.586e-02
After 10 iterations, simplex is given by:
xL= 2.957 -0.944, fL=5.041e-03
xM= 3.101 -1.022, fM=1.060e-02
xH= 2.870 -1.085, fH=2.413e-02
After 11 iterations, simplex is given by:
xL= 2.949 -1.034, fL=3.722e-03
xM= 2.957 -0.944, fM=5.041e-03
xH= 3.101 -1.022, fH=1.060e-02
After 12 iterations, simplex is given by:
xL= 3.027 -1.005, fL=7.441e-04
xM= 2.949 -1.034, fM=3.722e-03

Page 60
Copyright © 2024 University of Leeds UK. All rights reserved.

xH= 2.957 -0.944, fH=5.041e-03
After 13 iterations, simplex is given by:
xL= 3.027 -1.005, fL=7.441e-04
xM= 2.972 -0.982, fM=1.104e-03
xH= 2.949 -1.034, fH=3.722e-03
After 14 iterations, simplex is given by:
xL= 3.027 -1.005, fL=7.441e-04
xM= 2.974 -1.014, fM=8.438e-04
xH= 2.972 -0.982, fH=1.104e-03
NM simplex converged with tol = 1.000e-03 after 14 iterations
Minimum f=7.441e-04 at x= 3.027 -1.005

Plot of the Nelder-Mead Simplex solution from the calculations above.

Nelder-Mead Simplex Worked Example 3

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥1 + 𝑥2)
2 + 𝑠𝑖𝑛2(𝑥1 + 2) + 𝑥2

2 + 10 using the following parameters:

Starting point 𝑥0 = [𝑥1 𝑥2] = [2.0 1.0]
Initial step size c=2
𝛼 = 1.0, 𝛽 = 0.5, 𝛾 = 2.0, 𝜌 = 0.5
tol = 0.001.

Initial simplex
xL= 2.000 1.000, fL=2.057e+01
xM= 3.932 1.518, fM=4.212e+01
xH= 2.518 2.932, fH=4.926e+01
After 1 iterations, simplex is given by:
xL= 3.863 -2.087, fL=1.767e+01
xM= 2.000 1.000, fM=2.057e+01
xH= 3.932 1.518, fH=4.212e+01
After 2 iterations, simplex is given by:
xL= 3.863 -2.087, fL=1.767e+01
xM= 1.931 -2.605, fM=1.774e+01
xH= 2.000 1.000, fH=2.057e+01
After 3 iterations, simplex is given by:
xL= 2.448 -0.673, fL=1.454e+01
xM= 3.863 -2.087, fM=1.767e+01

Page 61
Copyright © 2024 University of Leeds UK. All rights reserved.

xH= 1.931 -2.605, fH=1.774e+01
After 4 iterations, simplex is given by:
xL= 2.448 -0.673, fL=1.454e+01
xM= 2.543 -1.993, fM=1.524e+01
xH= 3.863 -2.087, fH=1.767e+01
After 5 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
xM= 2.448 -0.673, fM=1.454e+01
xH= 2.543 -1.993, fH=1.524e+01
After 6 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
xM= 1.034 0.741, fM=1.371e+01
xH= 2.448 -0.673, fH=1.454e+01
After 7 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
xM= -0.285 0.836, fM=1.198e+01
xH= 1.034 0.741, fH=1.371e+01
After 8 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
xM= -0.191 -0.484, fM=1.163e+01
xH= -0.285 0.836, fH=1.198e+01
After 9 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
xM= 0.092 0.152, fM=1.084e+01
xH= -0.191 -0.484, fH=1.163e+01
After 10 iterations, simplex is given by:
xL= 1.129 -0.578, fL=1.064e+01
xM= 0.210 -0.348, fM=1.078e+01
xH= 0.092 0.152, fH=1.084e+01
After 11 iterations, simplex is given by:
xL= 0.381 -0.155, fL=1.055e+01
xM= 1.129 -0.578, fM=1.064e+01
xH= 0.210 -0.348, fH=1.078e+01
After 12 iterations, simplex is given by:
xL= 0.482 -0.358, fL=1.052e+01
xM= 0.381 -0.155, fM=1.055e+01
xH= 1.129 -0.578, fH=1.064e+01
After 13 iterations, simplex is given by:
xL= 0.780 -0.417, fL=1.043e+01
xM= 0.482 -0.358, fM=1.052e+01
xH= 0.381 -0.155, fH=1.055e+01
After 14 iterations, simplex is given by:
xL= 0.780 -0.417, fL=1.043e+01
xM= 0.882 -0.620, fM=1.052e+01
xH= 0.482 -0.358, fH=1.052e+01
After 15 iterations, simplex is given by:
xL= 0.780 -0.417, fL=1.043e+01
xM= 0.657 -0.438, fM=1.046e+01
xH= 0.882 -0.620, fH=1.052e+01
After 16 iterations, simplex is given by:
xL= 0.780 -0.417, fL=1.043e+01

Page 62
Copyright © 2024 University of Leeds UK. All rights reserved.

xM= 0.637 -0.332, fM=1.044e+01
xH= 0.657 -0.438, fH=1.046e+01
After 17 iterations, simplex is given by:
xL= 0.780 -0.417, fL=1.043e+01
xM= 0.760 -0.311, fM=1.044e+01
xH= 0.637 -0.332, fH=1.044e+01
After 18 iterations, simplex is given by:
xL= 0.703 -0.348, fL=1.043e+01
xM= 0.780 -0.417, fM=1.043e+01
xH= 0.760 -0.311, fH=1.044e+01
After 19 iterations, simplex is given by:
xL= 0.703 -0.348, fL=1.043e+01
xM= 0.751 -0.347, fM=1.043e+01
xH= 0.780 -0.417, fH=1.043e+01
After 20 iterations, simplex is given by:
xL= 0.754 -0.382, fL=1.043e+01
xM= 0.703 -0.348, fM=1.043e+01
xH= 0.751 -0.347, fH=1.043e+01
NM simplex converged with tol = 1.000e-03 after 20 iterations
Minimum f=1.043e+01 at x= 0.754 -0.382

Plot of the Nelder-Mead Simplex solution from the calculations above.

3.7 Hooke-Jeeves Method

The Hooke-Jeeves method belongs to the class of search methods known as pattern search.

Similarly, to the Nelder-Mead Simplex method, it carries out a pattern search of the design

space without the need to calculate derivatives of the objective function, by only relying on the

evaluation of the objective function at specific points. Although there is nothing stopping you

from using this method on a function which can be differentiated!

The method requires two steps, an “exploratory search” to determine the best direction from

the current location, and then a “pattern move” in that best direction.

Page 63
Copyright © 2024 University of Leeds UK. All rights reserved.

3.7.1 Exploratory Search
The aim of this exploratory search step is to try to find a direction which improves the value of

the objective function from the current point. In order to do this, the value of the current point

is “perturbed” by a small amount () (called perturbation step) in the positive and negative

direction, along each (design) variable, one at a time, and every time the objective function is

evaluated to determine if the new point is better than the current point. At the end of each

perturbation, the current point is replaced by the new point, provided it has a better objective

function value.

Before carrying out the exploratory search, we need to specify the following four parameters:

1. The initial or current point about which the exploratory search will take place. This can

take the form of the current point vector given by (3.37).

 0

1 2, , , , ,i nx x x xx (3.37)

where: i is the ith design variable and n is the total number of design variables and also

perturbation directions.

2. The size of the perturbation step along each direction, which is the same as saying the

perturbation step for each design variable. This can take the form of the perturbation

vector given by (5.38).

 0 1 2, , , , ,i nx x x x    P (3.38)

where: ix is the ith design variable step size. Note that all perturbation step sizes are

generally relatively small and do not have to be equal to each other.

3. The step size reduction parameter  1  , typical values are: 2 or 10.

4. The perturbation tolerance limit vector  T , which defines the smallest possible

perturbation for each design variable and which is used to stop the algorithm. This has

the same form as the perturbation vector of (5.38) and is given by (3.39).

 1 2, , , , ,i nt t t tT (3.39)

The exploratory search steps are:

1. At the current point  0x , calculate the objective function  0f x and copy these to the

best point vector  bestx and best function value  bestf respectively.

2. Copy the perturbation vector  0P into the working perturbation vector  wP

3. Combine the current point vector  0x and the working perturbation vector  wP into

the search point vector  1x , which is of the form of (3.40).

1

1 1 1 2 2 2, , , , ,j j k j k i ij k i n nj k nx d x x d x x d x x d x             x (3.40)

where:

j: is the perturbation direction of the ih design variable, starting with j = 1 up to n.

 1 to i i n
x


: are the design variables of the initial point from (3.37)

Page 64
Copyright © 2024 University of Leeds UK. All rights reserved.

ij : is the Kronecker delta given by equation (3.41), which allows to generate the

perturbation step one design variable at a time

 0

1
ij

if i j

if i j



 


 (3.41)

kd : is the direction vector which allows the perturbation step to be carried out in

the positive  1d

 and negative  1d


  directions given by (3.42)

 1

1 k
k

if k
d

if

 
 

  
 (3.42)

k: is the direction vector index which defines if the direction vector has a positive

(k = +) or negative (k = –) perturbation direction

 1 to i i n
x


 : are the perturbation step sizes from (3.38);

4. Set the perturbation direction to have the initial value of one  1j  and set the

direction vector index to positive  k   , so the search point vector goes from the

format of equation (5.40) to that below:

 

 

1

1 1 1 2

1

1 1 1 2

, , , , ,

, , , , ,

k i n

i n

x d x x x x

x x x x x

  

   

x

x

5. At the current search point vector  1

jx , calculate the objective function  1

jf x .

6. If  1 best

jf fx : Replace the best point with this one, such that
1best

jx x and

 best 1

jf f x , update j such that  1j j  and set the direction vector index to

positive  k   which then goes from the format of equation (3.40) to that below:

1

1 1 2 1 1, 1 1

1

1 1 2 1 1

, , , , ,

, , , , ,

j j j j j n

j j j n

x x x d x x

x x x x x


     

  

    

     

x

x

However, if  j n go to step 9, otherwise go to step 5.

7. If  1best

jf f x and the direction vector index is positive  k   , set the direction

vector index to negative  k   , which then goes from the format of equation (5.40)

to that below and go to step 5, otherwise go to step 8.

1

1 2

1

1 2

, , , , ,

, , , , ,

j j jj j n

j j j n

x x x d x x

x x x x x




    

     

x

x

8. If  1best

jf f x and the direction vector index is negative  k   , this perturbation

has not improved the objective function, so it can be discarded. Update j, such that

 1j j  , set the direction vector index to positive  k   and go to step 5, but if

 j n go to step 9.

9. Determine if the exploratory search has succeeded or failed.

i) If  0bestf f x , the exploratory search has succeeded, so now go to step 11.

Page 65
Copyright © 2024 University of Leeds UK. All rights reserved.

ii) Else if  0bestf f x and
best 0x x the exploratory search has failed as a

better value of the objective function could not be found. The following now

needs to happen:

a) Reduce the size of the working perturbation vector  wP using

(3.43).

W
W




P
P (3.43)

b) If the working perturbation vector  wP is greater or equal to the

perturbation tolerance limit vector  T , that is  w P T , then go to

step 3

c) If, however, the working perturbation vector  wP is less than the

perturbation tolerance limit vector  T , that is  w P T , go to step

10.

10. As the solution could not be improved any further, the final solution to the problem

 bestx and  bestf are given the initial values of the problem  0x and  0f x . Then

go to step 11..

11. Exit the exploratory search step.

3.7.2 Pattern Move

The pattern move step uses the initial or current point  0x and the best point  bestx with an

objective function value less than the current point  0bestf f x in order to move in an

improving direction. A new point  2x is created by moving from  0x to  2x using (3.44).

 2 0 0Besta  x x x x (3.44)

where:  0Best x x is the improving direction vector and  a is a positive accelerator factor,

which extends the length of direction vector. A typical value of the accelerator factor is two

 2a 

3.7.3 The Hooke-Jeeves Pattern Search Algorithm

The Hooke-Jeeves Pattern Search Algorithm requires the following five parameters, four of

which were specified in Exploratory Search. These are:

1) A starting point vector  0x .

2) A perturbation step size vector  0P .

3) The perturbation tolerance limit vector  T ,

4) The step size reduction parameter   , and

5) The acceleration factor  a

The seven steps for the Hooke-Jeeves Pattern Search Algorithm are as follow:

Page 66
Copyright © 2024 University of Leeds UK. All rights reserved.

1) Specify the five parameters required for the algorithm to work:  0 0, , , ,ax P T

2) Carry out an exploratory search around  0x .

3) If the solution from the exploratory search is the same as the initial problem

 0bestf f x , then this solution is the optimum. Go to step 7.

4) If the solution from the exploratory search is better than that of the initial problem

 0bestf f x , then carry out the Pattern Move step and calculate  2f x .

5) If  2Bestf f x , then copy the best point  bestx to the current point  0x and go to

step 2.

6) If  2 Bestf fx , then copy the new point  2x to the current point  0x and go to step

2.

7) Exit the algorithm.

Hooke-Jeeves Worked Example 1

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥1 − 3)2 + (𝑥2 + 1)2 using the following parameters:

Starting point 𝑥0 = [𝑥1 𝑥2] = [1.5 1.5]
Perturbation step size 𝑃0 = [∆𝑥1 ∆𝑥2] = [0.5 0.5]
Perturbation tolerance limit 𝑇 = [𝑡1 𝑡2] = [0.025 0.025]
Exploration accelerator factor a = 2
Step size reduction parameter η=2

Call 1 to exploratory search increment = 0.50000
Start x0 = 1.500000 1.500000 f0 = 8.500000
x = 2.000000 1.500000 f = 7.250000
x = 2.000000 2.000000 f = 10.000000
x = 2.000000 1.000000 f = 5.000000
Pattern search x2 = 2.500000 0.500000 f2 = 2.500000
Call 2 to exploratory search increment = 0.50000
Start x0 = 2.500000 0.500000 f0 = 2.500000
x = 3.000000 0.500000 f = 2.250000
x = 3.000000 1.000000 f = 4.000000
x = 3.000000 0.000000 f = 1.000000
Pattern search x2 = 3.500000 -0.500000 f2 = 0.500000
Call 3 to exploratory search increment = 0.50000
Start x0 = 3.500000 -0.500000 f0 = 0.500000
x = 4.000000 -0.500000 f = 1.250000
x = 3.000000 -0.500000 f = 0.250000
x = 3.000000 0.000000 f = 1.000000
x = 3.000000 -1.000000 f = 0.000000
Pattern search x2 = 2.500000 -1.500000 f2 = 0.500000
Call 4 to exploratory search increment = 0.50000
Start x0 = 3.000000 -1.000000 f0 = 0.000000
x = 3.500000 -1.000000 f = 0.250000
x = 2.500000 -1.000000 f = 0.250000
x = 3.000000 -0.500000 f = 0.250000
x = 3.000000 -1.500000 f = 0.250000
search increment reduced to 0.25000

Page 67
Copyright © 2024 University of Leeds UK. All rights reserved.

Call 5 to exploratory search increment = 0.25000
Start x0 = 3.000000 -1.000000 f0 = 0.000000
x = 3.250000 -1.000000 f = 0.062500
x = 2.750000 -1.000000 f = 0.062500
x = 3.000000 -0.750000 f = 0.062500
x = 3.000000 -1.250000 f = 0.062500
search increment reduced to 0.12500
search completed - increment 0.12500 below tolerance 0.25000
search completed xbest= 3.00000 -1.00000 fbest = 0.00000

Plot of the Hooke-Jeeves solution from the calculations above.

Hookes-Jeeves Worked Example 2

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥1 + 𝑥2)
2 + 𝑠𝑖𝑛2(𝑥1 + 2) + 𝑥2

2 + 10 using the following parameters:

Starting point 𝑥0 = [𝑥1 𝑥2] = [2.0 1.0]
Perturbation step size 𝑃0 = [∆𝑥1 ∆𝑥2] = [0.3 0.3]
Perturbation tolerance limit 𝑇 = [𝑡1 𝑡2] = [0.025 0.025]
Exploration accelerator factor a = 2
Step size reduction parameter η=2

Call 1 to exploratory search increment = 0.30000
Start x0 = 2.000000 1.000000 f0 = 20.572750
x = 2.300000 1.000000 f = 22.729360
x = 1.700000 1.000000 f = 18.570726
x = 1.700000 1.300000 f = 20.970726
x = 1.700000 0.700000 f = 16.530726
Pattern search x2 = 1.400000 0.400000 f2 = 13.465301
Call 2 to exploratory search increment = 0.30000
Start x0 = 1.400000 0.400000 f0 = 13.465301
x = 1.700000 0.400000 f = 14.850726
x = 1.100000 0.400000 f = 12.411729
x = 1.100000 0.700000 f = 13.731729
x = 1.100000 0.100000 f = 11.451729
Pattern search x2 = 0.800000 -0.200000 f2 = 10.512217
Call 3 to exploratory search increment = 0.30000
Start x0 = 0.800000 -0.200000 f0 = 10.512217

Page 68
Copyright © 2024 University of Leeds UK. All rights reserved.

x = 1.100000 -0.200000 f = 10.851729
x = 0.500000 -0.200000 f = 10.488169
x = 0.500000 0.100000 f = 10.728169
x = 0.500000 -0.500000 f = 10.608169
Pattern search x2 = 0.200000 -0.200000 f2 = 10.693666
Call 4 to exploratory search increment = 0.30000
Start x0 = 0.500000 -0.200000 f0 = 10.488169
x = 0.800000 -0.200000 f = 10.512217
x = 0.200000 -0.200000 f = 10.693666
x = 0.500000 0.100000 f = 10.728169
x = 0.500000 -0.500000 f = 10.608169
search increment reduced to 0.15000
Call 5 to exploratory search increment = 0.15000
Start x0 = 0.500000 -0.200000 f0 = 10.488169
x = 0.650000 -0.200000 f = 10.465313
x = 0.650000 -0.050000 f = 10.585313
x = 0.650000 -0.350000 f = 10.435313
Pattern search x2 = 0.800000 -0.500000 f2 = 10.452217
Call 6 to exploratory search increment = 0.15000
Start x0 = 0.650000 -0.350000 f0 = 10.435313
x = 0.800000 -0.350000 f = 10.437217
x = 0.500000 -0.350000 f = 10.503169
x = 0.650000 -0.200000 f = 10.465313
x = 0.650000 -0.500000 f = 10.495313
search increment reduced to 0.07500
Call 7 to exploratory search increment = 0.07500
Start x0 = 0.650000 -0.350000 f0 = 10.435313
x = 0.725000 -0.350000 f = 10.426864
x = 0.725000 -0.275000 f = 10.441864
x = 0.725000 -0.425000 f = 10.434364
Pattern search x2 = 0.800000 -0.350000 f2 = 10.437217
Call 8 to exploratory search increment = 0.07500
Start x0 = 0.725000 -0.350000 f0 = 10.426864
x = 0.800000 -0.350000 f = 10.437217
x = 0.650000 -0.350000 f = 10.435313
x = 0.725000 -0.275000 f = 10.441864
x = 0.725000 -0.425000 f = 10.434364
search increment reduced to 0.03750
Call 9 to exploratory search increment = 0.03750
Start x0 = 0.725000 -0.350000 f0 = 10.426864
x = 0.762500 -0.350000 f = 10.429614
x = 0.687500 -0.350000 f = 10.428818
x = 0.725000 -0.312500 f = 10.431552
x = 0.725000 -0.387500 f = 10.427802
search increment reduced to 0.01875
search completed - increment 0.01875 below tolerance 0.02500
search completed xbest= 0.72500 -0.35000 fbest = 10.42686

Page 69
Copyright © 2024 University of Leeds UK. All rights reserved.

Plot of the Hooke-Jeeves solution from the calculations above.

Hookes-Jeeves Worked Example 3

Minimise 𝑓(𝑥1, 𝑥2) = (𝑥2 − 𝑥1)
2 + (1 − 𝑥1)

2 using the following parameters:

Starting point 𝑥0 = [𝑥1 𝑥2] = [−1.2 1.2]
Perturbation step size 𝑃0 = [∆𝑥1 ∆𝑥2] = [0.3 0.3]
Perturbation tolerance limit 𝑇 = [𝑡1 𝑡2] = [0.05 0.05]
Exploration accelerator factor a = 2
Step size reduction parameter η=2

Call 1 to exploratory search increment = 0.30000
Start x0 = -1.200000 1.200000 f0 = 10.600000
x = -0.900000 1.200000 f = 8.020000
x = -0.900000 1.500000 f = 9.370000
x = -0.900000 0.900000 f = 6.850000
Pattern search x2 = -0.600000 0.600000 f2 = 4.000000
Call 2 to exploratory search increment = 0.30000
Start x0 = -0.600000 0.600000 f0 = 4.000000
x = -0.300000 0.600000 f = 2.500000
x = -0.300000 0.900000 f = 3.130000
x = -0.300000 0.300000 f = 2.050000
Pattern search x2 = 0.000000 -0.000000 f2 = 1.000000
Call 3 to exploratory search increment = 0.30000
Start x0 = 0.000000 -0.000000 f0 = 1.000000
x = 0.300000 -0.000000 f = 0.580000
x = 0.300000 0.300000 f = 0.490000
Pattern search x2 = 0.600000 0.600000 f2 = 0.160000
Call 4 to exploratory search increment = 0.30000
Start x0 = 0.600000 0.600000 f0 = 0.160000
x = 0.900000 0.600000 f = 0.100000
x = 0.900000 0.900000 f = 0.010000
Pattern search x2 = 1.200000 1.200000 f2 = 0.040000
Call 5 to exploratory search increment = 0.30000
Start x0 = 0.900000 0.900000 f0 = 0.010000

Page 70
Copyright © 2024 University of Leeds UK. All rights reserved.

x = 1.200000 0.900000 f = 0.130000
x = 0.600000 0.900000 f = 0.250000
x = 0.900000 1.200000 f = 0.100000
x = 0.900000 0.600000 f = 0.100000
search increment reduced to 0.15000
Call 6 to exploratory search increment = 0.15000
Start x0 = 0.900000 0.900000 f0 = 0.010000
x = 1.050000 0.900000 f = 0.025000
x = 0.750000 0.900000 f = 0.085000
x = 0.900000 1.050000 f = 0.032500
x = 0.900000 0.750000 f = 0.032500
search increment reduced to 0.07500
Call 7 to exploratory search increment = 0.07500
Start x0 = 0.900000 0.900000 f0 = 0.010000
x = 0.975000 0.900000 f = 0.006250
x = 0.975000 0.975000 f = 0.000625
Pattern search x2 = 1.050000 1.050000 f2 = 0.002500
Call 8 to exploratory search increment = 0.07500
Start x0 = 0.975000 0.975000 f0 = 0.000625
x = 1.050000 0.975000 f = 0.008125
x = 0.900000 0.975000 f = 0.015625
x = 0.975000 1.050000 f = 0.006250
x = 0.975000 0.900000 f = 0.006250
search increment reduced to 0.03750
search completed - increment 0.03750 below tolerance 0.05000
search completed xbest= 0.97500 0.97500 fbest = 0.00062

Plot of the Hooke-Jeeves solution from the calculations above.

Page 71
Copyright © 2024 University of Leeds UK. All rights reserved.

Chapter 4

Search Methods of Optimization

4.0 Introduction

There are many search methods which can be used to find an optimum. In this course, he

following methods will be introduced:

1. Ant Colony Optimization (ACO)

2. Differential Evolution (DE) Algorithm

3. Genetic Algorithms (GA) – Excel Add-in provided

4. Particle Swarm Optimization (PSO) – Excel Add-in provided

5. Random Search Method – can just use Excel, very simple!

6. Simulated Annealing (SA)

4.1 Random Search Method

Pure Random Search is the simplest stochastic1 method for global optimization, and most

other stochastic methods are variations of it. Be aware that it is very inefficient!

Pure random search consists only of a global phase of two steps:

1) Evaluate f(x) at N sample points from a random uniform distribution over the set Sb.

2) The smallest function value found is the candidate global minimum for f(x).

Pure random search is asymptotically guaranteed to converge, in a probabilistic sense, to the

global minimum point. It is quite inefficient because of the large number of function evaluations

required to provide such a guarantee.

A simple extension of the method is so-called single start. In single start, a single local search

is performed (if the problem is continuous) starting from the best point in the sample set at the

end of pure random search.

4.1.1 Multistart Method

The Multistart method is one of several extensions of pure random search where a local phase

is added to the global phase to improve efficiency. In Multistart, each sample point is used as

a starting point for the local minimization procedure. The best local minimum point found is a

candidate for the global minimum
*

Gx . The method is reliable, but it is not efficient since many

sample points will lead to the same local minimum.

1Stochastic optimization (SO) methods are those that use random numbers for their operations.

Page 72
Copyright © 2024 University of Leeds UK. All rights reserved.

The algorithm consists of three simple steps:

1) Take a random point x(0) from a uniform distribution over the set Sb.

2) Start a local minimization procedure from x(0).

3) Return to Step 1 unless a stopping criterion is satisfied.

Once the stopping criterion is satisfied, the local minimum with the smallest function value is

taken as the global minimum
*

Gx .

To calculate the value of a design variable from a random number using the upper and lower

limits for the design variable, use equation (6.1).

 ; 1i iL i iU iLx x r x x i to n    (4.1)

where:
 L: lower limit;
 U: upper limit,
 i: ith design point;
 0: 0th generation;
 ri: uniformly distributed random number between 0 and 1

Please note: Equation (4.1) is used by all stochastic methods to calculate the value of the

design variables from random numbers.

Random Search Example:

Use the Random Search Method to solve the minimization of the following function after 10

full iterations of the algorithm, between the limits of -2 < x < 2.

0164.11.1
3

1.24)(2
4

2 







 xx

x
xxf

The random points and optimum solution are given by:

For Random Search with 10 points and xmin= -2.0000 xmax = 2.0000

For random point i xrand= 0.1576 x= -1.3695 obj= 1.8241

For random point i xrand= 0.9706 x= 1.8824 obj= 5.7235

For random point i xrand= 0.9572 x= 1.8287 obj= 5.3856

For random point i xrand= 0.4854 x= -0.0585 obj= 0.9657

For random point i xrand= 0.8003 x= 1.2011 obj= 4.7385

For random point i xrand= 0.1419 x= -1.4325 obj= 1.6864

For random point i xrand= 0.4218 x= -0.3130 obj= 1.0441

For random point i xrand= 0.9157 x= 1.6629 obj= 4.8970

For random point i xrand= 0.7922 x= 1.1688 obj= 4.6973

For random point i xrand= 0.9595 x= 1.8380 obj= 5.4361

Optimum from Random Search with 10 random points x= -0.0585 obj= 0.9657.

These are shown on the following figure:

Page 73
Copyright © 2024 University of Leeds UK. All rights reserved.

NOTE: since the random search is stochastic, these points will change every time the

algorithm is run.

4.2 Simulated Annealing (SA)

Simulated annealing (SA) is a stochastic approach for locating a good approximation to the

global minimum of a function. The name comes from the annealing process in metallurgy,

which involves heating and controlled cooling of a material to increase the size of its crystals

and reduce their defects. At high temperatures, the atoms become loose from their initial

configuration and move randomly to reach a configuration having absolute minimum energy.

The cooling process should be slow, and enough time needs to be spent at each temperature,

giving more chance for the atoms to find configurations of lower internal energy. If the

temperature is not lowered slowly and enough time is not spent at each temperature, the

process can become trapped in a local minimum for the internal energy. The resulting crystal

may have many defects or the material may even become glass with no crystalline order.

The Simulated Annealing method for optimization of systems emulates this process. Given a

long enough time to run, an algorithm based on this concept finds global minima for

continuous-discrete-integer variable nonlinear programming problems.

The basic procedure is to generate random points in the neighbourhood of the current best

point and evaluate the problem functions there. If the cost (or penalty) function value is smaller

than its current best value, the point is accepted and this becomes best function value. If the

function value is higher than the best value known so far, the point is sometimes accepted and

sometimes rejected.

The point’s acceptance is based on the value of the probability density function of the

Bolzman-Gibbs distribution. If this probability density function has a value greater than a

random number, then the trial point is accepted as the best solution even if its function value

is higher.

Page 74
Copyright © 2024 University of Leeds UK. All rights reserved.

A parameter called the Temperature (T) is used to calculate the probability density function.

For the optimization problem, this temperature can be a target value for the optimum value of

the cost function. Initially, a larger target value is selected. As the trials progress, the target

value (temperature) is reduced (called the cooling schedule), and the process is terminated

after a large number of trials.

The acceptance probability steadily decreases to zero as the temperature is reduced. So, in

the initial stages, the method sometimes accepts worse designs, while in the final stages the

worse designs are almost always rejected. This strategy avoids getting trapped at a local

minimum point. The SA method requires evaluation of a cost and constraint functions only.

Continuity and differentiability of functions are not required. So the method can be useful for

non-differentiable problems, and problems where gradients cannot be calculated or are too

expensive to calculate.

The (SA) algorithm is simple and easy to program. The following five steps give the basic

ideas of the algorithm:

1) Choose an initial temperature
 1T (Section 4.2.1) and a feasible trial point   1

x .

Compute   1
f x . Select a limit on the number of iterations (M) to reach the expected

minimum value. Initialize the iteration counter (k = 1).

2) Generate a new point
 1k

x


 randomly in a neighbourhood of the current point
 1

x

using (4.2). If the point is infeasible, generate another random point until feasibility is

satisfied. Calculate
  1k

f x


 and      1 1k
f f x f x


   .

             
 

 

1 1 1 1max min

1

k
k k k

i i i i i i i i

T
x x x x r x x s

T

      
 

 (4.2)

where: i is the ith design variable in the range  1,...,i n , n is the number of design

variables,    ,
k k

i ir s are random numbers for the ith design variable in the kth iteration in the

range  0,1

3) If 0f then accept  1k
x


as the new best point   1

x , set      1 1k
f x f x


 go to Step

4. Otherwise, calculate the probability density function (6.3).Generate a random

number (z) uniformly distributed in [0,1]. If  z p f  , then accept x(k+1) as the new

best point x(1) and go to Step 4. Otherwise go to Step 2.

   

 
exp

K

f

T

k

f
p f e

T

 
 
 
 

 
   

 
 (4.3)

4) If k < M, then k = k+ 1 and go to Step 5, else if k > M and one of the stopping criteria

explained below is satisfied, then stop.

5) Update the temperature T(k), (Section 4.2.2); go to Step 2.

In order to implement this algorithm, the following three points need to be considered:

Page 75
Copyright © 2024 University of Leeds UK. All rights reserved.

1) In Step 2 only one point is generated at a time within a certain neighbourhood of the current

point. Thus, although SA randomly generates design points without the need for function

or gradient information, it is not a pure random search within the entire design space. At

the early stage, a new point can be located far away from the current point to speed up

the search process and to avoid being trapped at a local minimum point. Once the

temperature gets low, the new point is usually created nearby in order to focus on the local

area. This can be controlled by defining a step size procedure.

2) In Step 2, the newly generated point needs to be feasible. If it is not, another point is

generated until a point in the feasible region is obtained. Another method for treating

constraints is to use the penalty function approach; that is, the constrained problem is

converted to an unconstrained one. The cost function is replaced by the penalty function

in the algorithm. Therefore, the feasibility requirements are not imposed explicitly in Step

2.

3) The following stopping criteria are suggested for Step 4:

a. The algorithm stops if change in the best function value is less than some specified

value for the last j number of consecutive iterations.

b. The algorithm stops if k reaches a specified number of iterations by the user.

4.2.1 Selecting the Initial Temperatures
 1T

A suitable initial temperature is one that results in an acceptance probability of value close to

1, which means that there is an almost 100% chance that a change which increases the

objective function will be accepted. The value of initial temperature will clearly depend on the

objective function and, hence, be problem-specific. It can be estimated by conducting an initial

search in which all increases are accepted (i.e., the fixed number of iterations of simulated

annealing in which all perturbed solutions are unconditionally accepted) and calculating the

maximum objective increase observed f . Then, the initial temperature
 1T is given by (4.4).

 

 
1

ln

f
T

p


 (4.4)

where: p is a probability close to 1 (e.g. 0.8 – 0.9).

4.2.2 Decreasing the Temperature
 k

T

In the SA algorithm, the temperature is decreased gradually such that (4.5) and (4.6) are

satisfied.

  0
k

T  (4.5)

 lim 0
k

k
T


 (4.6)

There is always a compromise between the quality of the obtained solutions and the speed of

the cooling scheme. If the temperature is decreased slowly, better solutions are obtained but

with a more significant computation time. The temperature T can be updated using one of four

different schemes: 1) Linear, 2) Geometric, 3) Logarithmic, and 4) Modified logarithmic. These

are explained next.

Page 76
Copyright © 2024 University of Leeds UK. All rights reserved.

4.2.2.1 Linear Temperature Update Scheme

The Linear temperature update scheme consists of (4.7), where the temperature T is

     1
1

k
T T k T    (4.7)

where: T is a specified constant value which decreases the temperature equally in each

iteration, k is the iteration number.

The value of T can be calculated with (4.8), where M is the number of trials (iterations)

   1 Final
T T

T
M


  (4.8)

4.2.2.2 Geometric Temperature Update Scheme

The Geometric temperature update scheme consists of equation (6.9) where the temperature

in each iteration is a multiple of the previous temperature.

Figure 4.1: Temperature change during the search process for T(1) = 300 °C and  =0.9.

   1k k
T T


 (4.9)

where  is a value between 0 and 1. The smaller the value of  the faster that the

temperature reaches 0, the larger the value of  the more number of iterations before reaching

a solution. Figure 4.1 shows how the temperature decreases during the search process for an

initial temperature of T(1) = 300 °C and the multiplier with a value of  =0.9.

4.2.2.3 Logarithmic Temperature Update Scheme

The Logarithmic temperature update scheme consists of (4.10), where the initial temperature

is divided by the logarithm of the current iteration number (k).

Page 77
Copyright © 2024 University of Leeds UK. All rights reserved.

 
   1 1

ln() log()

k T T
T or

k k
 (4.10)

This scheme is too slow to be applied in practice but has been proven to have the property of

convergence to a global optimum.

Figure 4.2 shows how the temperature decreases during the search process for an initial

temperature of T0 = 300 °C and 20,000 iterations.

Figure 4.2: Temperature change during the search process for T(1) = 300 °C and 20,000

iterations.

4.2.2.4 Modified Logarithmic Temperature Update Scheme

The main trade-off in a cooling scheme is the use of a large number of iterations at a few

temperatures or a small number of iterations at many temperatures. The Modified logarithmic

temperature update scheme consists of (4.11), which is a very slow decreasing function,

Figure 4.3.

 
 

 

1

1

k
k

k

T
T

T





 (4.11)

where  is a very small constant parameter with values of approximately 410  . Figure

4.12 shows how the temperature decreases during the search process for an initial

temperature of T(1) = 300 °C, 410  and 20,000 iterations.

Page 78
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 4.3: Temperature change during the search process for T(1) = 300 °C, 410 

and 20,000 iterations.

Simulated Annealing Worked Example

The aim is to minimise 𝑓(𝑥) = (4 − 2.1𝑥 +
𝑥3

3
) 𝑥2 + 1.1𝑥 + 1.0164 in the x-interval −2 < 𝑥 < 2

using 6 iterations of the SA algorithm.

Number Random Values Rand Used k f(x) TK

1 0.02850 1 1 x1 = -1.8860 1.6014 350

2 0.34773 2,3 x2 = -0.6213 1.5833

3 0.75934 f = f(x2) - f(x1)= -0.01816 <0 Accept

4 0.73739

5 0.86296 2 x1 = -0.6213 1.5833 300

6 0.69197 4,5 x3 = 0.01569 1.0346

7 0.69055 f = f(x3) - f(x1)= -0.54862 <0 Accept

8 0.72874

9 0.44761 3 x1 = 0.01569 1.0346 250

10 0.00820 6,7 x4 = 0.00222 1.0189

11 0.80004 f = f(x4) - f(x1)= -0.01577 <0 Accept

12 0.15108

13 0.22558 4 x1 = 0.0022 1.0189 200

14 0.45510 8,9 x5 = 0.3220 1.7632

15 0.85492 f = f(x5) - f(x1)= 0.744335 >0 Check

p(f) = 0.99629

10 Next Rand Number z = 0.0082

z < p(Δf) True Accept

5 x1 = 0.3220 1.7632 150

11,12 x6 = 0.7470 3.4742

f = f(x6) - f(x1)= 1.711002 >0 Check

p(f) = 0.98866

13 Next Rand Number z = 0.22558

z < p(Δf) True Accept

6 x1 = 0.7470 3.4742 100

14,15 x7 = 0.2389 1.5008

f = f(x7) - f(x1)= -1.97338 <0 Accept

Page 79
Copyright © 2024 University of Leeds UK. All rights reserved.

The numerical solution is given by the following calculations:

Initial random number = 0.02850 xmin=-2.00000 xmax= 2.00000 initial x=-1.88600
Iteration 1 T=350.000 xmin=-2.000 xmax= 2.000
x1=-1.88600 f1= 1.60142
r= 0.34773 s= 0.75934 probrand= 0.00000
x2=-0.62129 f2= 1.58326
Iteration 2 T=300.000 xmin=-2.000 xmax= 2.000
x1=-0.62129 f1= 1.58326
r= 0.73739 s= 0.86296 probrand= 0.00000
x2= 0.01569 f2= 1.03464
Iteration 3 T=250.000 xmin=-2.000 xmax= 2.000
x1= 0.01569 f1= 1.03464
r= 0.69197 s= 0.69055 probrand= 0.00000
x2= 0.00222 f2= 1.01887
Iteration 4 T=200.000 xmin=-2.000 xmax= 2.000
x1= 0.00222 f1= 1.01887
r= 0.72874 s= 0.44761 probrand= 0.00820
x2= 0.32202 f2= 1.76320
Iteration 5 T=150.000 xmin=-2.000 xmax= 2.000
x1= 0.32202 f1= 1.76320
r= 0.80004 s= 0.15108 probrand= 0.22558
x2= 0.74701 f2= 3.47420
Iteration 6 T=100.000 xmin=-2.000 xmax= 2.000
x1= 0.74701 f1= 3.47420
r= 0.45510 s= 0.85492 probrand= 0.00000
x2= 0.23894 f2= 1.50082
SA search after 6 iterations completed: x= 0.23894 f = 1.50082

The solution is shown on the following figure:

4.3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a population based search algorithm based on the

simulation of the social behaviour of birds in a flock, Figure 4.4. PSO is stochastic and mimics

the flock’s behaviour as it adjusts its movement to avoid predators to seek food sources.

Individual particles exchange information about their position, velocity and fitness. The

position of each individual particle represents a candidate solution to the optimization problem.

Page 80
Copyright © 2024 University of Leeds UK. All rights reserved.

The particle swarm optimisation algorithm (PSOA) uses a fitness function to evaluate the

optimality of each solution.

Figure 4.4: Swarming of starlings

This function enables each solution to be compared and ranked against each other. If the

objective function is required to be minimised, a solution with the smallest value will have a

higher fitness value. The sharing of information between particles is fundamental to the PSOA

as it offers an evolutionary advantage. The act of exchanging information influences the

behaviour of the flock, which adapts by returning to regions of high fitness already discovered

and searching for better positions with each time step. The real-valued particle swarm

optimization method works like this:

Assume that the search space has (d) dimensions (d is the number of design variables). The

ith particle of a swarm with Np particles can be represented by the d-dimensional position vector

of (6.12).

 idiii xxxX ,,, 21  (4.12)

The velocity of the particle is denoted by the vector of (4.13).

 idiii vvvV ,,, 21  (4.13)

In order for PSO to work, it is also necessary to consider both the best-visited position of the

ith particle (4.14) and the best global position explored so far by the entire swarm (4.15).

 idiibesti pppP ,,, 21,  (4.14)

 gdggbestg pppP ,,, 21,  (4.15)

The velocity of the particle which is then used to calculate its position at the (t + 1) iteration is

given by (4.16) and (4.17) respectively.

       ibestgibestiii XPcXPctwVtV  ,22,111  (4.16)

Page 81
Copyright © 2024 University of Leeds UK. All rights reserved.

     11  tVtXtX iii (4.17)

where:
 c1: A positive constant called the cognitive parameter, a typical value is 0.72

 c2: A positive constant called the social parameter, a typical value is 1.44

1 : random variables with uniform distribution between 0 and 1

2 : random variables with uniform distribution between 0 and 1

 w : is the inertia weight which shows the effect of the velocity vectors on the
new vector. This value is generally constant for the entire optimization,
but could be made to vary between two values with decreasing effect as
the solution evolves using equation (6.18)

max

minmax
max

)(

t

tww
ww d

t


 (4.18)

 t: tth iteration

 tmax: Maximum number of iterations, specified by the user.

 d: dth design variable

minw : Minimum inertia value

maxw Maximum inertia value, used at the start of the optimization to

allow a wide search space. The maximum inertia value should
be less than ~50% of the design variable range:

 max 0.5 U L

d dw V x x  

 d

tw Actual inertia value at tth iteration

An upper bound is placed on the velocity in all dimensions Vmax .This limitation prevents the

particle from moving too rapidly from one region in search space to another. This value is

usually initialized as a function of the range of the problem. For example, if the range of all Xij

is [-50,50] then Vmax is proportional to 50.

Pi,best for each particle is updated in each iteration when a better position for the particle or for

the whole swarm is obtained. PSO is driven by social interaction. Individuals (particles) within

the swarm learn from each other, and based on the knowledge obtained then move to become

similar to their “better” previously obtained position and also to their “better” neighbours.

Individuals within a neighbourhood communicate with one other. Based on the communication

of a particle within the swarm different neighbourhood topologies are defined. Each particle

can communicate with every other individual, forming a fully connected social network. In this

case each particle is attracted toward the best particle (best problem solution) found by any

member of the entire swarm. Each particle therefore imitates the overall best particle. So the

value of Pg,best is updated when a new best position within the whole swarm is found.

The algorithm for the PSO consists of the following 7 steps:

1) Initialize the swarm X. The positions of the Np particles are randomly initialized within

the hypercube of feasible space.

2) Evaluate the performance F of each particle, using its current position X(t).

3) Compare the performance of each individual to its best performance so far. If

   bestii PFXF , then     ibestiibesti XPXFPF  ,, ,

Page 82
Copyright © 2024 University of Leeds UK. All rights reserved.

4) Compare the performance of each particle to the global best particle. If

   bestgi PFXF , then     ibestgibestg XPXFPF  ,, ,

5) Change the velocity of the particle based on the value calculated using equation (1).

6) Move each particle to a new position using equation (2).

7) Go to step 2, and repeat until convergence.

Particle Swarm Optimisation Worked Example

The aim is to minimise 𝑓(𝑥) = (4 − 2.1𝑥 +
𝑥3

3
) 𝑥2 + 1.1𝑥 + 1.0164 in the x-interval −2 < 𝑥 < 2

using the PSO algorithm. The following parameters are used with 3 iterations:

6.4 Differential Evolution (DE) Algorithm

The calculations result in:

PSO: c1= 0.750 c2= 1.500 Np= 2 Niter= 3 w_x= 1.000 v_initial= 0.500 xmin=-2.000 xmax= 2.000
--- --------------------------------------
Random numbers used throughout PSO calculations:

Particle initialisation: for particle 1 xrand= 0.45700, particle 2 xrand= 0.81800
For k=1 particle 1: thi1= 0.28500 thi2 = 0.37300 particle 2: thi1= 0.60900 thi2 = 0.25100
For k=2 particle 1: thi1= 0.67800 thi2 = 0.77800 particle 2: thi1= 0.96400 thi2 = 0.07300
For k=3 particle 1: thi1= 0.42900 thi2 = 0.57200 particle 2: thi1= 0.21900 thi2 = 0.89100
--
Iteration 1: Initial x1= -0.17200 x2= 1.27200 f1= 0.94371 f2= 4.80190

Initial x1best= -0.17200 f1best= 0.94371 x2best= 1.27200 f2best= 4.80190
Initial xgbest= -0.17200 fgbest= 0.94371
For particle 1 thi1= 0.28500 thi2= 0.37300 For particle 2 thi1= 0.60900 thi2= 0.25100
Initial veocity particle 1= 0.50000 particle 2= 0.50000

Start of iteration 2 xgbest= -0.17200 fgbest= 0.94371

Before iteration x1= -0.17200 x2= 1.27200 f1= 0.94371 f2= 4.80190
Before iteration x1best= -0.17200 f1best= 0.94371 x2best= 1.27200 f2best= 4.80190
For particle 1 thi1= 0.28500 thi2= 0.37300 For particle 2 thi1= 0.60900 thi2= 0.25100
After iteration: For particle 1 velocity= 0.50000 particle 2 velocity= -0.04367
After iteration x1= 0.32800 x2= 1.22833 f1= 1.78365 f2= 4.76708

Page 83
Copyright © 2024 University of Leeds UK. All rights reserved.

After iteration x1best= -0.17200 f1best= 0.94371 x2best= 1.22833 f2best= 4.76708
After iteration 2 xgbest= -0.17200 fgbest= 0.94371

Start of iteration 3 xgbest= -0.17200 fgbest= 0.94371

Before iteration x1= 0.32800 x2= 1.22833 f1= 1.78365 f2= 4.76708
Before iteration x1best= -0.17200 f1best= 0.94371 x2best= 1.22833 f2best= 4.76708
For particle 1 thi1= 0.67800 thi2= 0.77800 For particle 2 thi1= 0.96400 thi2= 0.07300
After iteration: For particle 1 velocity= -0.33775 particle 2 velocity= -0.19700
After iteration x1= -0.00975 x2= 1.03133 f1= 1.00606 f2= 4.43074
After iteration x1best= -0.17200 f1best= 0.94371 x2best= 1.03133 f2best= 4.43074
After iteration 3 xgbest= -0.17200 fgbest= 0.94371

 PS search completed xgbest= -0.17200 fgbest = 0.94371

4.4 Differential Evolution (DE)

The differential evolution (DE) algorithm works with a population of designs. At each iteration

(called generation), a new design is generated using some current designs and random

operations. If the new design is better than a preselected parent design, then it replaces that

design in the population; otherwise, the old design is kept and the process is repeated.

Compared to genetic algorithms (GA), DE algorithms are easier to implement, and don’t

require binary number coding and encoding.

The basic DE algorithm consists of the following four steps, which will be explained next.

1) Generate an initial population of designs.

2) Mutation with difference of vectors to generate a donor design vector.

3) Crossover/recombination to generate a design vector.

4) Selection (accept/reject) the trial design vector using the fitness function.

4.4.1 Generation of the Initial Population

Page 84
Copyright © 2024 University of Leeds UK. All rights reserved.

It is necessary to generate an initial population of Np design points. Np is usually a large

number, between five (5n) and ten times (10n): the number of design variables (n), where

each design variable is called a chromosome. The initial designs are generated using

equation (6.1), which for DE has the form of (6.19).

  ntojxxrxx jLjUijjL

i

j 1;)0,( (4.19)

where:
 L: lower limit;
 U: upper limit,
 I: ith design point;
 0: 0th generation;
 J: jth component of the population
 rij: Uniformly distributed random number between 0 and 1, generated for each

component of the design point.

4.4.2 Generate a Donor Design

The donor design point is created by changing a design point from the current population. This

change is done by combining the design vector with the difference between two other vectors

of the population, all randomly selected. The generated design vector is called the donor

design/vector. Mutation implies changing all components of a design vector. So, at the kth

generation, to generate the donor design vector, the following steps are required:

1) Randomly select three design points from the current population, represented by these

3 variables:
      1, 2, 3,

, ,
r k r k r k

x x x : r1, r2, and r3 are three different designs.

2) Select a fourth point
 ,p k

x , called the parent/target design point; p means parent

design.

3) Generate a Donor design vector using (6.20)

        krkrkrkp xxFxV ,3,2,1,  (4.20)

where:
F: is a scale factor, with values typically between 0.4 and 1;
V(p,k): Donor design vector at the kth generation/iteration associated with pth parent

design

4.4.3 Crossover Operation to Generate Trial Design

The crossover operation is carried out using (4.21).

 
 

  ntoj
otherwisex

jjorCrrifV
U

kp

j

rpj

kp

jkp

j 1;
,

,
,

,

, 




 

 (4.21)

where:
rpj: is a uniformly distributed random number between 0 and 1;
jr: is a randomly generated index between 1 and n that ensures that U(p, k)

receives at least one component from V(p,k);
Cr: Crossover rate (value of 0.9 commonly used).

4.4.4 Acceptance/Rejection of the Trial Design

Page 85
Copyright © 2024 University of Leeds UK. All rights reserved.

Check if the trial design U(p,k) is better than the parent design x(p,k).If it is, it replaces the parent

design (to keep population size constant). This is represented by (4.22).

 
       
 



 



otherwisex

xfUfifU
x

kp

kpkpkp
kp

,

,
,

,,,
1,

 (4.22)

If the cost function value for the trial design point is less than for the parent design, it replaces

the parent design point in the next generation; otherwise, the parent design is retained. The

population then gets better or remains the same but doesn’t deteriorate. Note that the parent

design is replaced by the trial design even if both produce the same cost function value. This

allows the design vectors to move over a flat fitness landscape.

4.4.5 The DE Algorithm

The DE algorithm only requires three parameters: Np, F, and Cr, and its flow chart is given in

Figure 4.5. The termination criteria consist of the following three steps:

1) Specify a limit kmax on the number of generations.

2) The best fitness/cost function value of the population does not change appreciably for

several generations.

3) A specified value for the cost function is reached.

Figure 4.5: Main steps of the differential evolution algorithm..

Differential Evolution Worked Example

The aim is to minimise 𝑓(𝑥) = (4 − 2.1𝑥 +
𝑥3

3
) 𝑥2 + 1.1𝑥 + 1.0164 in the x-interval −2 < 𝑥 < 2

using the DE algorithm. The following parameters are used:

Page 86
Copyright © 2024 University of Leeds UK. All rights reserved.

Differential Evolution: n=1 Np=6 Ngen=2 xmin= -2.0000 xmax= 2.0000 F= 0.4000 Cr= 0.9000
--

Random numbers for initialisation of design points:

Point 1= 0.6582 2= 0.7161 3= 0.2503 4= 0.7816 5= 0.8839 6= 0.5247

Random numbers for generating donor and target points at each iteration:
--
Generation 1 random numbers: 0.1934 0.5037 0.0998 0.4530
Generation 1 donor designs: 2 4 1 and target design 3

At start of generation 1:

x1= 0.6328 x2= 0.8644 x3= -0.9988 x4= 1.1264 x5= 1.5356 x6= 0.0988
f1= 2.9989 f2= 3.9226 f3= 2.1491 f4= 4.6308 f5= 4.8315 f6= 1.1639
Minimum function value= 1.1639 at x= 0.0988
For generation 1 donation use r1= 2 r2= 4 r3= 1 for target rp= 3 with potential x= 1.0618

At end of generation 1:

x1= 0.6328 x2= 0.8644 x3= -0.9988 x4= 1.1264 x5= 1.5356 x6= 0.0988
f1= 2.9989 f2= 3.9226 f3= 2.1491 f4= 4.6308 f5= 4.8315 f6= 1.1639
Minimum function value= 1.1639 at x= 0.0988

DE search completed xbest= 0.09880 fbest = 1.16393

The following example solves the same problem but with a different set of random numbers
and a larger number of generations:

Differential Evolution: n=1 Np=6 Ngen=10 xmin= -2.0000 xmax= 2.0000 F= 0.4000 Cr= 0.9000
--

Random numbers for initialisation of design points:

Point 1= 0.9106 2= 0.8006 3= 0.7458 4= 0.8131 5= 0.3833 6= 0.6173

Page 87
Copyright © 2024 University of Leeds UK. All rights reserved.

Random numbers for generating donor and target points at each iteration:
--
Generation 1 random numbers: 0.5755 0.0871 0.8990 0.4106
Generation 1 donor designs: 4 1 5 and target design 3
Generation 2 random numbers: 0.5301 0.8021 0.6259 0.9843
Generation 2 donor designs: 4 5 4 and target design 6
Generation 3 random numbers: 0.2751 0.9891 0.1379 0.9456
Generation 3 donor designs: 2 6 2 and target design 6
Generation 4 random numbers: 0.2486 0.0669 0.2178 0.6766
Generation 4 donor designs: 2 1 2 and target design 4
Generation 5 random numbers: 0.4516 0.9394 0.1821 0.9883
Generation 5 donor designs: 3 6 2 and target design 6
Generation 6 random numbers: 0.2277 0.0182 0.0418 0.7668
Generation 6 donor designs: 2 1 1 and target design 5
Generation 7 random numbers: 0.8044 0.6838 0.1069 0.3367
Generation 7 donor designs: 5 4 2 and target design 3
Generation 8 random numbers: 0.9861 0.7837 0.6164 0.6624
Generation 8 donor designs: 6 5 4 and target design 4
Generation 9 random numbers: 0.0300 0.5341 0.9397 0.2442
Generation 9 donor designs: 1 4 6 and target design 2

At start of generation 1:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668
For generation 1 donation use r1= 4 r2= 1 r3= 5 for target rp= 3 with potential x= 2.0961

At end of generation 1:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668
At start of generation 2:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668
For generation 2 donation use r1= 4 r2= 5 r3= 4 for target rp= 6 with potential x= 0.5648

At end of generation 2:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668
At start of generation 3:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668
For generation 3 donation use r1= 2 r2= 6 r3= 2 for target rp= 6 with potential x= 0.9090

At end of generation 3:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668

At start of generation 4:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146

Page 88
Copyright © 2024 University of Leeds UK. All rights reserved.

Minimum function value= 1.2782 at x= -0.4668
For generation 4 donation use r1= 2 r2= 1 r3= 2 for target rp= 4 with potential x= 1.3783

At end of generation 4:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668

At start of generation 5:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668
For generation 5 donation use r1= 3 r2= 6 r3= 2 for target rp= 6 with potential x= 0.6901

At end of generation 5:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668

At start of generation 6:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668
For generation 6 donation use r1= 2 r2= 1 r3= 1 for target rp= 5 with potential x= 1.2022

At end of generation 6:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668

At start of generation 7:

x1= 1.6423 x2= 1.2022 x3= 0.9834 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 4.3039 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2782 at x= -0.4668
For generation 7 donation use r1= 5 r2= 4 r3= 2 for target rp= 3 with potential x= -0.4467

At end of generation 7:

x1= 1.6423 x2= 1.2022 x3= -0.4467 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 1.2422 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2422 at x= -0.4467

At start of generation 8:

x1= 1.6423 x2= 1.2022 x3= -0.4467 x4= 1.2525 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 1.2422 f4= 4.7879 f5= 1.2782 f6= 2.3146
Minimum function value= 1.2422 at x= -0.4467
For generation 8 donation use r1= 6 r2= 5 r3= 4 for target rp= 4 with potential x= -0.2186

At end of generation 8:

x1= 1.6423 x2= 1.2022 x3= -0.4467 x4= -0.2186 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 1.2422 f4= 0.9623 f5= 1.2782 f6= 2.3146
Minimum function value= 0.9623 at x= -0.2186

At start of generation 9:

Page 89
Copyright © 2024 University of Leeds UK. All rights reserved.

x1= 1.6423 x2= 1.2022 x3= -0.4467 x4= -0.2186 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 1.2422 f4= 0.9623 f5= 1.2782 f6= 2.3146
Minimum function value= 0.9623 at x= -0.2186
For generation 9 donation use r1= 1 r2= 4 r3= 6 for target rp= 2 with potential x= 1.3672

At end of generation 9:

x1= 1.6423 x2= 1.2022 x3= -0.4467 x4= -0.2186 x5= -0.4668 x6= 0.4691
f1= 4.8751 f2= 4.7397 f3= 1.2422 f4= 0.9623 f5= 1.2782 f6= 2.3146
Minimum function value= 0.9623 at x= -0.2186
DE search completed xbest= -0.21857 fbest = 0.96231

4.5 Genetic Algorithms (GA)

Genetic algorithms (GA) are a class of stochastic algorithms which simulate natural

inheritance and Darwin’s survival of the fittest concept. They belong to the class of probabilistic

algorithms; but are very different from random ones, as they combine elements of directed

and stochastic search. They are superior to hill-climbing methods, since at any time a GA

provides for both exploitation of the best solutions, and exploration of the search space.

GA performs a multi-directional search by maintaining a population of potential solutions and

encourages information formation and exchange between these directions. This population

undergoes a simulated evolution: at each generation the relatively “good” solutions reproduce,

while the relatively “bad” solutions die. One of the main differences between GA and other

stochastic methods is in the way that the design variables are stored and manipulated. GA

attempts to simulate numerically biological genetics and evolution. So, the design variables

are represented not as a vector of values, but as a binary string of 0’s and 1’s called a

chromosome. This means that this vector of design variables:  1 2, , , nx x x x is represented

by this binary string: 010101001001011000100100111100101010100111x . But

instead of calling this the design variables, this binary string is called a chromosome (6.23).

Page 90
Copyright © 2024 University of Leeds UK. All rights reserved.

 010101001001011000100100111100101010100111chromosome (4.23)

A chromosome (also called an Individual or string) is a binary string which holds all of the

design variables and which needs to be optimized. Since the design variables are all

embedded inside of the chromosome, then all of the segments which make up each individual

design variable are the genes, (4.24).












 

var

010010010100111100101010100111
21 Ngenegenegene

chromosome (4.24)

The genes then represent the design variables inside of the chromosome. In the chromosome

of (4.24), the number of design variables is Nvar, and each one has been coded using 10 bits,

i.e. Ngene = 10. The length of this chromosome is then given by (4.25).

bitsNNNN genebits varvar 10 (4.25)

Each individual bit of a chromosome is called an Allele, (4.26).












 

var

010010010100111100101010100111
21 Ngenegenegene

chromosome (4.26)

A Population consists of a group of individuals that interact (breed) together and looks like

(4.27).



























110100100100001001011001011001011111100100

101010000000101001001011000101000010010011

010101001001011000100100111100101010100111


Population (4.27)

A population of individuals can then be manipulated and combined by using the following six

genetic operators, each of these operators will be explained in the sections which follow.

1) Evaluation

2) Selection

3) Reproduction (Cross-over)

4) Mutation

5) Elitism

6) Extermination

4.5.1 Evaluation

In conventional optimization, the objective function is used to provide a measure of optimality

for the values of the design variables. In GA, the fitness of an individual is used to determine

its relative performance (fitness) compared to the other individuals of a population. Fitness

Function (FF): is the function used to calculate the fitness, (4.28).

15/40

Page 91
Copyright © 2024 University of Leeds UK. All rights reserved.

    xfgxF  (4.28)

where:
 f: is the objective function;
 g: transforms the value of the objective function to a non-negative number
 F: is the resulting relative fitness.

4.5.2 Selection

The process of selection consists of selecting two chromosomes (individuals) from the mating

pool (population) in order to carry out reproduction to produce two new offspring. The selection

process is biased toward fit members of the current population. Using the fitness value Fi for

each individual of the population, its probability of being selected is calculated using (4.29).





pN

j

j
i

i FQ
Q

F
P

1

, (4.29)

The members with the higher fitness have the largest probability of selection. To explain the

process of selection, consider the roulette wheel with a handle, Figure 4.6. The wheel has Np

segments to cover the entire population. The size of the ith segment is proportional to the

probability Pi. A random number w is generated between 0 and 1. The wheel is then rotated

clockwise, with the rotation proportional to the random number w.

Figure 4.6: Roulette wheel process for selection of designs for new generation (reproduction).

After spinning the wheel, the member pointed by the arrow at the starting location is selected

for inclusion in the next generation. In Figure 4.6, the 2nd individual is selected as a parent for

reproduction. Since the segments on the wheel are sized according to the probabilities Pi, the

selection process is biased toward fitter members of the current population.

Page 92
Copyright © 2024 University of Leeds UK. All rights reserved.

Note that a member selected for mating remains in the current population for further selection.

Therefore, the new population may contain identical members and may not contain some of

the less fit individual members from the current population. This guarantees that the average

fitness of the new population is increased. The three of the most common selection methods

are:

1) Roulette Wheel Selection

2) Linear-rank selection

3) Tournament selection:

4.5.2.1 Roulette Wheel Selection

Roulette Wheel Selection or Proportional Selection was the original selection process. As was

just explained, each individual of the population is represented by a space proportional to its

fitness. By repeatedly spinning the wheel, individuals are chosen using random sampling with

replacement.

4.5.2.2 Linear-Rank Selection

The individuals of the population are ordered according to their fitness. Copies are assigned

in such a way that the best individual receives a pre-determined multiple of the number of

copies the worst one receives. Rank selection implicitly reduces the dominating effects of

“super individuals” in populations (i.e., individuals that are assigned a significantly better

fitness value than all other individuals). However, it warps the difference between close fitness

values, thus increasing the selection pressure in stagnant populations.

4.5.2.3 Tournament Selection

There are a number of variants on this theme. The most common one is k-tournament

selection where k individuals are selected from a population. The fittest individual of the k

selected ones is considered for reproduction. In this variant, selection pressure can be scaled

quite easily by choosing an appropriate number for k.

4.5.3 Reproduction (Cross-over)

The operator to produce new individuals is call reproduction. Like nature, reproduction is

carried out by crossover, which produces new individuals with some parts from the genetic

material of both parents. There are 3 common forms of cross over, these are:

1) Single-point Crossover

2) Multi-point Crossover

3) Uniform Crossover

4.5.3.1 Single-point Crossover

Consider the following two binary strings as two parents:

Page 93
Copyright © 2024 University of Leeds UK. All rights reserved.

1110011000

0100110101

2

1





P

P

A position, i, is selected randomly between 1 and the string length, l. Assume that for this

problem, the position i = 5 was randomly selected. The two strings are then cut between the

5th and 6th allele.

1110011000

0100110101

2

1





P

P

The segments of the strings to the right of the cut are then swapped.

1110011000

0100110101

2

1





P

P

To produce these two children

0100111000

1110010101

2

1





O

O

4.5.3.2 Multi-point Crossover

For multi-point crossover, m crossover positions are chosen at random with no duplicates and

these are then sorted into ascending order, (4.30).

 1,,12,7,3,1  lk i  (4.30)

where:
 ki: are the crossover points
 l: is the length of the chromosome

Then, the bits (alleles) between successive crossover points are exchanged between the two

parents to produce two new offspring

Consider the following two binary strings as two parents:

001010100010000

011001110111101

2

1





P

P

If the number of cross overs (m) was set to m = 3. With the 3 positions randomly selected to

be  13,6,3ik , this then creates the 4 segments shown below. But only segments 2 and 4

take part in the crossover. These two segments are cut are then swapped.

001010100010000

011001110111101

2

1





P

P

2 1 3 4

Page 94
Copyright © 2024 University of Leeds UK. All rights reserved.

To produce these two children

011010100111000

001001110010101

2

1





O

O

4.5.3.3 Uniform Crossover

Uniform crossover generalises this scheme to make every locus a potential crossover point.

A crossover mask (the same length as the chromosome) is randomly created with values of 0

or 1. The value of the bits in the mask indicates which parent supplies each offspring with their

information. Consider the following two parents and the randomly generated crossover mask.

010100000010110

011010100111000

001001110010101

2

1







mask

P

P

The first offspring, O1, is produced by taking the bit from P1 if the corresponding mask bit is 1

or the bit from P2 if the corresponding mask bit is 0. Offspring O2 is created using the inverse

of the mask. For the two parents and mask shown above, the two offspring become:

011001110010001

001010100111100

2

1





O

O

4.5.4 Mutation

In natural evolution, mutation is a random process where one allele of a gene is replaced by

another to produce a new genetic structure. In GA, mutation is randomly applied with a

probability of between 0.001 and 0.01 (0.1% to 1%). Mutation takes place after the

reproduction (cross-over) stage and modifies individual alleles in the chromosome by inverting

their value. Mutation provides a guarantee that all possible strings will be searched. It acts as

a safety net to recover good genetic material which may have be lost through selection and

crossover

Consider that the 2nd of these two offspring was randomly selected for mutation. It was then

randomly found, that the 7th position was going to be mutated.

011001110010001

001010100111100

2

1





O

O

Since the current value is 0, this is then mutated to have a value of 1.

011001111010001

001010100111100

2

1





O

O

4.5.5 Elitism

A very small proportion of the individuals (chromosomes) with the best fitness are carried over

from one generation to the next. Elitism guarantees that the solution quality obtained by the

Page 95
Copyright © 2024 University of Leeds UK. All rights reserved.

GA does not decrease from one generation to the next. A reasonable proportion of the

population to be considered for elitism is 10%.

4.5.6 Extermination

It’s reasonable to exterminate a certain percentage (%) of the population of lowest fitness. A

reasonable proportion of the population to be exterminated is between 10 and 25%.

4.5.7 Termination Condition

The GA process can go forever, unless there is some sort of termination condition. There are

normally a couple of ways to achieve this:

1) Maximum number of iterations (called generations) reached . A typical value is 150

generations

2) Fitness function conversion. If the fitness function value does not improve by more

than a minimum relative threshold (typically) 0.0001% (0.000001) over the previous n

generations (typically 10) the process is terminated.

4.5.8 The Genetic Algorithm Procedure

The virtual code of Figure 4.7 shows how the GA procedure works.

 Genetic Algorithm Procedure

begin

t = 1

Initialize P(t) - Randomly

Evaluate P(t)

while (not termination-condition) do

begin

Extermination P(t)

Selection from P(t)

Elitism P(t+1) from P(t)

Reproduction P(t+1)

Mutation P(t+1)

Evaluate P(t+1)

t = t+ 1

end

end

Figure 4.7: GA virtual code

4.6 Ant Colony Optimization (ACO)

Ant colony optimization (ACO) emulates the food searching behaviour of ants. The method

was originally developed by Dorigo (1992) to search for the optimal path for a problem

represented by a graph. It was based on the behaviour of ants seeking the shortest path

Page 96
Copyright © 2024 University of Leeds UK. All rights reserved.

between their colony and a food source. ACO falls into the metaheuristics2 and swarm

intelligence methods class. It is a stochastic technique for solving computational problems,

which can be used to find optimal paths.

4.6.1 How Real Ants Work

Ants are able to deal with complex tasks by acting collectively. This collective behaviour is

supported by the release of a chemical substance, named pheromone. During their

movement, ants deposit pheromone in their followed paths.

The presence of pheromone in a path attracts other ants. In this way, pheromone plays a key

role in the information exchange between ants, allowing them to accomplish several important

tasks. A classic example is the selection of the shortest path between their nest and a food

source.

Consider four ants (A1, A2, A3 and A4), and two possible paths, P1 and P2, Figure 6.8. These

two paths link a nest (NE) to a food source (FS), and for this explanation, it is assumed that

path P1 is longer than path P2, hence P2 < P1.

Figure 4.8: Two paths between a nest and food source with four ants.

Initially, all the ants (A1, A2, A3 and A4) are in NE and must choose between the paths P1 and

P2 to arrive to FS.

At the NE, the four ants don’t know the localization of the food source (FS). Randomly they

choose between P1 and P2, with the same probability. So assume that ants A1 and A2 choose

P1, and ants A3 and A4 choose P2, Figure 4.8.

As the ants travel by P1 and P2, they leave a certain amount of pheromone on the paths, 1

and 2 , respectively. Since P2 < P1, A3 and A4 arrive to FS before A1 and A2. At that moment,

22  , but 01  since A1 and A2 have not arrived to FS, Figure 4.9.

2 Metaheuristics: Makes few assumptions about the optimization problem being solved, making it
usable for a variety of problems.

Page 97
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 4.9: Two ants follow path P1 and the other two paths P2. Now at the food source, the
ants need to decide which path to take.

In order to come back to NE, A3 and A4 must choose again between P1 and P2. At the FS,

12   , the probability of these ants choosing P2 is higher. Assume then, that A3 and A4

choose P2, so that as they travel back to NE 42  .

Figure 4.10: With ants A3 and A4 already along path P2, ants A1 and A2 need to decide which
path to take.

When A1 and A2 arrive at the FS, then 42  and 21  , Figure 4.10. When A1 and A2 decide

to go back to NE, since 12   , then the probability that they choose to return via P2 becomes

higher. As they do, then 62  . When all ants are back at NE, then 62  and 21  , so in

the future P2, will have highest probability of being selected, Figure 6.11.

Figure 4.11: Final pheromone composition in the two paths after all ants are back at the
nest.

When there is no pheromone, an ant looking for food randomly will choose between P1 and

P2 with a probability of 0.5 (50% possibility of choosing each path). When there is pheromone

Page 98
Copyright © 2024 University of Leeds UK. All rights reserved.

on at least one of the paths, the probability of selecting a given path is proportional to the

amount of pheromone on it. Thus, paths with a higher concentration of pheromone have a

higher probability of being selected.

To understand how to use ant colonies to solve problems, it is necessary to understand the

problem of foraging for food and how ants solve it. Each location (nest, food source, etc.) is

represented by a node and each path by an edge in a graph, Figure 4.12.

To solve a problem using ant colony optimization the domain needs to be able to be

represented, as a graph and the goal will then be to find the best path.

Figure 4.12: Two nodes representing the nest and food source connected by two paths.

4.7 How to Solve Constrained Optimization Problems

The most common approach for solving optimization problems which have constraints

(particularly, inequality constraints) with any of the stochastic methods mentioned in this

chapter as well as pattern search methods of chapter 3 (sections 3.6 and 3.7) is to use Penalty

Functions.

The idea of this method is to change a constrained-optimization problem into an unconstrained

problem; by adding a value to the objective function based on the amount of constraint

violation present in the solution. The modified objective function with the penalty terms is given

by equation (4.31).

     
22

1 1

()
p m

k j k

j i

F x f x r h x r g x
 

    (4.31)

where:

kr
is (> 0) and has to be appropriately selected. A possible equation for it is
given by equation (4.32). It needs to have a small value at the start but then
increase to a larger value for the purpose of tightening the constraints.

  g x
is the function of equation (4.33) which has a value of zero if the inequality
constraint is not violated or the value of how much the constraint is violated.

   

1
max 1,k

i j

r
g x h x

 
 
 
 

 (4.32)

   max 0,i ig x g x    (4.33)

Page 99
Copyright © 2024 University of Leeds UK. All rights reserved.

In case constraints are satisfied   0ig x  , then  ig x will be zero and there will be no

penalty on the objective function. In case constraints are violated   0ig x  then  ig x will

be a positive value resulting in a penalty on the objective function. The penalty will be higher

for higher infeasibility of the constraints. The function F(x) can be optimized using the

algorithms for unconstrained problems. The penalty function method of this form is called the

exterior penalty function method.

The main advantages of the penalty function method are that:

a) It can be started from an infeasible point.

b) Unconstrained optimization methods can be directly used.

The main disadvantages of the penalty function method are that:

a) The function becomes ill-conditioned as the value of the penalty terms is increased.

Owing to abrupt changes in the function value, the gradient value may become large

and the algorithm may show divergence.

b) As this method does not satisfy the constraints exactly, it is not suitable for optimization

problems where feasibility must be ensured in all iterations.

Only exterior penalty function method was presented, which can be started even from an

infeasible point. Some problems require feasibility to be maintained in all iterations. In such

cases, the interior penalty function methods also called barrier function methods can be

used.

Page 100
Copyright © 2024 University of Leeds UK. All rights reserved.

Chapter 5

Design of Experiments (DoE)

5.0 Introduction

A Design of Experiment (DoE) [42, 48, 123] is a procedure for selecting the values of the input

variables for the experiment from the predetermined parameter domain. DoE methods are not

always relevant for certain physical experiments, such as data values dictated by geographical

locations, however they are ideal for computer simulations. Theoretically there are an infinite

number of possible design choices, practically however the domain is discretised into a finite

number of possible data points either based upon the computer paradigm and/or engineering

requirements. The values for the design parameters chosen by the DoE are members of this

finite set and are also known as the training data for the resulting approximation model. The

quantity of training data points required for any given situation is problem dependent and can

be viewed as an optimisation in its own right, how to obtain the best (most representative)

results for the least amount of work.

Whilst the overall aim is to use computer simulations as a complement, or even as a

replacement, for physical experiments, the techniques are illustrated using standard analytical

optimisation test problems. However, a possible drawback with this approach is that for

practical engineering problems we do not usually know how smooth the actual response

surface is. The addition of a small (< 10%) amount of normally distributed random errors

(‘noise’) to the true analytical response value can mimic real life engineering applications

slightly better, whilst remaining computationally cheap to analyse and potentially highlighting

any possible pitfalls with the surrogate models, such as over-fitting. Hueng et al. [61] use this

approach for several analytical test functions, with varying amounts of noise per function,

normally distributed about the true values.

5.0.1 Test Functions

Two different analytical test functions with different properties have been chosen for illustrative

and testing purposes. The first is the Six-Hump Camel-Back (SHCB) function [102, 151] which

has three pairs of local minima, of which one pair are global minima, within the specified

domain. The second test function, the Rosenbrock ‘Banana’ (RB) [143], presents different

challenges with large response values at the domain extrema and a notoriously difficult to find

global minimum [6] located within a banana shaped groove.

Page 101
Copyright © 2024 University of Leeds UK. All rights reserved.

The SHCB function is described by (8.1) with the global minima having values of 𝑓 = −1.0316

at (0.0898,−0.7127) and (−0.0898,0.7127). Contours of the function are shown in Figure 5.1.

The contours shown are evenly spaced at increments of 𝑓 = 0: 25.

 𝑓(𝑥1, 𝑥2) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4,

for 𝑥1 ∈ [−2,2], 𝑥2 ∈ [−1,1]. (5.1)

Figure 8.1: Contour plot for the Six-Hump Camel-Back analytical function.

Whilst the SHCB function has multiple minima, it only accepts two-dimensional training data.

The two-dimensional RB function given by (5.2a), shown in Figure 5.2, can be extended to 𝑝

dimensions, as in equation (5.2b).

 𝑓(𝑥1, 𝑥2) = (1 − 𝑥1)
2 + 100(𝑥2 − 𝑥1

2)2, (5.2a)

 𝑓(𝑥
→
) = ∑ ((1 − 𝑥1)

2 + 100(𝑥𝑖+1 − 𝑥𝑖
2)2)

𝑝

𝑖=1
. (5.2b)

For the two dimensional case, the single global minimum lies at (1,1) with a value of f = 0.

For higher dimensions [6, 79], there are multiple minima (two for 4 ≤ 𝑛 ≤ 7, with the global

located at 𝑥𝑖 = 1, 𝑖 = 1,… , 𝑝 at a value of 𝑓 = 0.

The contour plot for the two dimensional case is shown in Figure 5.2, with contours at 𝑓 =

 0.5, 1, 2, 3, 4, 5, 10, 25, 50, 100, 250, 500, 1000 and 2000.

Figure 5.2: Contour plot for the 2D Rosenbrock Banana function.

Page 102
Copyright © 2024 University of Leeds UK. All rights reserved.

5.0.2 DoE Notation

Each DoE contains n training data points  1ix i n  located within the parameter domain,

where each data point is represented by a 𝑝 dimensional coordinate 𝑥𝑖⃗⃗ ⃗𝜖𝑅
𝑝. As such, each

DoE can be represented as either a vector of vectors or a matrix, (8.3), which may be used to

determine the quality of the experimental design. Some DoE techniques require that each

design parameter be discretised into levels (intervals) to aid with allocation of the parameter

values for the 𝑛 data points.

 
11 1

1 2

1

, , ,

n

n

p pn

x x

X x x x

x x

 
 

   
 
 

 (5.3)

Whilst in the context of CFD and engineering, each training data point corresponds to a

particular set of values for the design parameters, for the purposes of this report (and following

literature [92, 103]) a ‘design’ can be taken to mean a particular set of n training data points

that constitute a given DoE and may be interchanged accordingly. The design parameters 𝑝

are the variables for both the DoE and the resulting n simulations, hence the terms design

parameters and parameters are equally valid in both instances.

Following this notation, a population of DoEs contains Q individual designs, each design

containing n training data points in p dimensions, 𝑥𝑖⃗⃗ ⃗𝜖𝑅
𝑝 for 1 i n  .

5.1 Experimental Designs for Simulations

Theoretically the exact input-output relationship for computer simulations is already known.

Furthermore, plotting the computer response for the entire parameter domain would provide

an accurate response (hyper-) surface. However as this may be too computationally expensive

to realise, numerous methods (known as surrogate models or often termed metamodels) for

mimicking the behaviour of a given hyper-surface have been developed [25, 54, 69, 86, 123,

129, 151] based on a reduced (hopefully minimum) number of strategically chosen input data

points.

Regardless of the ultimate experimental objective, there exist several different and well-

documented methods for obtaining the initial training data. Recent years have seen an

increase in the development of such techniques for computational experiments [42, 73, 125],

tailoring the methods to the specific requirements, many of which are straightforward to

implement for regular parameter domains. As irregular domains may be problematic [73] and

affect properties of the method, they will not be considered in this thesis. However, constraints

may be added to a regular domain [73], after DoE selection and surrogate model construction,

as part of the optimisation process. Although this may incur additional computational efforts,

it simplifies the groundwork stages enormously.

Page 103
Copyright © 2024 University of Leeds UK. All rights reserved.

5.1.1 DoE Requirements for Simulations

An obvious requirement is that given any set of design parameters and number of training

data points, the DoE technique yields different sets of training data whose resulting surrogate

models have predictive (quantitative and qualitative) qualities, thus allowing accurate

comparison of different surrogate modelling techniques. If different designs produce

significantly different hyper-surfaces when implementing the same surrogate model, this

indicates that the initial design may not have contained enough data points. Alternatively, it

may suggest that the surrogate model was inappropriate and another may provide better

results. There may even be a necessity to customise a DoE such that it is suitable for a certain

surrogate model.

As uniform designs provide a good basis for an average surrogate model representation

across the parameter domain [125], a sensible strategy could be to get basic approximation

with a space-filling design and then tailor the surrogate model further with exploratory

techniques for allocating additional data points. As such, the initial focus is concerned with

space-filling designs. Situations that require additional training data that also fulfil the space-

filling requirement are also considered, for example when the initial number of data points is

insufficient.

For most practical engineering problems, it is a reasonable assumption that the cost of the

calculation of the response value at each training data point is computationally expensive,

especially in comparison with the cost associated with that of generating a suitable DoE, which

may be small, or even negligible, to that of a single data point evaluation. Therefore the time

taken to obtain a good set of input points can potentially avoid wasted simulation time.

5.1.2 Quantifying and Comparing Spatial Coverage

A population of distinct DoE designs can be generated from any DoE method for a given

number of training data points in any specified parameter domain. Each member of the

population can be evaluated according to the spatial coverage it provides over the parameter

domain and the most appropriate DoE design employed for the subsequent simulation. There

exist several documented measurements based on the Euclidean distance between the data

locations in parameter space to quantify spatial coverage and compare different experimental

designs. The methods are equally applicable for comparisons of different designs in a

population or modification to an individual design to produce a new design, and hence

determining whether the modification has yielded any improvement. Two of the simplest

quantifiers are the maxi-min and mini-max methods, mathematical details for both can be

found in [125] and references therein.

The maxi-min method ensures that in any individual design no two training data points are too

‘close’ in parameter space. The first stage calculates the Euclidean distances between all the

data points in a design and determines the minimum. If another design, be it a modification or

another member of the population, has a greater minimum Euclidean distance, then the

Page 104
Copyright © 2024 University of Leeds UK. All rights reserved.

second design is better under this criterion. Similarly the mini-max method guarantees that

the data points are not too far apart by finding the minimum of the maximum Euclidean

distances. Used in tandem, the mini-max and maxi-min methods can provide bounds for

ascertaining the ‘best’ design in a population. However, these methods may not provide the

optimum design as they do not consider the distribution of data points in each design as a

whole, only the extrema.

The potential energy analogy is shown to overcome this barrier [11, 13, 14, 88] by effectively

assigning a unit of ‘charge’ to each of the n data points and calculating the resulting ‘energy’,

U, in the whole design:

2

1 1

,
n n

ij

i j i

U r for i j

  

  (5.4)

where: rij is the Euclidean distance between data points i and j The ‘best’ (as in the most

uniformly distributed) DoE of any given set of DoE designs is the one with the lowest potential

energy U.

5.2 Overview of Various Design of Experiment Techniques

Traditionally experiments were carried out by varying one design factor at a time and holding

the others constant. Classical DoE techniques came in 1920 when Fisher published his

strategy for experimenting with several design variables [148], initially applying his Full

Factorial designs to agricultural problems. The next developmental wave came in the 1950s

with Box and Wilson’s work on Response Surface Methodology (RSM), with application in the

chemical industry [148]. Since then, classical DoE methods have traditionally been used with

physical experimentation [92], however they are not always applicable to computational

simulations. Newer methods, such as Hammersley Sampling and Latin Hypercube Sampling,

have been developed to fulfil the requirements, and exploit the additional flexibility, of

computational experimentation.

The desired outcome of the experiment can also influence the choice of technique used. The

authors of [103] advise that a sequence of smaller experiments can provide better results than

one large experiment. An example of which is a screening DoE to determine the significance

of the design variables with a view to reducing the final set of experimental variables to the

most significant. A strategy, therefore, would be to consider a low resolution design for

screening the main effects followed by a high resolution design for investigating input-output

relationships in detail. They also state that the ‘effect’ of any given design factor be determined

by the change in the average response over the m levels (intervals dividing the domain). This

is in stark contrast to the Taguchi viewpoint which advocates a large experiment including all

the main factors to highlight the interactions, including noise parameters [148]. Taguchi

methodology has been fundamental in the development of robust design in industry over the

last thirty years.

Page 105
Copyright © 2024 University of Leeds UK. All rights reserved.

Training data can be chosen from the parameter domain randomly, uniformly or in an

exploratory manner. Santner et al. [125] recommend that for computer simulations the

experiment be designed so as to obtain a surrogate model which provides estimates of the

computer response at unsampled locations over the entire experimental domain. They also

suggest that the DoE (set of training data points) allows for a range of surrogate models. Both

of these objectives can be achieved using uniformly distributed training data points, also

known as space-filling designs.

5.2.1 Classical Designs

Full factorial designs [92,103] became popular in the 1920s as an alternative to the existing

costly and time-consuming methods [148]. They contain 𝑛 = 𝑚𝑝 points for 𝑚 level designs,

where 𝑚 is typically 2 or 3, increasing too rapidly with increasing 𝑚 or 𝑝 to be viable for most

problems. A two level design can be represented by strings (or matrices) of −1 and 1, or even

simply + and −, whilst a three level design typically includes the centre point and is

represented by 0. Fractional factorial designs [92] were developed in the 1930s and 1940s

[148] as a cost effective alternative to full factorial designs. They contain a selected fraction of

the full factorial, typically 1
2
 or 1

3
, however 𝑛 still rises rapidly with 𝑚 and (especially) 𝑝.

Box-Wilson Central-Composite designs (CCD) [103] and Box-Behnken designs (BBD)

[20,103] are a direct consequence of the RSM development in the 1950s. CCD typically

contain five levels for each variable, with full or fractional factorial designs (with centre points)

embedded in the design space. BBD is more efficient than CCD [157], containing three levels

for each design variable, including the central point but omitting the corners, thereby requiring

fewer data points n than CCD. However unlike CCD, Box-Behnken designs do not contain

embedded full or fractional factorial designs. Both methods are used to generate quadratic

response surfaces.

5.2.2 Non-Classical Designs

Sacks et al. [123] note that a common feature of classical DoEs is to account for random, non-

repeatable, errors in physical experiments, which therefore make them inappropriate for

deterministic computer experiments [73]. Simpson et al. [130] find that DoEs with a more

uniform coverage of the design domain produce more accurate approximations, irrespective

of the sample size (𝑛). Several computer-aided algorithms have been developed to generate

and evaluate the design matrices, including Monte Carlo methods, orthogonal arrays and Latin

Hypercube sampling.

Monte Carlo (MC) methods [30, 73] are statistical sampling techniques based on randomly

generated numbers. Basic MC methods may over sample some areas of the design space,

leaving others inadequately sampled. Stratified MC [70, 73] divide the domain into hypercubes

of equal probability to ensure a more even coverage of data points.

Orthogonal arrays aim to separate the effects of various design parameters from other factors

[18], with an equal number of levels (design intervals) in each column of the array, including

Page 106
Copyright © 2024 University of Leeds UK. All rights reserved.

domain corner points [73, 130]. Taguchi proposed a set of orthogonal arrays for robust design,

where noise accounts for variation in response values [7, 30]. Fractional designs and Latin

hypercubes are also subsets of orthogonal arrays [30].

For a regular parameter domain in Latin Hypercube Sampling (LHS) [73, 130], for 𝑛 samples

and 𝑝 parameters, the domain is divided into 𝑛𝑝 hypercubes of equal probability (where each

variable is discretised into 𝑛 levels). The 𝑛 samples are chosen such that no two data points

lie in the same hypercube or share any coordinate values. Whilst random LHS (RLHS) evenly

samples each design parameter, it may not sample the parameter domain evenly, although

there exist techniques to obtain LHS which do.

5.3 Latin Hypercube Sampling

LHS can be described for normalized design parameters [73] by (5.5). Here 𝜅 𝑖 is a vector of

independent, random permutations of the sequence of integers {0,… , 𝑛 − 1} and 𝜏 𝑖 is generally

a vector of uniform random numbers in the interval [0,1] although this can differ between texts;

𝜏 𝑖 may also be set as a constant, 0.5 say [73, 125], for all i. Equally valid, is to discretise the

parameter domain from 1 to n and force the data points onto the nodes. The latter method

ensures fewer DoE permutations which can be of benefit when searching for uniform designs.

Use of random number generators to determine the design matrix makes it highly unlikely for

the process to produce the same results twice.

, 1i i
i

k
x i n

n


    (5.5)

One of the main shortcomings of RLHS is illustrated in Figures 5.3a and 5.3b which shows

two equally likely DoEs in two dimensions for ten training data points, highlighting that spatial

coverage cannot be guaranteed with random LHS.

(A) Non-uniform spatial coverage (B) Worst case scenario.

Figure 5.3: Two sample 10 point normalised RLHS in 2D.

As with all random sampling methods, there is a tendency for uniformity to increase with larger

numbers of design points. Figures 5.4a to 5.5 show the distribution for three n = 50 and one n

Page 107
Copyright © 2024 University of Leeds UK. All rights reserved.

= 100 RLHS DoEs respectively, for two design parameters in a normalised domain, and their

corresponding minimum distance plots (from one DoE point to its nearest neighbour). It can

be seen that the minimum distances between neighbouring data points varies drastically,

which would not be the case if the designs were uniformly distributed over the parameter

domain. However, it is important to note that although the minimum distance plots are a useful

visual aid (as in [150]), they can also be misleading as would be the case for Figure 5.3b which

would show a small constant minimum distance for all the data points.

(A) Example A.

(B) Example B.

(C) Example C.

Page 108
Copyright © 2024 University of Leeds UK. All rights reserved.

Figure 5.4: Three sample 50 point normalised RLHS in 2D. Left: Point distributions. Right:

Minimum distances.

Figure 5.5: A sample 100 point normalised RLHS in 2D. Left: Point distribution. Right:

Minimum distances.

As discussed in section 5.1.2 there are various methods to quantify the spatial distribution of

the DoE. Using the minimum Euclidean distances as in [150], a mean 𝜇 and standard deviation

𝜎 can be assigned to these distances. As demonstrated in Figure 5.3 above, the mean and

standard deviation of the minimum distances is a necessary, but certainly not sufficient,

condition to guarantee uniform spatial coverage of the design space as only one extreme is

considered. When comparing DoEs, a better indication of the entire spatial distribution of data

points can be achieved by considering the Potential Energy analogy given by (5.4).

To illustrate the need for uniform spatial coverage of the design space, the three two-

dimensional 50 point DoEs presented in Figure 5.4 are used as training data for cubic Radial

Basis Function (RBF) surrogate models of the Six-Hump Camel-Back function, Figure 5.6,

and the Rosenbrock Banana function, Figure 5.7. RBF methods will be discussed in greater

detail in the next chapter. Both figures show the contours of the three resultant surrogate

models and the contours of the errors produced by direct comparison of the surrogate models

with the analytical function, where a positive error value indicates that the surrogate model

has over-predicted the true function and a negative value under-predicts. The relevant DoEs

are superimposed on all contour plots.

For the SHCB function in Figure 5.6, the contours are evenly spaced at intervals of 𝑓 = 0.25

for the surrogate models and 𝑓 = 0.125 for the error plots. The RBF however has dramatically

different scales and evenly spaced contours are not appropriate. The contours for the

surrogate models include those shown in the analytical function depicted in Figure 3.2,

however some additional negative values are also required: 𝑓 =

±0.5,±1,±2,±3,±4,±5,±10,±25,±50,100,250,500,1000 and 2000. The error contours are at

𝑓 = 0, ±5,±10,±25,±50 and ±100.

Page 109
Copyright © 2024 University of Leeds UK. All rights reserved.

Although the number of training data points, the choice of surrogate model and the choice of

analytical function is arbitrary for this illustration, several conclusions can still be drawn.

Perhaps the most obvious is that all the training data points lie on contours of zero error due

to the interpolation surrogate model used. An approximation model would have minimum

errors close to the data points, but not necessarily zero. Another obvious trend is that the

maximum errors are on the edges of the domain where there are fewer data points to influence

the surrogate model, highlighting one drawback of surrogate modelling. Naturally, errors are

larger where there is a lower concentration of points. Clearly 50 data points are sufficient to

capture the essence of these functions, if somewhat inaccurately.

(A) Example A. Left: prediction. Right: error.

(A) (B) Example B. Left: prediction. Right: error.

Page 110
Copyright © 2024 University of Leeds UK. All rights reserved.

(A) (C) Example C. Left: prediction. Right: error.

Figure 5.6: Surrogate model and error contour plots based on three 50 point RLHS

predicting the SHCB function.

(A) Example A. Left: prediction. Right: error.

(B) Example B. Left: prediction. Right: error.

Page 111
Copyright © 2024 University of Leeds UK. All rights reserved.

(C) Example C. Left: prediction. Right: error.

Figure 5.7: Surrogate model and error contour plots based on three 50 point RLHS

predicting the RB function.

Despite having the lowest potential of the three DoEs, the surrogate model based on DoE

Example C is the only model to over-predict the number of local minima for the SHCB,

incorrectly showing seven whereas the other two examples both show six reasonably close to

the true locations. The surrogate model based on DoE Example A, on the other hand, vastly

under-predicts the global minimum for the RB.

To produce the contour plots, each coordinate axis is divided into 100, with the values of the

surrogate model and associated errors determined at 1002 locations, effectively creating an

output lattice of data points. Clearly this method is adequate for graphical purposes, adjusting

the size of this lattice as required, but it is severely limited for optimisation. For example,

increasing the accuracy of the coordinates in the output lattice by one decimal place requires

that the total number of evaluations increases by a factor of 10𝑝, quickly making this infeasible.

Also worthy of consideration is the fact that discretising the domain then performing an

optimisation routine may find a different minimum than optimising on a continuous domain.

Further, for domains that are unequal in size (in the coordinate directions) and have not been

normalised, as with the SHCB case, the Euclidean distances between output points are not

equal (in the coordinate directions).

5.3.1 Optimising the Latin Hypercube

The aim of optimising the LH is to obtain a uniform DoE, otherwise known as an Audze-Eglais

Latin Hypercube (AELH) [11, 13]. Intuitively, this can be achieved simply by rearranging the

coordinates of the design points [88] and calculating the value of the designated spatial

quantifier, 𝑈 say. It is easily seen that ‘brute-force’ systematic rearranging of the design is not

a feasible option for larger numbers of design parameters 𝑝 (or larger numbers of design points

𝑛) as this method rapidly becomes too expensive [13]. For 2 design variables 𝑝 and 5 training

data points 𝑛, there are 52 possible positions for the first data point, 42 for the second and so

forth, leading to a total of 5!2 (or 14,400) possible designs. This generalises to 𝑛!2 which rapidly

becomes infeasibly large. Even if one of the parameters is fixed [13], systematic checking of

Page 112
Copyright © 2024 University of Leeds UK. All rights reserved.

each and every design combination is not an option for large numbers of design variables or

data points as the equation is only reduced to 𝑛!𝑝−1.

Another option is to use an optimisation algorithm to find a ‘better’, if not necessarily the best,

DoE. One method of achieving this is to generate an initial population of designs, encode

them, and then use a Genetic Algorithm (GA) [13, 14, 26, 59, 60] to find a better configuration.

Genetic Algorithms follow four basic steps: initialisation, selection, reproduction and

termination. Once a population size 𝑄 has been chosen, 𝑄 random LH designs can be

generated. The fitness for each individual design is assessed using the potential energy 𝑈,

(5.4). Designs which do not satisfy a criterion based on the fitness value are discarded whilst

the remainder are selected to go through to the next generation and to reproduce further

designs so that every generation has 𝑄 individual designs. The algorithm is terminated either

when a specified number of generations is met or the designs meet a designated criterion.

Two possible methods for elite selection criteria are only allowing designs which are within a

user specified percentage (10% say) of the minimum fitness value to pass through to the next

generation or using the average fitness for the generation as a kill criteria. The latter method

is based on a modified version of that presented in [102]: a design is allowed through to the

next generation if it has a fitness value less than the average for the current generation. The

fitness 𝑈𝑗 for an individual design 𝑗 is determined from the potential energy 𝑈, as defined in

(5.4), whilst the average fitness for a generation 𝑈ave is calculated from the sum of the

individual finesses:

1

1 Q

ave j

j

U U
Q 

  (5.6)

Once the selected designs are through to the next generation, individual designs are chosen

at random to become ‘parents’. Each pair of parents produce one ‘child’ which is added to the

generation. Thus each generation, apart from the initial one, consists entirely of parents from

the previous generation and their children. When applying a GA to a LH DoE, it has been

found, that due to the nature of the LH, permutations to the design are more suitable than

encoding the design and using a binary method with penalties [14], as permutations ensure

that the LH criteria are fulfilled at every stage, making the resulting GA inherently more

efficient.

5.3.1.1 The ‘PermGA’ Method

The potential energy, 𝑈, of the DoE designs is to be minimised using a permutation GA.

Permutating parent designs can be accomplished through mutation of a single design or

swapping values between two parents. Bates et al. [14] found that ‘cycle crossover’ used in

conjunction with a mutating ‘inversion’ provided the speediest solutions for the GA. The

permutation technique is known as permGA [14, 102].

Cyclic Crossover Two parents are chosen from a population of designs. For example for a

problem with 1 design parameter and 6 training points we could have:

Parent A = [2 5 4 6 1 3]

Page 113
Copyright © 2024 University of Leeds UK. All rights reserved.

Parent B = [1 4 5 3 6 2].

The first entry in Parent A becomes the first entry in Child A:

Child A = [2 ∗ ∗ ∗ ∗ ∗].

Next, the value from the first entry in Parent B is located in Parent A and inserted into Child A.

Here the value is 1 and is the fifth entry in Parent A (and consequently in Child A):

Child A = [2 ∗ ∗ ∗ 1 ∗].

In this example, the fifth entry in Parent B has a value of 6, which is the fourth entry in Parent

A. Similarly, the fourth entry in Parent B is 3, which is the sixth entry in Parent A, giving Child

A as:

Child A = [2 ∗ ∗ 6 1 3].

The sixth entry in Parent B has a value of 2, which is located in the first entry of Parent A,

thereby ending the cycle. The remaining entries in Child A are filled with the corresponding

entries from Parent B. The LH criteria are fulfilled as the cycle ensures that no data points are

repeated in any given dimension. A second child can be generated using this method with the

first entry from Parent B as a starting point.

Child A = [2 4 5 6 1 3],

Child B = [1 5 4 3 6 2].

This crossover method is applied to each design variable independently. There may be

instances where the first entry for a design variable for each of the parents is identical, in which

case no crossover occurs and Child A = Parent A (similarly Child B = Parent B) for that design

variable. The example below shows a two design variables and six training data points, where

the LH values for the first design variable are identical for both parents (the second variables

take the values described in the previous example):

Parent A = [
1 2 3 4 5 6
2 5 4 6 1 3

] and Parent B = [
1 2 3 4 5 6
1 4 5 3 6 2

]

Child A = [
1 2 3 4 5 6
2 4 5 6 1 3

] and Child B = [
1 2 3 4 5 6
1 5 4 3 6 2

]

It need not be the case that all the values for the first design variables are identical, if just the

primary entries for each design variable are identical in both parents, then no cycle crossover

occurs. As such, this method cannot guarantee that the children produced are different from

their parents.

Inversion Mutation (IM) Two ‘cut-off’ points are randomly chosen, inverting the values in the

parent design to produce the single offspring. For cut-off points 2 and 5 say, represented by

|| and applied to Parent A, we obtain

Parent A = [2 4||5 6 1||3],

Child C = [2 4||1 6 5||3].

Page 114
Copyright © 2024 University of Leeds UK. All rights reserved.

In practice, this is applied not to a parent, but as a transformation applied to a child generated

from the cycle crossover described above. The cut-off points are allocated randomly for each

design variable, with the restriction that the cut-off points are not in the same location. Hence

this method does guarantee that an identical design is not obtained as a result of inverting the

original design.

5.3.1.2 Effect of Uniform Spatial Coverage

In addition to running the permGA for the validation parameters, near optimal DoEs were also

generated for 𝑝 = 2; 𝑛 = 50 for direct comparison with the RLHS shown in Figure 5.4. The

point distributions and minimum distance plots for these three examples are shown in Figure

5.5. Visual comparisons between Figures 5.4 and 5.13 show that a greater uniformity of spatial

coverage has been achieved using the permGA method than any of the original three RLHS.

As before, a cubic based RBF was used to build a surrogate model approximation for both the

SHCB function and RB function. Clearly both test functions have different requirements, in

particular the RB approximations would greatly benefit from iterative improvement in the

trough area. However, a more uniform distribution of training data points improves all the

approximations for the two test functions. Other factors such as choice of surrogate model

(including parameters) and number of data points also influence the final approximation.

 (A) Example A.

Page 115
Copyright © 2024 University of Leeds UK. All rights reserved.

 (B) Example B.

 (C) Example C.

Figure 5.8: Optimised LHS DoE with 50 data points in 2 dimensions and corresponding

minimum distance plots.

(A) Example A. Left: prediction. Right: error.

Page 116
Copyright © 2024 University of Leeds UK. All rights reserved.

 (B) Example B. Left: prediction. Right: error.

 (C) Example C. Left: prediction. Right: error.

Figure 5.9: Surrogate model and error contour plots based on three 50 point OLHS

predicting the SHCB function.

(A) Example A. Left: prediction. Right: error.

Page 117
Copyright © 2024 University of Leeds UK. All rights reserved.

 (B) Example B. Left: prediction. Right: error.

 (C) Example C. Left: prediction. Right: error.

Figure 5.10: Surrogate model and error contour plots based on three 50 point OLHS

predicting the RB function.

5.3.2 Simultaneous Generation of Initial and Validation OLH DoEs

Analytical test functions are known a priori making validation of surrogate models trivial, as

the test functions can be evaluated at any number of data points in the parameter domain.

Clearly this is not the case for more expensive functions where a more sophisticated method

is required. In practical engineering applications, the process of surrogate model fitting

includes the initial build stage and validation of the model. The validation is usually problem

specific, dependent on the required accuracy, and must be valid throughout the design

parameter domain [102]. As such, in addition to an OLH DoE for the initial build points, the

validation points should also meet OLH DoE criteria. Further, subsequent to a successful

validation exercise, a refined surrogate model based on the combined build and validation

DoE points requires that the merged DoEs also exhibit space filling properties, as proposed

by Narayanan et al. [102].

The total number of levels, 𝑛, in the DoE is split into build, 𝑏, and validation, 𝑣, levels such that

𝑛 = 𝑏 + 𝑣. The number of validation levels can be varied according to the problem in

question. Figure 3.16 illustrates a simple case with a total of 𝑛 = 7 for 𝑝 = 2, where the build

Page 118
Copyright © 2024 University of Leeds UK. All rights reserved.

and validation levels are 𝑏 = {1,3,5,7} and 𝑣 = {2,4,6} respectively. The (blue) build points are

free to allocate any of the intersections of the solid lines, whilst the (red) validation points are

confined to the intersections of the dashed lines. The build and validation sections of the

chromosomes are generated separately for the initial population. The fitness of a design, 𝑈𝑓𝑖𝑡,

is given as a multi-objective function of the individual fitness of the build, validation and merged

DoEs:

 , ,fit b v mU f U U U (5.7)

Each generation is ranked according to the multi-objective fitness function, those designs

whose overall fitness are less than the average fitness for that generation become the elite

designs for the next, as with the single objective fitness function for the basic permGA and in

line with strategy presented in [102]. The parents are chosen in the same way as in the basic

permGA with tournament selection and a weighted roulette wheel. The cycle crossover for

generating children preserves the build and validation levels and are therefore applied

independently to each.

Figure 5.11: Illustration of build and validation levels.

(A) Build DoE.

Page 119
Copyright © 2024 University of Leeds UK. All rights reserved.

 (B) Validation DoE.

 (C) Merged DoE.

Figure 5.12: Example BVM with b = 32 and v = 18. Left: Point distributions. Right: Minimum

distances.

5.3.3 Inclusion of Corner Points

Section 5.2 introduces various sampling techniques for obtaining training data points whose

computer responses can be used with a surrogate model to provide an approximation of the

response surface. Whilst some methods do not meet the space-filling criteria required for DoE

for surrogate models they can provide a cheap overview for determining which of the design

variables warrant further investigation, which will inevitably lead to data points with useful

response information. Due to the computational expense of acquiring the response data it

would be desirable to reuse this information by incorporating it into the final design, however,

this is likely to mean that the final design is not technically a Latin Hypercube. Toropov et al.

[150] simply call these types of designs ‘Extended Latin Hypercubes’ (ELH).

A weakness of LHS is that it is not possible to have training data points located at each ‘corner’

of the domain [150]. Simpson et al. [130] find that orthogonal arrays, which have points located

in the corners of the design domain, have lower values of maximum errors [73]. This can be

seen in Figures 5.6, 5.7, 5.9 and 5.10 where the largest errors are at the edges and corner

points of the domain. Leary et al. [86] find that the training data points need to go to edge of

Page 120
Copyright © 2024 University of Leeds UK. All rights reserved.

domain, otherwise surrogate models methods fail as they are not designed for extrapolation.

Thus, including the corner points should help to bound the surrogate model and hence improve

accuracy. The technique used in [150] is to allow the fixed data points to be included in the

calculation of the ‘potential energy’ objective function, but to exclude the points from the design

variable set which is being modified to minimise the objective function.

One method to achieve this is to divide the domain into the extremities and the interior, where

the LH requirement is relaxed on the boundaries only. The inner LH is self-contained, but

optimised subject to the potential for the domain as a whole. Figure 5.13 shows an example

in two dimensions with 𝑛 = 10 training data points. The corners require four of these points

(𝑛𝑐 = 4), shown in red, leaving a further six data points within the inner LH (𝑛𝐿𝐻 = 6), shown

in blue. To ensure equal spacing between the levels, the domain is divided into (6 + 2)2

intersections. For the multidimensional case, the number of corner points increase rapidly as

𝑛𝑐 = 2𝑝 whilst the number of points in the inner LH decrease as 𝑛𝐿𝐻 = 𝑛 − 2𝑝 and the domain

is divided into (𝑛 − 2𝑝−1)𝑝 hypercubes. Due to the number of corner points rising rapidly, this

method is restricted to 𝑛𝑐 < 𝑛𝐿𝐻 to ensure adequate spatial coverage.

Figure 5.13: Illustration of fixed corner points and inner DoE in two dimensions.

Page 121
Copyright © 2024 University of Leeds UK. All rights reserved.

Chapter 6

Surrogate Modelling Techniques

6.0 Introduction

A surrogate model (which is also often called a metamodel or a response surface model)

aims to mimic the response surface of some important output metric over the entire parameter

domain based on the location and response information provided from a small (ideally

minimal) number of experimentally- and/or computationally-generated training data points

chosen from the domain. Whilst metamodels are not optimizing methods in themselves, they

form a cheaper alternative to direct optimization on problems when obtaining data points is

expensive, as is often the case with experiments or using a high fidelity computational

simulations such as a CFD solve and post process. The goal is to produce a metamodel that

is much faster to compute than the original function, but is still sufficiently accurate away from

the known data points. This enables the optimization procedure to be carried out using the

metamodel and the optimal result to be validated subsequently using experiments or a high

fidelity computational evaluation.

This general approach is often referred to as surrogate-based optimisation (SBO), whereas

if the optimization is carried out using both the surrogate model and data obtained from the

experiments or high fidelity simulations, this is termed surrogate-assisted optimisation.

The first step in creating the surrogate model is to generate the high fidelity data at a series of

sampling, or Design of Experiment (DoE) points. Once sampling has been performed we have

a list of data points called the training data {𝑥𝑖, 𝑓𝑖} for i=1,..,n, where 𝑥𝑖 is the ith DoE point, 𝑓𝑖

contains the corresponding high fidelity output at 𝑥𝑖 and n is the number of DoE points.

Surrogate models can be based on interpolation or regression. Interpolation builds

surrogate models that exactly matches the training data. Regression methods do not try to

match training points exactly – they minimise the error between a smooth trend function and

the training data. To fit a surface by means of regression, the criteria of passing the surface

exactly through the data points is relaxed. The use of regression techniques (such as least

squares methods discussed below) in determining surrogate surfaces can be explained by the

origins of Response Surface Methods, which lie in the interpretation of experimental data [73].

Data obtained from physical experiments is noisy since all observations are subject to

measurement error. Regression techniques allow for this noise as the surrogate surface does

not pass through the data points, only close by. Exactly how close depends on tuneable

parameters in the model, which will be referred to generically as hyper-parameters of the

surrogate model, with larger parameters allowing for noisier data.

Page 122
Copyright © 2024 University of Leeds UK. All rights reserved.

The surrogate modelling process for two design variables is illustrated in the following figure

6.1 Surrogate Model Validation

To ensure confidence, any surrogate model requires that its accuracy and quality be checked.

One method is to validate against extra (potentially expensive) data. Other methods rely on

cross-validation methods where the original DoE dataset is split up (often randomly to avoid

bias errors) into training and testing sub-sets. Such approaches are needed to avoid over-

fitting the surrogate model to the training dataset, as this results in the surrogate model being

inaccurate at points not contained in the training dataset. In practice, each surrogate modelling

technique will have a range of hyper-parameters associated with it and cross-validation

methods enable the most appropriate hyper-parameters to be obtained.

Note that obtaining the hyper-parameters is often an extremely challenging optimization

problem in itself!

6.1.1 Holdout Dataset Cross-Validation

One popular approach is to use most of the DoE data to train, or fit, the surrogate model and

use the rest of the DoE points to test/validate the accuracy of the generated surrogate model.

A common approach would be to use typically 70%-80% of the DoE dataset, chosen randomly

from the full DoE dataset, to train the surrogate model and then use the surrogate model to

predict the value of the output metric, f say, at the remaining DoE points that have not been

used to construct the surrogate model.

The points used to train the surrogate model are referred to as the training dataset and those

at which the accuracy of the surrogate model is determined are referred to as the testing

dataset. If the full DoE dataset {𝑥𝑖, 𝑓𝑖} =1,…,n is split into ntrain training points {𝑥𝑡𝑟𝑎𝑖𝑛
𝑖 , 𝑓𝑡𝑟𝑎𝑖𝑛

𝑖 }

and ntest testing points {𝑥𝑡𝑒𝑠𝑡
𝑖 , 𝑓𝑡𝑒𝑠𝑡

𝑖 } where n=ntrain+ntest, then the accuracy of the surrogate

model at the testing data points can be quantified using metrics such as the Root Mean Square

Error, RMSE, defined by

Page 123
Copyright © 2024 University of Leeds UK. All rights reserved.

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑡𝑒𝑠𝑡
∑ (𝑓𝑖 − 𝑓𝑡𝑒𝑠𝑡

𝑖)2
𝑛𝑡𝑒𝑠𝑡

𝑖=1

where 𝑓𝑖 is the value of the output from the surrogate model at the ith testing point and 𝑓𝑡𝑒𝑠𝑡
𝑖

is the (actual) value of the output at the DoE testing point. Clearly, smaller values of the RMSE

indicate that the surrogate model is more accurate at the testing datapoints.

Note that, if possible, this process would be repeated a number of times to decrease bias

errors resulting from specific train/test data splits.

The hyper-parameters of the surrogate model would be determined by minimising the RMSE

during the training/testing cross-validation process.

6.1.2 Leave-One-Out Cross-Validation (LOOCV)

LOOCV is particularly useful when the DoE dataset is small so that it is possible to remove

too many points from the surrogate model’s training dataset. In this approach, the first DoE

point is removed from the training dataset and the surrogate model is trained on the remaining

(n-1) DoE points. The square of the difference between the surrogate model at this first DoE

point 𝑓1 and the (actual) value of the output at the first DoE point, 𝑓1, (𝑓1 − 𝑓1)
2
 is stored.

This process is repeated consecutively at each of the n DoE points and the total RMSE

calculated via

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑓𝑖 − 𝑓𝑖)2
𝑛

𝑖=1

Once again, the hyper-parameters of the surrogate model would be determined by minimising

the RMSE during the training/testing cross-validation process.

6.1.3. k-fold Cross-Validation

This process is similar to LOOCV but this time the DoE dataset is split randomly into k roughly

equally-sized data subsets. The first subset is removed from the full DoE dataset and used as

the first testing dataset. The surrogate model is then trained on the remaining (k-1) subsets

and the RMSE calculated for the first testing dataset. This process is repeated over each of

the k data subsets and an average value of the RMSE is calculated.

Once again, if possible, this k-fold randomisation process would be repeated a number of

times to decrease bias errors resulting from specific train/test data splits. The hyper-

parameters of the surrogate model would then be determined by minimising the RMSE during

the training/testing cross-validation process.

6.1.4. Adding Extra Points into the DoE sample

Page 124
Copyright © 2024 University of Leeds UK. All rights reserved.

Sometimes we find that the surrogate model is not accurate enough so it is necessary to

include additional points in the DoE sample and re-construct the surrogate model – a process

called infill. It is claimed that for an accurate estimate of a global optimum to be found, the

surrogate surface must converge to the true surface at every point in the domain [69, 149].

Thus, any method for selecting additional data points to evaluate must also incorporate

samples from untested regions in parameter space so the entire domain is adequately

represented [54]. There are a number of methods for updating the DoE points. Whilst general

surrogate modelling methods often have to use empirical approaches, or computationally

expensive Bayesian techniques, some methods such as Kriging/Gaussian Process

Regression can provide simple methods for estimating the errors in the surrogate model which

can be used as a convenient guide for choosing the next DoE point to evaluate.

6.2 Least Squares Regression Surrogate Modelling
As noted above, regression can be very useful when the data is noisy since interpolation

models may produce undesirable oscillations when filtering the noise.

6.2.1. Linear Least Squares Regression
If we have n DoE points giving a response f as a function of ndv design variables x1, x2, x3,…,

xndv, we can look for a polynomial fit of the data.

For example, a linear fit for three design variables we would fit the data to a hyper-plane of

the form: f = c1+c1x1+c2x2+c3x3. The goal is then to find the regression coefficients c1, c2, c3,

c4. The regression coefficients are the hyper-parameters of the surrogate model in this case.

Least squares regression analysis seeks to minimise the sum of the squares of the differences

(Square Errors, SE) between the data points and the fitted curve. For this example

𝑆𝐸 = ∑(𝑓𝑖 − 𝑐1 − 𝑐2 𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖)

2
𝑛

𝑖=1

 where 𝑓𝑖 is the response at the ith DoE point.

To find the regression coefficients ci which minimise the SE we need to satisfy

𝜕𝑆𝐸

𝜕𝑐1
= −2 ∑(𝑓𝑖 − 𝑐1 − 𝑐2 𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4𝑥3

𝑖)

𝑛

𝑖=1

= 0

𝜕𝑆𝐸

𝜕𝑐2
= −2∑(𝑓𝑖

𝑖 − 𝑐1 − 𝑐2 𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖)𝑥1

𝑖 = 0

𝑛

𝑖=1

𝜕𝑆𝐸

𝜕𝑐3
= −2∑(𝑓𝑖 − 𝑐1 − 𝑐2 𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4𝑥3

𝑖)𝑥2
𝑖 = 0

𝑛

𝑖=1

𝜕𝑆𝐸

𝜕𝑐4
= −2∑(𝑓𝑖 − 𝑐1 − 𝑐2 𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4𝑥3

𝑖)𝑥3
𝑖 = 0

𝑛

𝑖=1

These lead to the four regression equations (a linear system):

𝑛 𝑐1 + 𝑐2 ∑𝑥1
𝑖 + 𝑐3 ∑𝑥2

𝑖 + 𝑐4 ∑𝑥3
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

= ∑𝑓𝑖

𝑛

𝑖=1

𝑛

𝑖=1

Page 125
Copyright © 2024 University of Leeds UK. All rights reserved.

𝑐1 ∑𝑥1
𝑖

𝑛

𝑖=1

+ 𝑐2 ∑(𝑥1
𝑖)

2
+ 𝑐3 ∑𝑥1

𝑖𝑥2
𝑖 + 𝑐4 ∑𝑥1

𝑖𝑥3
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

= ∑𝑓𝑖𝑥1
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑐1 ∑𝑥2,𝑖

𝑛

𝑖=1

+ 𝑐2 ∑𝑥1
𝑖𝑥2

𝑖 + 𝑐3 ∑(𝑥2
𝑖)

2
+ 𝑐4 ∑𝑥2

𝑖𝑥3
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

= ∑𝑓𝑖𝑥2
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑐1 ∑𝑥3
𝑖

𝑛

𝑖=1

+ 𝑐2 ∑𝑥1
𝑖𝑥3

𝑖 + 𝑐3 ∑𝑥2
𝑖𝑥3

𝑖 + 𝑐4 ∑(𝑥3
𝑖)

2
𝑛

𝑖=1

𝑛

𝑖=1

= ∑𝑓𝑖𝑥3
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

We solve these equations to obtain the regression coefficients c1, c2, c3, c4. this leads to the
surrogate model: f = c1+c2x1+c3x2+c4x3.

6.2.2. Engineering Example
The following example explores the effect of the order of the polynomial regression model for
representing data from an engineering company that produces algal photo-bioreactors to
harvest phosphorous from wastewater. The company is trying to optimise the system so that
they can extract the maximum amount of phosphorous (𝑘𝑔) which depends on the amount of

light intensity (𝑤𝑎𝑡𝑡𝑠), the concentration of oxygen (
𝑘𝑔

𝑚^3
) and biomass (

𝑘𝑔

𝑚3). It is assumed that

the phosphorus mass 𝑃(𝑜𝑥) depends only on the concentration of oxygen 𝑜𝑥. The dataset of
Phosphorus mass as a function of oxygen concentration obtained from experiments is given
by:

ox P(ox)

0.054848447 3.070101933

0.399361417 2.288275883

0.625771597 1.998910871

0.920604333 2.538819248

1.013368979 2.985745038

1.426680967 2.489943212

1.727360442 1.230933862

1.786319956 1.215692053

Least squares Regression fitting of P vs ox leads to the following regression curves:

Page 126
Copyright © 2024 University of Leeds UK. All rights reserved.

Calculating the RMSE between the predicted points, using the polynomial curve fitting, and
the actual data points points yields the following:

These results are obtained by using the Python program, using_alldata.py on the alldata
directory. These results suggest using a third order polynomial fit as this leads to the smallest
RMSE error. However, this approach is not recommended and it is much more effective to use
a cross-validation approach that splits the data into training and testing datasets in some way.
This avoid the problem of over-fitting which can lead to the surrogate modelling being
inaccurate at points not in the training dataset.

In this case, the only hyper-parameter of the surrogate model is the order of the polynomial.
How do we choose the order of regression to use? If we use Leave-One-Out Cross Validation

Page 127
Copyright © 2024 University of Leeds UK. All rights reserved.

and calculate the RMSE for each regression order we obtain the following using the program
using_leaveoneout.py on the leave-one-out directory, we obtain:

On the basis of LOOCV we would use a 5th order polynomial regression model for to represent
P vs ox.

Suppose now that we use a holdout approach, where we divide the full dataset into a testing
dataset consisting of two points selected randomly from the dataset of Phosphorus mass as
a function of oxygen concentration obtained from experiments, given above, and a training
dataset of the remaining six points. This algorithm is implemented in using_holdout.py on
the holdout directory. Since the points are selected randomly, the solutions change every
time the program is run. Here are two examples of results obtained by running
using_holdout.py:

The first result on the left suggests a first order polynomial approximation is best, whereas

the second result suggests a third order polynomial is needed. How should be proceed? The

main problem is that our dataset is so small. A more effective approach for smaller datasets

is to use k-fold cross validation described in section 6.1.3 above. You will explore k-fold

cross validation in your optimization assignment described below.

Page 128
Copyright © 2024 University of Leeds UK. All rights reserved.

OPTIMIZATION ASSIGNMENT

In this assignment you are asked to modify the codes you have been given above to explore

what happens when you use 4-fold cross validation where you randomly selected 4 sets of 2

points from the experimental dataset given above. You will combine 3 of these sets of 2 points

into a training dataset with 6 points with the remaining points forming the testing dataset.

You should:

a. Write a Python program that calculates the RMSE at the testing datapoints for

polynomial curves of orders 1 to 6 and determines which polynomial order leads to

the smallest RMSE. Use your program to explore how much variability there is in the

selected polynomial order of fit.

b. Summarise your findings.

Only if you have the time and are interested in doing so:

c. Extend your Python program so that the 4-fold cross validation process is repeated a

specified number of times. Explore how the variability in the selected polynomial

order of fit depends on the number of times you repeat the 4-fold cross-validation.

Good luck!

Note: Once you have implemented your programs you can compare your findings with the

using-kfold1.py and using_kfold2.py programs on the kfold directory.

You have now finished your assignments for this brief, introductory course. The

following content is for information only, if you are interested in finding out more

about surrogate modelling!

6.2.3. Second Order (Quadratic) Regression: example with 2 design variables
This uses the surrogate model:

𝑓(𝑥) = 𝑐1 + 𝑐2𝑥1 + 𝑐3 𝑥2 + 𝑐4𝑥1
2 + 𝑐5𝑥1𝑥2 + 𝑐6𝑥2

2.

The Least Squares (LS) regression coefficients c1, c2, c3, c4, c5 and c6 at the output point

{𝑥𝑗} = {𝑥1
𝑗
, 𝑥2

𝑗
} are obtained by minimising the sum of the least squares, SEj, over all the

sampling points (𝑥1
𝑖 , 𝑥2

𝑖) defined by

𝑆𝐸𝑗 = ∑(𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3 𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
)
2

𝑛

𝑖=1

The LS coefficients are obtained by requiring that

𝜕𝑆𝐸𝑗

𝜕𝑐1
=

𝜕𝑆𝐸𝑗

𝜕𝑐2
=

𝜕𝑆𝐸𝑗

𝜕𝑐3
=

𝜕𝑆𝐸𝑗

𝜕𝑐4
=

𝜕𝑆𝐸𝑗

𝜕𝑐5
=

𝜕𝑆𝐸𝑗

𝜕𝑐6
= 0.

𝜕𝑆𝐸𝑗

𝜕𝑐1
= ∑(𝑓𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐2
= ∑𝑥1,𝑖 (𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

Page 129
Copyright © 2024 University of Leeds UK. All rights reserved.

𝜕𝑆𝐸𝑗

𝜕𝑐3
= ∑𝑥2,𝑖 (𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐4
= ∑𝑥1,𝑖

2 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐5
= ∑𝑥1,𝑖𝑥2,𝑖 (𝑓

𝑖
𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐6
= ∑𝑥2,𝑖

2 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

Solve equations for c1, c2, c3, c4, c5 and c6 and obtain the LS approximation

𝑓(𝑥𝑗) = 𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3𝑥2

𝑗
+ 𝑐4(𝑥1

𝑗
)
2
+ 𝑐5𝑥1

𝑗
𝑥2

𝑗
+ 𝑐6(𝑥2

𝑗
)
2

of f, at the output point {𝑥1
𝑗
} = {𝑥1

𝑗
, 𝑥2

𝑗
}.

6.2.4. Six Hump Camel Back Function Examples

In the remainder of this chapter the surrogate modelling methods are demonstrated for the

Six Hump Camel Back (SHCB) function defined in the previous chapter:

𝑋1 = 4𝑥1 − 2; 𝑋2 = 2𝑥2 − 1; 0 ≤ 𝑥1, 𝑥2 ≤ 1

𝑓(𝑥1, 𝑥2) = (4 − 2.1𝑋1

2
+ 𝑋1

4/3) 𝑋1

2
 + 𝑋1𝑋2 + (−4 + 4𝑋2

2
) 𝑋2

2

with the global minima having values of 𝑓 = −1.0316 at (0.0898,−0.7127) and

(−0.0898,0.7127). The SHCB surface is given below:

In the following examples, the surrogate modelling is used within an optimisation algorithm to

determine the global optimum. For example, if the analytical solution is used within a Nelder-

Mead Simplex optimisation algorithm in Python the following convergence to the optimum is

observed when the initial point 𝑥0 = (0.3,0.7), 𝛼 = 1.0, 𝛽 = 0.5, 𝛾 = 1.0, 𝜌 = 0.5, 𝑐 = 0.5 and a

Page 130
Copyright © 2024 University of Leeds UK. All rights reserved.

convergence tolerance of 0.0001. The path of the optimisation algorithm is shown as the

solution meanders from (0.3,0.7) towards the optimum at (0.48,0.86) where the function

value is -1.032.

Examples of using Least Squares Regression for the SHCB function are given below:

Page 131
Copyright © 2024 University of Leeds UK. All rights reserved.

Page 132
Copyright © 2024 University of Leeds UK. All rights reserved.

It can be seen that Least Squares Regression is not very effective in these examples.

6.3 Moving Least Squares Surrogate Modelling

Least Squares Regression can be extended to the Moving Least Squares Method. In this
case, weights are applied which are functions of the Euclidian distance rk from a k-th DoE
sampling point to a point x where the surrogate model is evaluated.

One possible approach is to create a surrogate model estimate in the form

𝑓(𝑥) = ∑𝑤𝑖(‖𝑥 − 𝑥𝑖‖)𝑓𝑖

𝑛

𝑖=1

where 𝑟𝑖 = ‖𝑥 − 𝑥𝑖‖ is the Euclidean norm between the point at which the surrogate model

is being evaluated and the ith DoE sampling point.

6.3.1. First Order (Linear) Regression: example with 3 design variables
MLSM used to estimate the response, f, using a first order (linear) interpolation fit to the

sampling points with three design variables.

This uses the surrogate modelling estimate 𝑓(𝑥) = 𝑐1 + 𝑐2𝑥1 + 𝑐3 𝑥2 + 𝑐4𝑥3.

Page 133
Copyright © 2024 University of Leeds UK. All rights reserved.

The MLSM regression coefficients c1, c2, c3, c4 at the output point {𝑥𝑗} = {𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝑛𝑑𝑣

𝑗
}

are obtained by minimising the sum of the least squares, SEj, over all the sampling points

{𝑥𝑖} = {𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛𝑑𝑣
𝑖 }, defined by

𝑆𝐸𝑗 = ∑𝑤𝑖𝑗(𝑓
𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3 𝑥2
𝑖 − 𝑐4𝑥3

𝑖)
2

𝑛

𝑖=1

wij is the weight decay function between output point j and sample point i. For or a Gaussian

weight decay function 𝑤𝑖𝑗 = 𝑒−𝛽𝑟𝑖𝑗
2

 where 𝑟𝑖𝑗 = ‖𝑥𝑗 − 𝑥𝑖‖ and β is the only hyper-parameter

for the model. The MLS coefficients are obtained by requiring that
𝜕𝑆𝐸𝑗

𝜕𝑐1
=

𝜕𝑆𝐸𝑗

𝜕𝑐2
=

𝜕𝑆𝐸𝑗

𝜕𝑐3
=

𝜕𝑆𝐸𝑗

𝜕𝑐4
= 0.

𝜕𝑆𝐸𝑗

𝜕𝑐1
= 0 ⇒ 0 = ∑[−2𝑤𝑖𝑗(𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖)] ⇒

𝑛

𝑖=1

 𝑐1 ∑𝑤𝑖𝑗 + 𝑐2 ∑𝑤𝑖𝑗𝑥1
𝑖 + 𝑐3 ∑𝑤𝑖𝑗𝑥2

𝑖 + 𝑐4 ∑𝑤𝑖𝑗𝑥3
𝑖

𝑛

𝑖=1

= ∑𝑤𝑖𝑗𝑓
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐2
= 0 ⇒ 0 = ∑ [−2𝑤𝑖𝑗𝑥1

𝑖(𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖)] ⇒𝑛

𝑖=1

𝑐1 ∑𝑤𝑖𝑗𝑥1
𝑖 + 𝑐2 ∑𝑤𝑖𝑗(𝑥1

𝑖)
2
+ 𝑐3 ∑𝑤𝑖𝑗𝑥1

𝑖𝑥2
𝑖 + 𝑐4 ∑𝑤𝑖𝑗𝑥1

𝑖𝑥3
𝑖 =

𝑛

𝑖=1

 ∑𝑤𝑖𝑗𝑓
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑥1
𝑖

𝜕𝑆𝐸𝑗

𝜕𝑐3
= 0 ⇒ 0 = ∑[−2𝑤𝑖𝑗𝑥2

𝑖 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖)] ⇒

𝑛

𝑖=1

𝑐1 ∑𝑤𝑖𝑗𝑥2
𝑖 + 𝑐2 ∑𝑤𝑖𝑗𝑥1

𝑖𝑥2
𝑖 + 𝑐3 ∑𝑤𝑖𝑗(𝑥2

𝑖)
2
+ 𝑐4 ∑𝑤𝑖𝑗𝑥2

𝑖𝑥3
𝑖 =

𝑛

𝑖=1

 ∑𝑤𝑖𝑗𝑓
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑥2
𝑖

𝜕𝑆𝐸𝑗

𝜕𝑐4
= 0 ⇒ 0 = ∑[−2𝑤𝑖𝑗𝑥3

𝑖 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4𝑥3
𝑖)] ⇒

𝑛

𝑖=1

𝑐1 ∑𝑤𝑖𝑗𝑥3
𝑖 + 𝑐2 ∑𝑤𝑖𝑗𝑥1

𝑖𝑥3
𝑖 + 𝑐3 ∑𝑤𝑖𝑗𝑥2

𝑖𝑥3
𝑖 + 𝑐4 ∑𝑤𝑖𝑗(𝑥3

𝑖)
2
=

𝑛

𝑖=1

 ∑𝑤𝑖𝑗𝑓
𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

𝑥3
𝑖

We then solve these equations for c1, c2, c3 and c4 and obtain the MLSM surrogate model
estimate at design point

𝑓(𝑥𝑗) = 𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3 𝑥2

𝑗
+ 𝑐4𝑥3

𝑗

6.3.2. Second Order (Quadratic) Regression: example with 2 design variables
This uses the surrogate model:

𝑓(𝑥) = 𝑐1 + 𝑐2𝑥1 + 𝑐3 𝑥2 + 𝑐4𝑥1
2 + 𝑐5𝑥1𝑥2 + 𝑐6𝑥2

2.

The MLS regression coefficients c1, c2, c3, c4, c5 and c6 at the output point {𝑥𝑗} = {𝑥1
𝑗
, 𝑥2

𝑗
}

are obtained by minimising the sum of the least squares, SEj, over all the sampling points

(𝑥1
𝑖 , 𝑥2

𝑖) defined by

𝑆𝐸𝑗 = ∑𝑤𝑖𝑗 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3 𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
)
2

𝑛

𝑖=1

Page 134
Copyright © 2024 University of Leeds UK. All rights reserved.

where wij is the weight decay function between output point j and sample point i. The MLS

coefficients are obtained by requiring that

𝜕𝑆𝐸𝑗

𝜕𝑐1
=

𝜕𝑆𝐸𝑗

𝜕𝑐2
=

𝜕𝑆𝐸𝑗

𝜕𝑐3
=

𝜕𝑆𝐸𝑗

𝜕𝑐4
=

𝜕𝑆𝐸𝑗

𝜕𝑐5
=

𝜕𝑆𝐸𝑗

𝜕𝑐6
= 0.

𝜕𝑆𝐸𝑗

𝜕𝑐1
= ∑−2𝑤𝑖𝑗 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐2
= ∑−2𝑤𝑖𝑗𝑥1,𝑖 (𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐3
= ∑−2𝑤𝑖𝑗𝑥2,𝑖 (𝑓

𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐4
= ∑−2𝑤𝑖𝑗𝑥1,𝑖

2 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐5
= ∑−2𝑤𝑖𝑗𝑥1,𝑖𝑥2,𝑖 (𝑓

𝑖
𝑖 − 𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖 − 𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

𝜕𝑆𝐸𝑗

𝜕𝑐6
= ∑−2𝑤𝑖𝑗𝑥2,𝑖

2 (𝑓𝑖 − 𝑐1 − 𝑐2𝑥1
𝑖 − 𝑐3𝑥2

𝑖 − 𝑐4(𝑥1
𝑖)

2
− 𝑐5𝑥1

𝑖𝑥2
𝑖 − 𝑐6(𝑥2

𝑖)
2
) = 0

𝑛

𝑖=1

Solve equations for c1, c2, c3, c4, c5 and c6 and obtain the MLSM approximation

𝑓(𝑥𝑗) = 𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3𝑥2

𝑗
+ 𝑐4(𝑥1

𝑗
)
2
+ 𝑐5𝑥1

𝑗
𝑥2

𝑗
+ 𝑐6(𝑥2

𝑗
)
2

of f, at the output point {𝑥1
𝑗
} = {𝑥1

𝑗
, 𝑥2

𝑗
}.

6.3.3. Higher Order Regression
For higher order regression, the number of regression coefficients increases rapidly.

e.g. with two design variables {𝑥} = {𝑥1, 𝑥2} the third order MLSM builds an approximation

of the form:

𝑓(𝑥𝑗) = 𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3𝑥2

𝑗
+ 𝑐4(𝑥1

𝑗
)
2
+ 𝑐5𝑥1

𝑗
𝑥2

𝑗
+ 𝑐6(𝑥2

𝑗
)
2
+ 𝑐7(𝑥1

𝑗
)
3
+ 𝑐8(𝑥1

𝑗
)
2
𝑥2

𝑗
+ 𝑐9𝑥1

𝑗
(𝑥2

𝑗
)
2

+ 𝑐10(𝑥2
𝑗
)
3

at the output point {𝑥1
𝑗
} = {𝑥1

𝑗
, 𝑥2

𝑗
}. c1-c10 are determined by minimising SE, summed over all

n sampling points (𝑥1
𝑖 , 𝑥2

𝑖):

𝑆𝐸𝑗 = ∑ (𝑛
𝑖=1 𝑓𝑖−𝑐1 − 𝑐2𝑥1

𝑖 − 𝑐3𝑥2
𝑖 −𝑐4(𝑥1

𝑖)
2
− 𝑐5𝑥1

𝑖𝑥2
𝑖

−𝑐6(𝑥2
𝑖)

2
− 𝑐7(𝑥1

𝑖)
3
− 𝑐8(𝑥1

𝑖)
2
𝑥2

𝑖 − 𝑐9𝑥1
𝑖(𝑥2

𝑖)
2
− 𝑐10(𝑥2

𝑖)
3
) 2

For two design variables {𝑥} = {𝑥1, 𝑥2} the fourth order MLSM builds an approximation of

the form:

𝑓(𝑥𝑗) = 𝑐1 + 𝑐2𝑥1
𝑗
+ 𝑐3𝑥2

𝑗
+ 𝑐4(𝑥1

𝑗
)
2

 + 𝑐5𝑥1
𝑗
𝑥2

𝑗
+ 𝑐6(𝑥2

𝑗
)
2
+ 𝑐7(𝑥1

𝑗
)
3
+ 𝑐8(𝑥1

𝑗
)
2
𝑥2

𝑗
+ 𝑐9𝑥1

𝑗
(𝑥2

𝑗
)
2

+ 𝑐10(𝑥1
𝑗
)
3
+ 𝑐11(𝑥1

𝑗
)
4
+ 𝑐12(𝑥1

𝑗
)
3
𝑥2

𝑗
+ 𝑐13(𝑥1

𝑗
)
2
(𝑥2

𝑗
)
2
+ 𝑐14𝑥1

𝑗
(𝑥2

𝑗
)
3
+ 𝑐15(𝑥2

𝑗
)
4

Page 135
Copyright © 2024 University of Leeds UK. All rights reserved.

at the output point {𝑥1
𝑗
} = {𝑥1

𝑗
, 𝑥2

𝑗
}. The regression coefficients c1-c15 are determined by

minimising the Moving Least Squares expression, summed over the n sampling points

(𝑥1
𝑖 , 𝑥2

𝑖) etc.

6.3.4. MLS surrogate modelling of the Six Hump Camel Back Function

 Analytical Function 20 DoE points, β=10.0

 Analytical Function 20 DoE points, β=20.0

Page 136
Copyright © 2024 University of Leeds UK. All rights reserved.

 Analytical Function 50 DoE points, β=20.

 Analytical Function 100 DoE points, β=60.

Page 137
Copyright © 2024 University of Leeds UK. All rights reserved.

 Analytical Function 100 DoE points, β=120.

These show that the MLS method can represent the SHCB function accurately with ~50 DoE

points and that the hyper-parameter β is also very influential.

6.4 Radial Basis Functions

In addition to surrogate modelling, radial basis functions (RBFs) are used in other areas, for

example in computer graphics and mesh deformation. Initially requiring 𝑂(𝑛3) calculations, a

further 𝑂(𝑛) calculations are required per prediction [113].

As discussed earlier, the RBF surrogate model uses the data at the Design of Experiment

points to create an approximation that is accurate everywhere in the design space. If there

are ndv design variables and a total of n DoE points {𝑥𝑖} = {𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛𝑑𝑣
𝑖 }, for i=1,…,n at

which the output response takes the values yi for i=1,…,n then the RBF approximation to yrbf

at any point 𝑥 = {𝑥1, 𝑥2 … , 𝑥𝑛𝑑𝑣} with the design space is given by the RBF approximation

𝑦𝑟𝑏𝑓(𝑥) ≈ ∑λ𝑖 𝜓‖𝑥 − 𝑥𝑖‖ =

𝑛

𝑖=1

∑λ𝑖 𝜓(𝑟𝑖) =

𝑛

𝑖=1

where {𝑥𝑖} = {𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛𝑑𝑣
𝑖 } is the ith DoE point. The norm 𝑟𝑖 = ‖𝑥 − 𝑥𝑖‖ is often taken to

be the Cartesian distance between the points, given by

𝑟𝑖 = √∑(𝑥𝑗 − 𝑥𝑗
𝑖)

2
𝑛𝑑𝑣

𝑗=1

where ndv is the number of design variables.

RBF basis functions 𝜓 can take several different forms. Common examples include:

𝜓(𝑟) = 𝑟; 𝜓(𝑟) = 𝑟3; 𝜓(𝑟) = 𝑟2 lnr

Page 138
Copyright © 2024 University of Leeds UK. All rights reserved.

Gaussian: 𝜓(𝑟) = 𝑒𝑥𝑝(−𝛽𝑟2)

Multi-quadratic: 𝜓(𝑟) = (𝑟2 + 𝛽2)1/2.

Inverse multi-quadratic: 𝜓(𝑟) = (𝑟2 + 𝛽2)−1/2.

where β is the single hyper-parameter. RBFs are normally used in interpolating mode which

means that the weights λi are chosen so that the RBF approximation is exact at each of the

DoE points, i.e. yrbf(𝑥𝑖) = yi for i=1,…,n. In this case, the λi are obtained by solving the linear

matrix equation:

λ = ᴪ−1𝑦

where ᴪ is the Gram matrix defined such that ᴪ𝑖,𝑗 = 𝜓‖𝑥𝑖 − 𝑥𝑗‖. If the Cartesian norm is

used, then

‖𝑥𝑖 − 𝑥𝑗‖ = 𝑟𝑖𝑗 = √∑(𝑥𝑘
𝑖 − 𝑥𝑘

𝑗
)
2

𝑛𝑑𝑣

𝑘=1

which is the Cartesian distance between the ith nd jth DoE point.

Note: If the responses yi are corrupted by numerical noise, this may lead to overfitting of the

data – this does not discriminate between the underpinning response and the noise. We can

introduce a regularization parameter, r, added to the main diagonal of the Gram matrix:

𝑤 = (ᴪ + 𝑟𝐼)−1𝑦

where r is a (usually small) number and 𝐼 is the unit nxn matrix with 1s on the leading
diagonal and zeros elsewhere.

The following results illustrate RBF surrogate modelling of the Six Hump Camel Back function

as a function of the number of DoE points. In each case the hyper-parameter β is obtained

using LOOCV for 0.5 ≤ 𝛽 ≤ 10 and the global minimum is obtained using a Nelder-Mead

simplex optimisation algorithm available in Python. The optima can be compared to the ‘true’

value of -1.031 obtained from the analytical form of the Six Hump Camel Back function.

Page 139
Copyright © 2024 University of Leeds UK. All rights reserved.

Case 1: n=10 DoE points

Case 2: n=20 DoE points

Page 140
Copyright © 2024 University of Leeds UK. All rights reserved.

Case 3: n=50 DoE points

Page 141
Copyright © 2024 University of Leeds UK. All rights reserved.

Analytical Function

Page 142
Copyright © 2024 University of Leeds UK. All rights reserved.

The above results show that n=50 DoE points is sufficient to get a reasonable RBF

representation of the functional surface and good agreement with the global optimum value.

6.5 Random Forests

Random Forests is a surrogate modelling method (also termed a supervised machine

learning method) which clusters data points into functional groups. It is very effective for

avoiding the problem of over-fitting the DoE data to the resultant surrogate model and is well

suited to creating surrogate models for optimisation problems where the design variables are

mixed continuous/categorical in nature. A categorical design might be for example, a

particular manufacturing method or a metal being used, i.e. a variable which does not have a

clear link to a numerical value. Random Forests are based on Decision Trees.

6.5.1 Decision Trees

In a Decision Tree the DoE dataset is split up according the values of the input variables into

a series of smaller subsets whose output values have similar values. The similarity in the

output variables if often measured in terms of a standard deviation/variance about the

average output value in the subset. Each split in the input DoE data is like a branch in a tree

and each data subset is called a leaf. The data are progressively split until some

convergence condition is satisfied. The convergence criterion could be based on

 The maximum number of splits that have been performed

 The standard deviation in the output values of the subset is below a specified

tolerance

 The prediction from the Decision Tree for a specific set of input variables would then be

based on the average value associated with the final leaf with which it is associated and

which will not be split any further. The general idea can be explained by a simple example.

6.5.2. Example

Suppose that a Decision Tree is used to predict the corrosion rate of a metal in a corrosive

liquid (in mm/year) as a function of 2 input variables – the pH and the temperature of the

liquid in oC. A series of experiments are carried out and the experimental (DoE) data is given

by the following table:

Page 143
Copyright © 2024 University of Leeds UK. All rights reserved.

pH T (oC) Corrosion Rate
(mm/year)

4.1 45.2 6.8

3.8 41.5 6.6

4.8 32.5 3.9

4.6 28.0 4.1

5.1 36.0 3.2

6.5 38.0 2.8

6.3 33.0 1.2

5.5 29.5 1.9

The following figure shows two possible Decision Trees that could be used. Tree 1 uses the

following splits. Data is split up first of all according to whether pH<5.0 or pH≥5.0 (the first

branch in Tree 1) and then according to whether T<35oC or T≥35oC (the second branch).

The leaf associated with the branches with pH<5.0 and T<35oC results in the leaf with

corrosion rates (3.9,4.1). Hence for the specific case with pH=4.0 and T=29.0oC, the

Decision Tree would predict the average of these two values: 4.0 mm/year. Other design

variables would result in the other averages shown.

Suppose now there is a second tree, Tree 2, where data is split up according to whether

pH<4.5 or pH≥4.5 (the first branch in Tree 2) and then according to whether T<30oC or

T≥30oC (the second branch).

For the specific case with pH=4.0 and T=29.0oC, Tree 2 has only one output value, 4.1, in

the associated leaf (obtained from the branches pH<4.5 and T<30oC) hence Tree 2 predicts

the corrosion rate to be 4.1 mm/year.

In practice, the power of the Random Forest method is based on using a number of trees

where the branching criteria are specified randomly and then taking the averages over all

these Decision Trees. This is an example of an Ensemble Learning method which uses the

outcomes of many different models. If the results of Tree 1 and Tree 2 are combined into a

Random Forest with these two Decision Trees, the corrosion rate prediction for the case with

pH=4.0 and T=29.0oC would be given by the weighted sum of the two leaves. This would be

the average of 3.9, 4.1 and 4.1 or 4.03 mm/year.

Page 144
Copyright © 2024 University of Leeds UK. All rights reserved.

The Random Forest method has a number of hyper-parameters which have to be optimised

during the training and validation process. These include the number of trees, the number of

decision levels and the convergence criteria.

Examples of using Random Forest surrogate modelling of the Six Hump Camel Back

Function are given below.

Six Hump Camel Back Function: Random Forests

Page 145
Copyright © 2024 University of Leeds UK. All rights reserved.

Actual Function

Page 146
Copyright © 2024 University of Leeds UK. All rights reserved.

It can be seen that 100 DoE points are needed for the Random Forest to generate a surface

similar to that of the actual function. However, even for 100 DoE points, the optimal solution

(-0.21) is very inaccurate compared to the actual optimum (-1.03).

6.6 Gaussian Process Regression

Gaussian Process Regression (GPR) models are widely used in surrogate modelling and

machine learning due to their ability to represent complex, nonlinear relationships between

input and output variables. Their assumption of Gaussian/Normal behaviour enables

equations for quantifying uncertainty to be obtained in an easy to calculate form. The

background to GPR models is rather mathematical but they are widely available in packages

such as Matlab and Python.

Regressions models formulate a function that represents observed data and uses this

function to predict values at new data points. There are an infinite number of ways this

function can be formulated and GPR models use a probability distribution over this infinite

number of functions to determine which is the most likely given the DoE data provided.

6.6.1. Gaussian/Normal distribution

If a single random variable X is Gaussian – or normally – distributed with mean 𝜇 and

variance 𝜎2, its probability density function (pdf) is given by

𝑃𝑋(𝑠) =
1

√2𝜋𝜎
exp (−

(𝑠 − 𝜇)2

2𝜎2)

This is the well-known bell-shaped curve.

Page 147
Copyright © 2024 University of Leeds UK. All rights reserved.

This can be generalised to the Multivariate Normal Distribution (MVN) for several design

variables 𝑥 = (𝑥1, … , 𝑥𝑛𝑑𝑣)

𝑃𝑥(𝑠|𝜇, 𝛴) =
1

(2𝜋)𝑛𝑑𝑣/2|𝛴|1/2
exp (−

1

2
(𝑠 − 𝜇)𝑇𝛴−1(𝑠 − 𝜇))

where 𝜇 = 𝐸(𝑥) is the mean vector and 𝛴 is the (ndv x ndv) covariance matrix. The MVN pdf

can be visualised for 2 design variables. An example is shown below

6.6.2 Covariance Matrix/Kernels

The covariance function between the design variables is also called the Kernel function and

encapsulates prior knowledge about the functions we are trying to represent. The squared

Page 148
Copyright © 2024 University of Leeds UK. All rights reserved.

exponential (SE) kernel, also known as the Gaussian or Radial Basis Function (RBF) kernel,

is widely used

𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑗) = 𝜎𝑓
2exp (−

𝑟𝑖𝑗
2

2𝑙
)

where 𝑟𝑖𝑗 is the Cartesian distance between points xi and xj and 𝜎𝑓
2 and 𝑙 are hyper-

parameters of the Covariance matrix. The hyper-parameters in a GPR model are generally

associated with the Correlation matrix/kernel function and with the noise levels in the data.

The hyper-parameters are found be solving a separate optimisation problem that maximises

the likelihood of obtaining the observed set of DoE data.

The key limitations of GPR models are that:

(i) The computational complexity is O(ndv3) where ndv is the number of design

variables

(ii) The memory requirements are O(ndv2)

This means that GPR models are impractical for data sets with large numbers of design

variables. In such cases, sparse GPR models are used instead.

6.6.3 GPR Surrogate Modelling of Six Hump Camel Back Function

Examples are given below.

Page 149
Copyright © 2024 University of Leeds UK. All rights reserved.

Page 150
Copyright © 2024 University of Leeds UK. All rights reserved.

It can be seen that the surrogate model and optimum value being predicted are accurate for

N>50 DoE points.

6.7 Neural Networks

This section is based on the excellent book by Martins & Ning (2022) listed as one of the

module’s recommended textbooks. Interest in Neural Networks (NNs) has exploded in

recent years due to their ability to approximate highly non-linear relationships between input

and output variables. In addition to their use in optimisation, NNs are used in a wide range of

AI applications, including Large Language Models (LLMs), Machine Vision and medical

diagnostic devices.

NNs are simplified models based on the brain, with its enormous network of neurons and in

NNs each neuron is a node that represents the value from a simple function. The power of

the NN comes from its definition of chains of simple functions into composite functions which

are able to model much more complex, non-linear behaviours. For example, if we have four

simple functions f1, f2, f3 and f4, these can be chained together into the composite functions

or network:

𝑓(𝑥) = 𝑓4(𝑓3 (𝑓2(𝑓1(𝑥))))

the composite function 𝑓(𝑥) can model very complex behaviour.

Most NNs are feedforward ones where information flows from the inputs x to the outputs

𝑓(𝑥). Recurrent NNs also have important elements of feedback throughout the network. The

figure below (due to Muhammad Raihan) shows a diagram of a NN, where each node

represents neuron. The neurons are joined between consecutive layers to form the network.

Page 151
Copyright © 2024 University of Leeds UK. All rights reserved.

The first layer is called the input layer and the last one is the output layer. The layers

between these two are the hidden layers. The total number of layers is called the network’s

depth. Deep Neural Networks have many layers, enabling very complex behaviour to be

represented accurately. The first and last layers can be considered to be the inputs and

outputs of the surrogate model. Each nodes in the hidden layers represents a function.

The output from the NN can be represented by a vector, 𝑥. In the example above, the output

is

𝑥 = (

𝑦1

𝑦2

𝑦3

)

More generally, the vector of values for layer k is 𝑥𝑘, the value for the ith neuron in layer k is

𝑥𝑖
𝑘, there being 𝑛𝑘 neurons in layer k. A neuron in layer k is connected to many neurons from

the previous layer, (k-1). We can select functions for each neuron in layer k that takes values
from layer (k-1) as inputs. If only linear functions were used then all the functions would be
linear and only linear relationships could be modelled. Hence, some layers have to use non-
linear functions. A common approach is to have hidden layers with a layer of linear functions
followed by a layer with nonlinear functions. A neuron in the linear layer produces the
intermediate value

𝑧 = ∑ 𝑤𝑗𝑥𝑗
(𝑘−1)

𝑛𝑘−1

𝑗=1

+ 𝑏

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑓

𝑦1

 𝑦2

 𝑦3

𝑓

 𝑓1 𝑓𝑛

Page 152
Copyright © 2024 University of Leeds UK. All rights reserved.

where 𝑛𝑘−1 is the number of neurons in layer (k-1), 𝑤𝑗 are weights for layer (k-1) and 𝑏 is

called the bias term which scales the significance of the overall output.

This can be written more conveniently using vector notation as

𝑧 = 𝑤𝑇𝑥(𝑘−1) + 𝑏

which is a linear function of the neurons in the previous layer (k-1). The next key step is to

pass the value 𝑧 through an activation function, 𝑎(𝑧). In the past one of the most common

activation functions was the sigmoid function:

𝑎(𝑧) =
1

1 + 𝑒−𝑧

This produces values between 0 and 1 so that large negative outputs are insignificant while

large outputs results in values close to 1.

The Rectified Linear Unit (ReLU) activation function is now much more common:

𝑎(𝑧) = max (0, 𝑧)

Page 153
Copyright © 2024 University of Leeds UK. All rights reserved.

As ReLU eliminates negative inputs, the bias term is a threshold defining what is a

significant value. The output from the ith neuron is obtained by combining the linear function

with the activation function:

𝑥𝑖
𝑘 = 𝑎(𝑤𝑇𝑥(𝑘−1) + 𝑏𝑖)

As a result of the above, the NN is now parametrised in terms of the weight and bias

parameters. These are all hyper-parameters of the NN and like all surrogate models, a

separate optimisation problem has to be solved to determine the optimal value of these

parameters. This is called Training the Network. If we consider the NN in the figure above

with 6 input values/neurons and then have the first hidden layer with 10 neurons, the second

hidden layer with 8 neurons and 3 output neurons then there would be a total of (6x10 +

10x8 + 8x3) weights and 10+8+3 bias parameters giving a total of 185 variables. Note this is

a very small NN – large NNs, for example with Large Language Models, will have several

million such variables.

Since the optimisation problem that needs to be solved to train the network is very large,

gradient-based optimisation methods are used. These require derivatives to be determined

for all of the optimisation variables. These are obtained using reverse-mode algorithmic

differentiation (AD) – also known as backpropagation. The derivatives are commonly used

with specialist steepest descent methods which are referred to as stochastic gradient

descent methods. In practical problems the goal is not to obtain the absolute minimum but to

find a good enough solution quickly. The stochastic gradient descent method does not

perform a line search. Instead a step-size, called the learning rate, is used and this is usually

a pre-selected value. These algorithmic developments have been crucial in enabling NNs to

be applied in increasing numbers of important AI and optimisation applications.

6.7.1 NN Surrogate Modelling of Six Hump Camel Back Function

Examples are given below.

Page 154
Copyright © 2024 University of Leeds UK. All rights reserved.

Page 155
Copyright © 2024 University of Leeds UK. All rights reserved.

It can be seen that the accuracy generally improves for larger values of DoE points, although

the performance is not as good as seen for the GPR surrogate models. Note that NNs

generally perform much better than GPRs for larger numbers of design variables and much

bigger training datasets. The Six Hump Camel Back function is too small to demonstrate

their capabilities fully.

Page 156
Copyright © 2024 University of Leeds UK. All rights reserved.

6.8 Discussion and Engineering Example

The future development of many different complex products and processes will be based on

a systematic optimisation process where design optimisation methods are used extensively.

The data used within these optimisation methods can come from a variety of sources,

including experiments, simple mathematical models and/or physics-based computer

simulations. The latter type of data, in particular, is increasingly being used to solve a wide

variety of challenging design problems in science and industry. This approach is very well

established for structural design problems and is now used routinely to minimise the weight

of automotive components or design composite wings for aircraft. Although there have been

comparatively few studies which have used Computational Fluid Dynamics (CFD) to

optimise complex flow problems, interest in CFD-enabled design optimisation methods is

now also growing rapidly.

There has been rapid progress in reducing computational times for both gradient-free and

gradient-based optimisation methods. Gradient-free optimisation methods can be very

effective for up to 100 design variables, whereas for larger design problems, with > 100

design variables, gradient-based methods, powered by rapid advances in adjoint methods,

have solved problems where the number of design variables is in the 1000s or even millions.

Other key improvements that have driven these advances include adaptive Design of

Experiments methods, which can provide an appropriate balance between exploration and

exploitation, and multi-fidelity modelling which enables most of the computational work to be

done on cheaper, lower fidelity models. Both of these enable the number of expensive, high

fidelity computer simulations used in the optimisation process to be kept to a minimum.

Significant progress has also been made in multi-disciplinary design optimisation (MDO)

methods which coordinate simulations of the individual disciplines affecting a design (e.g.

fluid mechanics, structural mechanics, ...) toward a system design that is optimal as a whole,

taking into account the competing objectives.

There are several exciting research directions that will enable design optimisation methods

to have even greater impact in the future. The ACARE Beyond 2020 Vision (European

Commission, 2019), for example, predicts that effective MDO methods will be a key enabling

technology for the future development of environment-friendly aircraft and that these aircraft

will be designed virtually, using computer-based simulations, by 2050. For these and other

safety-critical applications (in for example the nuclear industry), there will be increasing

demands for the development of robust simulation-based optimisation methods that can

ensure that product and/or process performance does not degrade significantly due to

unavoidable variations in manufacturing tolerances, operating conditions, etc. It is also likely

that the growing interest in using Machine Learning, for example to tune parameters in

turbulence models, and the increasing trend of combining physics-based and data-driven

flow simulations will widen the both the power and scope of simulation-based design

optimisation methods in the very near future.

6.8.1 Electronics Cooling using Heat Sinks

This example is based on a recent research project which analysed the cooling potential of
liquid cooled heat sinks for high-density electronics cooling. Heat sinks are used to take the
heat away from the electronics as efficiently as possible while at the same time ensuring the
energy required to pump the liquid through the heat sinks is minimal. The work is published

Page 157
Copyright © 2024 University of Leeds UK. All rights reserved.

in the article: A.F. Al-Neama et al., ‘An experimental and numerical investigation of the use
of liquid flow in serpentine microchannels for microelectronics cooling’, Applied Thermal
Engineering, 116, 709-723, 2017. The following figure shows the physical design (top left),
CAD model (bottom left); heat sink temperature distributions (top and bottom right).

There are two objectives that need to be minimised for electronics cooling: the thermal
resistance (which measures the resistance to dissipating heat from the electronics) and the
pressure drop (which is directly related to energy losses in the system). Here we use the
following data at 30 Design of Experiments data points:

0.4 0.4 0.2269708 32295.88
1 0.4 0.1862377 12553.08
0.4 1 0.2472688 38679.57
1 1 0.1618792 13867.9
0.4 0.664 0.2334668 35215.58
0.424 0.52 0.2195144 31543.47
0.448 0.784 0.2176468 31986.3
0.472 0.904 0.2128178 31044.3
0.496 0.616 0.1995214 27282.88
0.52 0.448 0.1951516 24729.56
0.544 0.712 0.1902447 25240.69
0.568 0.976 0.1894705 25538.35
0.592 0.856 0.1832713 23768.87
0.616 0.544 0.1800919 21209.4
0.64 0.424 0.1825142 19769.97

Page 158
Copyright © 2024 University of Leeds UK. All rights reserved.

0.664 0.952 0.1739714 21385.96
0.688 0.76 0.1713519 19779.7
0.712 0.64 0.1711744 18578.62
0.736 0.496 0.1749193 17376.79
0.76 0.88 0.1666564 18166.45
0.784 0.736 0.1670559 17080.95
0.808 0.4 0.1808273 15481.67
0.832 1 0.1636113 16821.3
0.856 0.592 0.1693082 15178.61
0.88 0.808 0.1641188 15338.31
0.904 0.472 0.176308 14047.45
0.928 0.928 0.1625802 14806.84
0.952 0.688 0.167041 13858.26
0.976 0.568 0.1721966 13244.67
1 0.832 0.1643945 13500.18

Here the first two columns relate to two geometrical design parameters which are in the

range 0.4 ≤ x1 ≤1.0 and 0.4 ≤ x2 ≤1.0, the third column is the thermal resistance and the

fourth the pressure drop in Pascal. We will be focussing here on creating surrogate models

for the thermal resistance in the heat sink system.

The surrogate modelling is carried out using Gaussian Radial Basis Functions. For example,

using the hyper-parameter β=2.0 creates the following surrogate model of the thermal

resistance:

Using Leave One Out Cross Validation for the thermal resistance leads to the following figures,

with β=1.45 leading to the smallest RMSE.

Page 159
Copyright © 2024 University of Leeds UK. All rights reserved.

Using Leave One Out Cross Validation for the pressure drop leads to the following figures,

with β=0.88 leading to the smallest RMSE.

The last figure shows the Pareto front that results from multi-objective optimisation of the

thermal resistance and pressure drop (both suitably scaled). It shows the compromises that

can be struck between minimising each of the objectives. For example. Reducing thermal

resistance below 0.17 will results in pressure drops > 13,000.

Page 160
Copyright © 2024 University of Leeds UK. All rights reserved.

REFERENCES for CHAPTERS 1-4
1. Arora J., Introduction to Optimum Design, 3rd Ed. Elsevier (2011).

2. Asghar Bhatti M., Practical Optimization Methods: With Mathematica® Applications,

Springer; 2000 edition, (2012), DOI: https://doi.org/10.1007/978-1-4612-0501-2,

ISBN: 978-1-4612-6791-1.

3. Charalambous C., Conn A.R., An efficient method to solve the minimax problem

directly, SIAM J. Numer. Anal., 15 (1) (1978), pp. 162-187.

4. Das, B. C., Effect of graphical method for solving mathematical programming problem.

Daffodil International University Journal of Science and Technology, [S.l.], v. 5, n. 1, p.

29-36, Feb. 2010. ISSN 2408-8498. doi: http://dx.doi.org/10.3329/diujst.v5i1.4379.

5. Gürdal Z, Haftka R. T., Elements of Structural Optimization 3rd Ed., Solid Mechanics

and its Applications, Volume 11 Series Editor: G. M. L. Gladwell, ISBN 0-7923-1505-

7 .(1992).

6. Hooke, R.; Jeeves, T.A. (1961). "Direct search" solution of numerical and statistical

problems". Journal of the ACM. 8 (2): 212–229. doi:10.1145/321062.321069.

7. Nelder, John A.; R. Mead (1965). "A simplex method for function minimization".

Computer Journal. 7 (4): 308–313. doi:10.1093/comjnl/7.4.308.

8. Olhoff N, Multicriterion structural optimization via bound formulation and mathematical

programming, Structural optimization, 1, 11 – 17, (1989).

9. Querin O.M., Victoria M., Alonso Gordoa C., Ansola R., Martí P., Topology Design

Methods for Structural Optimization, Elsevier (2017), ISBN: 978-0-08-100916-1

10. Rao S., Engineering Optimization: Theory and Practice, Fourth Edition, John Wiley &

Sons, Inc. (2009)

11. Spendley, W.; Hext, G. R.; Himsworth, F. R. (1962). "Sequential Application of Simplex

Designs in Optimisation and Evolutionary Operation". Technometrics. 4 (4): 441–461.

doi:10.1080/00401706.1962.10490033.

12. Spillers W.R., MacBain K.M., Structural Optimization, Springer (2009), ISBN 978-0-

387-95864-4

13. Xie Y. M., Steven G.P., Evolutionary Structural Optimization, Springer, 1997

REFERENCES for CHAPTERS 5&6
6) ANFD. SPREVAK, J. M. M. Introduction to Unconstrained Optimization. A Computer

Illustrated Text. Institute of Physics Publishing, 1990. ISBN 0750300256.

7) ANTONY, J. Taguchi or Classical Design of Experiments: A Perspective from a

Practitioner. Sensor Review 26, 3 (2006), 123–160.

11) AUDZE, P., AND EGLAIS, V. New Approach for Planning Out of Experiments.

Problems of Dynamics and Strengths 35 (1977), 104 – 107.

13) BATES, S. J., SIENZ, J., AND LANGLEY, D. S. Formulation of the Audze–Eglais

Uniform Latin Hypercube Design of Experiments. Advances in Engineering Software

34, 8 (2003), 493–506.

https://doi.org/10.1007/978-1-4612-0501-2
http://dx.doi.org/10.3329/diujst.v5i1.4379

Page 161
Copyright © 2024 University of Leeds UK. All rights reserved.

14) BATES, S. J., SIENZ, J., AND TOROPOV, V. V. Formulation of the Optimal Latin

Hypercube Design of Experiments Using a Permutation Genetic Algorithm. AIAA-

2004-2011 (2004).

18) BLUE, G., AND LAUNSBY, R. Design for Six Sigma. McGraw Hill, 2003. ISBN

0071413766.

20) BOX, G. E. P., AND BEHNKEN, D. W. Some New Three Level Designs for the Study

of Quantitative Variables. Technometrics 2, 4 (1960), 455–475.

25) CHOI, K., YOUN, B., AND YANG, R. Moving Least Square Method for Reliability-

Based Design Optimization. The Fourth World Congress of Structural and

Multidisciplinary Optimization (2001).

26) CHUNG, H. S., AND ALONSO, J. J. Multiobjective Optimization Using Approximation

Model-Based Genetic Algorithms. AIAA-2004-4325 (2004).

28) CLARK, I. Practical Geostatistics. Ecosse, 1979. ISBN 0954891198.

30) COX, D. R., AND REID, N. Theory of DoE. Chapman and Hall, 2000. ISBN

158488195X.

31) CRESSIE, N. A. C. Statistcs for Spatial Data. Wiley, 1993. ISBN 0471002550.

42) FANG, K.-T., ZE LI, R., AND SUDJIANTO, A. Design and Modeling for Computer

Experiments. Chapman & Hall, 2006. ISBN 1584885467.

46) FORRESTER, A., SOBESTER, A., AND KEANE, A. Engineering Design Via Surrogate

Modelling: A Practical Guide. WileyBlackwell, 2008. ISBN 0470060689.

47) FORRESTER, A. I. J., KEANE, A. J., AND BRESSLOFF, N. W. Design and Analysis

of “Noisy” Computer Experiments. AIAA Journal 44, 10 (2006), 2331–2339.

48) GHOSH, S., AND RAO, C. R. Design and Analysis of Experiments. Handbook of

Statistics, vol. 13. Elsevier, 1996. ISBN 0444820612.

54) GUTMANN, H. M. A Radial Basis Function Method for Global Optmization. Journal of

Global Optimization 19 (2001), 201–227.

59) HOLLAND, J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence. University of Michigan

Press, 1975. ISBN 0262581116.

60) HOLLAND, J. H. Genetic Algorithms.

www.econ.iastste.edu/tesfatsi/holland.GAIntro.htm, 2005.

61) HUANG, D., ALLEN, T. T., NOTZ, W. I., AND ZHENG, N. Global Optimization of

Stochastic Black-Box Systems via Sequential Kriging Meta-Models.

69) JONES, D. R. A Taxonomy of Global Optimization Methods Based on Response

Surfaces. Journal of Global Optimization 21 (2001), 345–383.

70) JURECKA, F. Robust Design Optimization Based on Metamodeling Techniques. Ph.D.

Thesis, Technique Universit¨at M¨uchen, 2007.

72) KEANE, A. J. Wing Optimization Using Design of Experiment, Response Surface and

Data Fusion Methods. Journal of Aircraft 40, 4 (2003), 741–750.

73) KEANE, A. J., AND NAIR, P. B. Computational Approaches for Aerospace Design:

The Pursuit of Excellence. J. Wiley, 2005. ISBN 0470855401.

78) KITANIDIS, P. K. Introduction to Geostatistics. Cambridge University Press, 1997.

ISBN 0521583128.

79) [KOK, S., AND SANDROCK, C. Locating and Characterizing the Stationary Points of

the Extended Rosenbrock Function. Evolutionary Computation 17, 3 (2009), 437 –

453.

Page 162
Copyright © 2024 University of Leeds UK. All rights reserved.

80) KRIGE, D. G. A Statistical Approach to Some Basic Mine Valuation Problems on the

Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South

Africa 52, 6 (1951), 119–139.

81) KRIGE, D. G. Letter to the Editor. Mathematical Geology 18, 5 (1986), 501–502.

82) KRISHNAMURTHY, T. Response Surface Approximation with Augmented and

Compactly Supported Radial Basis Functions. In Proceedings of the 44th

AIAA/ASME/ASCE/AHS/ASC Conference (2003). AIAA-2003-1748.

84) LAVENUE, A. M., AND PICKENS, J. F. Application of a Coupled Adjoint Sensitivity

and Kriging Approach to Calibrate a Groundwater Flow. Water Resources Research

28, 6 (1992), 1543–1569.

85) LEARY, S., BASKAR, A., AND KEANE, A. J. A Knowledge-based Approach to

Response Surface Modelling in Multifidelity Optimization. Journal of Global

Optimization 26 (2003), 297–319.

86) LEARY, S., BASKAR, A., AND KEANE, A. J. Global Approximation and Optimization

Using Adjoint Computational Fluid Dynamics Codes. AIAA Journal 42, 3 (2004), 631–

641.

87) LEE, K.-H., AND LANG, D.-H. Structural Optimization of an Automotive Door Using

the Kriging Interpolation Method. Proc. IMechE Part D. Journal of Automobile

Engineering. 221, 12 (2007), 1525–1534.

88) LIEFVENDAHLA, M., AND STOCKIB, R. A study on Algorithms for Optimization of

Latin Hypercubes. Journal of Statistical Planning and Inference 136 (2006), 3231 –

3247.

92) MASON, R. L., GUNST, R. F., AND HESS, J. L. Statistical Design and Analysis of

Experiments, with Applications to Engineering and Science. John Wiley & Sons, 1989.

http://www.itl.nist.gov/div898/handbook/.

93) MATHERON, G. Trait´e de G´eostatistique appliqu´ee. Tome I: M´emores du Bureau

de Recherches Gologiques et Mini´eres, 14 (1962).

98) MYERS, D. E. Letter to the Editor. Mathematical Geology 18, 7 (1986), 699–700.

102) NARAYANAN, A., TOROPOV, V., WOOD, A. S., AND CAMPEAN, I. F. Simultaneous

Model Building and Validation with Uniform Designs of Experiments. Engineering

Optimization 39, 5 (2007), 497–512.

103) NIST/SEMATECH. e-Handbook of Statistical Methods. 2006.

http://www.itl.nist.gov/div898/handbook/.

106) PAPALAMBROS, P. Y., AND WILDE, D. J. Principles Of Optimal Design. Modeling

and Computation., 2nd ed. Cambridge University Press, 2000. ISBN 0521627273.

108) PARK, K., OH, P.-K., AND LIM, H.-J. The Application of the CFD and Kriging Method

to an Optimization of Heat Sink. International Journal of Heat and Mass Transfer 49

(2006), 3439–3447.

111) PHILIP, G. M., AND WATSON, D. F. Matheronian Geostatistics - Quo Vadis?

Mathematical Geology 18, 1 (1986), 93–117.

113) PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P.

Numerical Recipes in C++ : The Art of Scientific Computing, 3 ed. Cambridge

University Press, 2007. ISBN 9780521866088.

123) SACKS, J., WELCH, W. J., MITCHELL, T. J., AND WYNN, H. P. Design and Analysis

of Computer Experiments. Statistical Science 4, 4 (1989), 409–423.

125) SANTNER, T. J., WILLIAMS, B. J., AND NOTZ, W. I. The Design and Analysis of

Computer Experiments. Springer, 2003. ISBN 0387954201.

Page 163
Copyright © 2024 University of Leeds UK. All rights reserved.

129) SHEPARD, D. A Two Dimensional Interpolation Function for Irregularly Spaced Data.

In Proceedings of the 23rd National Conference, Association for Computing Machinery

(1968), pp. 517–523.

130) SIMPSON, T., LIN, D., AND CHEN, W. Sampling Strategies for Computer

Experiments: Design and Analysis. International Journal of Reliability and Application

2, 3 (2001), 209–240.

131) SIMPSON, T. W., MAUERY, T. M., KORTE, J. J., AND MISTREE, F. Comparison of

Response Surface and Kriging Models for Multidisciplinary Design Optimization. In

Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization (1998). AIAA-98-4755.

132) SIMPSON, T. W., MAUERY, T. M., KORTE, J. J., AND MISTREE, F. Kriging Models

for Global Approximation in Simulation-Based Multidisciplinary Design Optimization.

AIAA Journal 39, 12 (2001), 2233–2241.

142) STEIN, M. L. Interpolation of Spatial Data. Some Theory for Kriging. Springer, 1999.

ISBN 0387986294.

143) SUN, W., AND XIANG YUAN, Y. Optimization Theory and Methods: Nonlinear

Programming. Springer, 2006. ISBN 0387249753.

144) SWAN, A. R. H., AND SANDILANDS, M. Introduction to Geological Data Analysis.

Blackwell Science, 1995. ISBN 0632032243.

148) TANCO, M., VILES, E., AND POZUETA, L. Comparing Different Approaches for

Design of Experiments. In Advances in Numerical Engineering and Computational

Science. Lecture Notes in Electrical Engineering (2009), vol. 139, Springer, pp. 611–

621. ISBN 9789048123117.

149) TORN, A., AND ZILINSKAS, A. Global Optmization. Springer, 1987. ISBN ?

150) TOROPOV, V. V., BATES, S. J., AND QUERIN, O. M. Generation of Extended Uniform

Latin Hypercube Design of Experiments. Submitted (2007).

151) [151] TOROPOV, V. V., SCHRAMM, U., SAHAI, A., JONES, R. D., AND ZEGUER, T.

Design Optimization and Stochastic Analysis based on the Moving Least Squares

Method. 6th World Congress on Structural and Multidisciplanary Optimization (2005).

157) WHITTINGHILL, D. C. A Note on the Robustness of Box-Behnken Designs to the

Unavailability of Data. Metrika 48, 1 (1998), 305–325.

