Practical 1: Using Python

1.1 Matrices and maths

Using the Python numpy package, create a script called ”practicall_matrix.py” and complete the
following exercises therein.

Define:

A= , a=[3 6 0 9]

N o
o Ut i ©
N Ot = O
NelienRNe))

1. Calculate the following:
a) A-b

b) a+4

c) b-a

d) a-b"

e) A-a”

2. What do you notice about the matrices you create by typing ‘A*A’ and ‘A**2’?. Contrast
this with what you get when you carry out matrix multiplication using the numpy functions,
numpy.dot(A,A) and numpy.matmul(A,A).

3. Define a variable ‘Ag;..’ and assign to it the 2nd and 3rd columns of A.

4. Linear systems or systems of equations defined in the form Ax = b can be solved using Python’s
‘numpy.linalg.solve()’ function. Use this to define and calculate x using the A and b given above.

1.2 Eigenvalues

)

Create a program called ”practicall_eigen.py” and complete the following exercises therein. Copy
your definitions for the matrix A and vector B from the previous exercise.

1. Construct a randomly generated 2x2 matrix of positive integers, where the integers range ran-
domly between 1 and 50

2. Find the maximum and minimum elements in the matrix A.
3. Sort the values of the vector b.

4. Find the eigenvalues and eigenvectors of the matrix B = A~!. Store the eigenvalues as a column
vector called ‘evals’.

5. Define I as the 4x4 identity matrix. Calculate the determinant of the matrix defined by B — ;I
for j =1,2,3,4. (Note: A is the first eigenvalue, Ay the second and so on).

1.3 Loops

Create a program called ”practicall _loops.py” and complete the following exercises therein.

1. Define a 5x5 matrix called H with all entries equal to zero. Hint: Look up the Python
‘numpy.zeros’ command.

2. The NxN Hilbert matrix H, has entries defined by H;; = 1/(i +j — 1) for ,j5 = 1,2,3...N.
Create a double for-loop, a so-called ‘nested’ for-loop, to calculate the entries of the N=5 Hilbert
matrix and check your answer using the built-in Python command ‘hilbert’.

1.4 Plotting

Create a program called ”practicall _plotting.py” and complete the following exercises therein.

1. Define a vector x using the Python ‘numpy.linspace’ command. It should have range from z = 0
to x = 5 in 101 points.

2. Define a vector y as the square of every element in x, i.e. define the 101 point vector y = x * x2.
3. Repeat point 2, but this time define z = x * *3.

4. Using 'matplotlib.pyplot’, plot x vs. y and x vs. z on the same graph.

5. Add a legend showing which lines represent the quadratic and cubic functions respectively.
Hint: When defining labels in the ‘legend’, the names must be strings so rather than inputting

(labell,label2), it has to be (['labell’,’label2’]). See if you can work out how to use mathematical
notation in your legend, otherwise have a look at the worked solution.

1.5 Functions

Create a program called ”practicall _functions.py” and complete the following exercises.

1. At the top of your program, create a new function called 'myfunction’ which takes a value ’a’
and return the value ’a + 1.

2. Below the function in your program, define a variable a = 1. You can now call your function by
defining a new variable b as ‘b = myfunction(a)’. What is the value of b?

3. Create a for-loop that goes from ¢ = 1 to ¢ = 10. In each loop iteration, call the function again
for b, using b itself as the input: ‘b = myfunction(b)’. What is the value of b after the loop?

1.6 Carbon-dating project

In your lecture notes you will find an introduction to carbon dating. The equation describing the
decay of the carbon-14 isotope as a function of time is:

Cia(t) = C14(0) exp(—At) (1)

Where C14(t) is the amount of carbon-14 at time ¢ and A is the decay constant.

For a given ratio r(t) = C14/C12 between the two carbon isotopes found in a sample, where ¢ is the
time since decay began t = 0, the age of the sample ¢ is given by:

t= Lo (Eg) (2)

With these equations in mind, create a program called ”practicall _carbon.py” and complete the
following exercises.

1. Using 1 and the decay constant A = 1.21 - 104, create a function that calculates C14 given a
time ¢ and an initial amount C14(0).

2. Using this function, calculate the decay of carbon-14 starting from an initial amount of
C14(0) = 500 at a minimum of 3000 discrete points over the course of ¢4, = 30000 years. Plot the
amount of carbon-14 vs. time to visualise the exponential decay.

3. Now using 2, create a function that accepts two ratios, r(¢) and r(0) and calculates the age of
a corresponding sample.

4. With a constant start ratio r(0) = 1.5 - 10712 and a list of ratios r from different samples:

[1.4-107127
1.1-10712
0.8-10~12

samples = | 0.4-10712
0.2-10712
0.1-1012

10.01-10712]

Calculate the age of every sample in the fewest possible lines of code.

