COMPUTATIONAL MODELLING AND ANALYSIS
OF FLOW INDUCED VIBRATIONS IN PIPING

MECH5845M Professional Project
Computational Modelling And Analysis Of
Flow Induced Vibrations In Piping

Author: Bhekisipho Mpofu (201623589)
Supervisor: Prof. Harvey Thompson
Examiner:

Date: 10 August 2023




UNIVERSITY OF LEEDS

SCHOOL OF MECHANICAL
ENGINEERING

MECH5845M Professional Project

TITLE OF PROJECT

Computational Modelling And Analysis Of Flow Induced

Vibrations In Piping

PRESENTED BY "5 kisipho Mpofu

201623589

If The Project Is Industrially Linked Tick This Box
And Provide Details Below

Company Name and Address:

This project report presents my own work and does not contain any unacknowledged
work from any other sources.

Signed @/{ Date 10 August 2023



Table of Contents

ABSTRACT .ttt e e et e e et e e e e e et e e e e e e nees v
ACKNOWIEAGEMENTS ... Vi
T INtrodUCHION ... 1
1.1 INrodUCHION oo 1
L N 11 DO P PP PP PPPP PP PRP 2
1.3 ODJECHIVES oo 2
R S =T o o] g = Y T | S SUSUPPRRRPN 2

2 Literature ReVIEW..............ooiiiiiiiii 3
2.1 INFOAUCHION ... 3
2.2 Fluid Structure INteraction ............cccooiiiiiiiiiiiiii e 3
2.3 Vibration Of PIPES ....uiiiiiiii i 4
2.4 Mathematical Model of Flow Induced Vibrations..............ccccoooiiiiiiiiiiicninnns 4
241 The equation of MOtION........coooiiiii e 4
24.2 Modelling ASSUMPLIONS ......ccoiviiiiiieiee e 5
243  The Coriolis fOrce term ...........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 5

2.5 Influence of pipe support type and configuration...................ccoovriiiiinnnen, 6
2.6  Vibration instabilities in PIpeliNn€S .........cciviiiiiiiiii e, 7
2.7  Analysis of flow induced vibrations in pipiNg ..., 9
2.71 Experimental approach.............ooi i 9
2.7.2  Analytical approximation approach .........cccccccvviiiiiieeiiiieiiiiiiis e 10
2.7.3 Commercial multipurpose packages..........ccccoeeeeeiiieiie 10
2.7.4  Custom numerical MEethOdS ...........uuuuuiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeees 11

2.8  Discussion and CONCIUSION ........ccooiiiiiiiiiieee e 13

3 Finite Difference Modelling of Flow Induced Vibrations............................... 14
3.1 INITOAUCTION .. 14
3.2  Mathematical MOdel ..o 14
3.3  Discretisation and Solution Approach ...........ccoevveeviiiiiiiiiii e 14
3.4  Computation of Natural FrequencCy ..., 15
3.5 Computation of the Critical VeloCity ...........coooeiioiiiii, 18
3.6  Computation of Pipe Displacement and Amplitude of Vibration ................. 19
3.6.1 Stability of the displacement solution................cco 20

3.7  Verification of finite difference model .............cccooiiiiis 21
3.7.1 Grid CONVEIGENCE .....uuuiiiiiiiiiiiiiiiiii e besneeeeees 21
3.7.2  Order Of ACCUIACY .......euiiieiiiiiiiiiie et 22

3.8 CONCIUSION ...ttt e e e e e 22



4  Validation of the Finite Difference Model and Parametric Studies.............. 23

4.1 INrOAUCHION ... 23
4.2  Finite Difference Model Validation ..............ccccooiiiiiiiiiiieen 23
421 System Parameters ... 23
4.2.2  Validation of Natural Frequency and Critical Velocity .......................... 24
4.2.3  Validation of displacement and amplitude solution...................c.......... 25
4.2.4  Validation CONCIUSION ..........uuuiiiiiiiiiiiiiiiiii e 26

4.3 ParametriC StUAIES .........ccooiiiiiiiiiiiic e 26
4.3.1 Effect of Fluid Velocity on Peak Vibration Amplitude...............ccccevveees 26
4.3.2 Effect of Flexural Rigidity on Critical Velocity ...........ccccoooiviiiiiiiiiinnnnnn. 27
4.3.3  Effect of Mass Ratio on Critical VeloCity..............cccccviiiiiiiiiiiiiiiiiiiiiins 28
4.3.4 Metamodel for the critical velocity, flexural rigidity and mass ratio ...... 28
4.3.5 Effect of pipe clamp spacing on Critical VelocCity ...........ccooovvvveiinnnnnnn. 29
4.3.6  CONCIUSION ...ttt 31

5 CONCIUSION ... 32
5.1 ACNIEBVEMENTS ... 32
5.2 DISCUSSION ... 32
5.3 CONCIUSIONS ... 33
5.4 FULUIE WOTK ... 33
REIEIENCES ... 34
APPENDIX A : MATLAB program Computing Natural Frequencies.......................... 36
APPENDIX B : MATLAB program Computing Critical Velocity ...............ccooeeeeeeeen. 38
APPENDIX C : MATLAB program Computing Displacements and Amplitude .......... 42
APPENDIX D : Stability analysis of the Finite Difference model.............................. 46
APPENDIX E : Simulation Results used to create surrogate model........................ 47



ABSTRACT
Fluid conveying pipelines form a fundamental part of modern industry. Pipework
comprises a large part of many safety critical infrastructure. Flow induced vibrations,
cause up to 15% of all piping failures and are responsible for over 20% of offshore oil
and gas spillages. Consequently, vibration induced piping failures have resulted in

large economic losses and have also had a significant environmental impact.

This project set out to develop a means of analysing flow induced vibrations in piping
systems and to investigate how the vibrations can be mitigated . Firstly a critical review
of the literature was done to identify the fundamental mechanisms and to review the
methods that have been used to investigate the problem. The literature review showed
that computational modelling is the most efficient way of investigating flow induced
vibrations. It was also found that in previous studies there had been no attempt to use
the finite difference method to develop a model for the computation the natural

frequencies and the critical velocity.

Based on literature findings a suitable mathematical model was established. The finite
difference method was then used to create model flow induced vibrations for straight
pipe, clamped at both ends , with internal steady fluid flow. Using this modelling
approach the critical velocities, natural frequencies and amplitude of vibration were
obtained. Parametric studies were also carried out to investigate the influence of pipe
and fluid physical characteristics on the stability of the system and the vibration

behaviour.

The findings revealed that the finite difference method predicted the critical velocity
accurately with a magnitude of error less than 1%. Thus confirming that the novel
approach used is valid and reliable. The project also concluded that the susceptibility
of the pipe system to vibration induced failure can be reduced by increasing the pipe
flexural rigidity, reducing the ratio of fluid mass to pipe mass, reducing the support

spacing and maintaining a margin from the critical flow velocity.
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1 Introduction

1.1 Introduction

Pipelines conveying fluids constitute a significant part of modern industry. Fluid flow is
fundamental to chemical processing, power generation and transportation of essential
commodities such as oil and gas. These industrial processes are safety critical
because system failures can lead to the spillage of fluids which are detrimental to
human health and the environment [1]. Furthermore, the failure of pipelines during
operation results in economic loss [2] due to permanent loss of valuable fluid, cost of
repair and lost production time. The foregoing clearly indicates the need to identify and

address the root causes of failure in piping systems.

The vibration induced fatigue failure has been identified as one of the most common
causes of failure in piping systems, accounting for over 15% of all piping failures in
Western Europe [1,3]. The UK Government Health and Safety Executive [3] has
reported that piping fatigue failure caused by vibrations has led to over 20% of oil and
gas leakages in offshore operations. Consequently, the vibration of piping has become

a major area of focus for pipeline designers and operators.

In many commercial applications of fluid flow the system output is directly proportional
to the fluid flow rates that can be achieved. This means that operators aim to operate
at the highest possible fluid flow velocities to maximise production and profits. On the
other hand, high fluid velocities are associated with more severe vibrations [4,5] and
consequently higher pipe failure rates. Hence it is paramount to be able to identify the

safe and optimal operating ranges for a piping system.

Studies [4,5] have shown that flow induced vibrations can occur under a wide variety
of flow regimes even when there is steady fluid flow without any turbulent flow or
multiphase fluid flow. Vibration of pipelines conveying fluids comes about as a result
of the interaction between a fluid and structural component [6]. As a result, flow induced
vibrations in piping systems are influenced by the physical and structural properties of
both the fluid and the pipe. This interaction brings about complex behaviour which has
called for the development specialised methods and tools for the analysis of flow

induced vibrations.

It has been reported [3] that one of the main design issues leading to the failure of
piping is failure to have sufficient support for the pipeline leading to severe vibrations
which then induced fatigue failure. This clearly shows that flow induced vibration of

pipelines needs to be considered during design of piping systems as engineers need



to demonstrate that the piping systems they intend to build and operate can be

operated safely.

It is evident that flow induced vibrations continue to be a cause for concern and that
the mitigation of this flow induced vibrations in piping systems will lead to significant
reduction in piping failure rates. The ability to predict and hence mitigate vibrations in
pipelines reduces downtime, saves costs, improves safety and protects the

environment.

1.2 Aim
The aim of the project was to model and analyse flow induced vibrations for a straight
pipe line with fixed supports internal fluid flow using computational methods and

investigate how the stability is influenced by the pipe and fluid parameters.

1.3 Objectives

To achieve this aim the following objectives were set for the project

1. Conduct a critical literature review on flow induced vibrations in piping systems
2. Develop and validate a computational model for the modelling and analysis
flow induced vibrations in piping with fixed supports

Predict the natural frequencies of the pipe with internal fluid flow

Predict the critical velocity for pipe instability due to flow induced vibration

Predict the amplitude of vibrations

o gk~ w

Conduct parametric studies to establish how the vibration characteristics and
the critical velocity are influenced by pipe supports, rigidity of the pipe, pipe and

fluid densities and fluid flow velocity

1.4 Report Layout

Chapter 2 presents a review of the literature which was carried out to gain an
understanding of the physics of flow induced vibrations, methods that have been used
to analyse the vibrations and to identify research gaps whose closure may lead to
better management of the problem. Following the identification of the mechanisms and
the mathematical models of flow induced vibrations, in Chapter 3 the development and
verification of a finite differences based computational model for the flow induced
vibrations is outlined. Chapter 4 then presents the validation of the models and the
parametric studies carried out to investigate the influence of various pipe and fluid
parameters on the stability of the system and the vibration characteristics. Finally,
Chapter 5 presents the a summary of the main findings and the conclusions that were

drawn from the project results.



2 Literature Review

2.1 Introduction

This chapter provides the fundamentals concepts of flow induced vibrations by
presenting the mechanisms of flow induced vibrations and how unstable vibrations
develop. The mathematical representation of the problem is also discussed. An
analysis of the different approaches that have been used to investigate flow induced
vibrations. Finally a brief discussion is made on some of the key findings that had

relevant implications to this project.

2.2  Fluid Structure Interaction

Flow induced vibrations in piping systems come about as a result of a phenomenon
called fluid-structure interaction (FSI). FSI occurs when a fluid flows inside deformable
structure causing geometric changes or vibrations and then these deformations or
vibrations then in turn influence the fluid flow characteristics [5,6]. As a result there is
an interplay between the fluid forces and structural forces. This means that flow
induced vibrations in piping are influenced by the physical parameters of both the pipe
and the fluid.

Vibrations caused by fluid structure interaction are classified according to the type of
fluid flow and the nature of interaction between the fluid and the structure. Figure 2.1
shows the classes of vibration mechanisms according to fluid phase type, steadiness

of flow and nature of flow field.

P— Vortex induced Two-phase
Single-phase vibration (VIV) | | flow
Acoustic resonance

External flow
Bubble-induced vibration

Thermal-hydraulic vibration with
phase change

Fluidelastic vibration
Steady flow

Vibration of piping

Forced vibration

Acoustically induced
vibration

Internal flow

Vibration of piping by two-phase flow |

Pulsating flow

Unsteady flow

Random vibration

Pressure pulsation

Turbulent flow

Sudden change
in flow

Figure 2.1 :Classification of Fluid Structure Interaction Problems [5]

It can be observed from Figure 2.1 that flow induced vibrations can occur under any
type of flow even in steady flow. This means that flow induced vibrations cannot be out

ruled on the basis of the type of flow since the vibrations can occur irrespective of the
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type of flow. However the driving forces for the vibrations will depend on the specific
mechanism of vibration [5]. In their comprehensive meta-analysis of flow induced
vibrations Kaneko et al [5] pointed out that more than one mechanism of vibration may
be involved in a particular case. Therefore when modelling flow induced vibrations the
mechanisms of vibration have to be identified correctly so that the appropriate physical
parameters can be considered in the model, otherwise the model will not be a true

representation of the case under investigation.

2.3 Vibration of Pipes

Flow induced vibrations in piping conveying steady fluid flow takes the form of lateral
vibrations [6] such that the vibration motion is perpendicular to the direction of the flow
of fluid. In many respects, the vibration of fluid conveying piping is similar to the
vibration of structural beams. The main difference is that for a fluid conveying pipe the
vibrations are also affected by the stiffness of the fluid in addition to the structural
stiffness. The fluid introduces a negative stiffness [4], which increases with the fluid
flow velocity and affects the stability of the piping system even without an external
exciting force [5] .This is the main source of complexity in the problem because it

results in the vibration characteristics that change with the fluid flow velocity.

2.4 Mathematical Model of Flow Induced Vibrations

2.41 The equation of motion

The general equation of motion for the lateral vibrations of a pipe carrying a fluid has
been derived by various researchers using two approaches namely the Hamiltonian
approach and the Newtonian approach. In the Hamiltonian approach [6-9] the
equations of motion are obtained by considering the kinetic energy and potential
energy of the system. In the Newtonian approach [6,10] the equation of motion is
derived by considering the forces and resultant motions. Both derivation approaches
yield the same basic equation of motion. Given that the equation has been derived by
different researchers and using two distinct methods, it can be concluded that it has
been established as the standard basic model equation for flow induced lateral

vibrations in straight pipelines with internal fluid flow.

Pipe Support Pipe Support

Figure 2.2 :Straight pipe system with supported ends



The equation of motion for a pipe or section of pipe held by some support systems as
shown in Figure 2.2 is
8 y 2
EI— +m fV + 2m fV

Y 4 (my +my) 22 —= =0 (2.1)

dxot
Where y is the lateral displacement of the pipe, E is the elastic modulus of the pipe
material, I is the moment of inertia of the pipe , m, is the mass of the pipe per unit
length, my is the mass of the fluid per unit length, V is the mean velocity of the fluid

flowing inside the pipe.

The first term in the equation, E122 represents the flexural restoring force. The second

64’

term, meZ , represents the centrifugal force due fluid flow in the curved pipe. The
third term, meVaz—y , represents the Coriolis forces which come about as a result of

the relative motion of the pipe and the fluid. The last term, (mf + mp) represents

at2’

the inertial force of the pipe and fluid system.

2.4.2 Modelling Assumptions

In the derivation of the mathematical model the assumptions used are i) the pipe
behaves like a purely elastic beam [11] meaning that the Young’'s Modulus is constant
ii) the pipe is slender [6] which implies that the amplitude of vibration is small compared
to the length, iii) the fluid flow is fully developed [6] and iv) the fluid is incompressible[6].
These assumptions help to identify the limitations of the model because once an

assumption is violated the model may no longer be valid.

Although the fluid is not idealised as inviscid, the equation does not have any term with
a viscosity coefficient. Paidoussis [4] has shown that the friction forces on the pipe-
fluid interface ,which are caused by fluid viscosity, and the pressure loss due to the
internal fluid friction, also caused by the viscosity of the fluid, cancel out each other. As
a result, the viscosity dependent frictional effects do not have an influence on the
vibration dynamics of the pipe. Hence there are no terms with the fluid viscosity in the

equation of motion.

2.4.3 The Coriolis force term

In order to further simplify the mathematical model some researchers [10,12] have
neglected the Coriolis force term totally from the equation of motion. Uduetok [10]
derived the equation of motion without the Coriolis force term and used it to obtain the
natural frequencies for simply supported and clamped pipes. The results obtained had

a good agreement with experimental data. Yi min et al [12] also investigated the effect



of neglecting the Coriolis force in the solution of flow induced vibrations in piping
systems. Figures 2.3 show the percentage error in the predicted first and second
natural frequency generated by neglecting the Coriolis force term. It can be observed
that for a fluid flow velocity range of 0-90 m/s the error was less than 3%. However,
there was no attempt to investigate the resultant error in the predictions of critical flow

velocity such a model where the Coriolis force has been neglected.

%

34 “ET =800N . m?
Oy El=100N-m*  ©aiEI=500N-m
-~
2 / i L
S’ -7~ 0,EI=900N-n
14 b & o S

= - T =

Percenlage error
o
|

@,; EI = 900N -m?

@,; EI =130N -m’* ]
@y; EI = 500N -’

T T T T T T T T T 1

10 20 30 40 50 60 70 80 90 s
Flow velocity

Figure 2.3 : Error magnitude in natural frequencies from model without Coriolis force term [12]

The Coriolis forces, while they have an influence on the dynamics of the pipe, do not
do any actual work in the system [6]. This offers a plausible explanation for why the
Coriolis forces may be neglected and only a small error is generated in the predicted
natural frequency. This is significant because for many engineering applications a
small magnitude of error is acceptable since safety factors are normally applied. The
major advantage of a simplified model, especially in this case where the simplification

involves neglecting a mixed derivative term, is that it reduces the computational effort.

2.5 Influence of pipe support type and configuration

The dynamics of the flow induced vibrations are also influenced by the type of pipe
support configuration [5]. The piping support configurations fall into following major
classifications: 1) both ends fixed (clamped-clamped support), 2) both ends simply
supported (pinned-pinned support) ,3) one end simply supported with the other fixed

(pinned-clamped), 4) one end fixed with the other free (cantilevered) [4,13]

The supports mark the boundary of the pipe domain with unique vibration
characteristics and therefore the boundary conditions are determined by the support
type. Since the system is modelled by a partial differential equation who solution is

determined by the boundary conditions it follows that the vibration characteristics of



the pipe will be different for each type support configuration. Studies [11,13] have
proven that pipe systems with the same fluid flow, pipe material, pipe span length, pipe
thickness and diameter but different support types have different natural frequencies

and critical velocities.
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Figure 2.4 : Effect of pipe support configuration on the frequency of vibration [13]

Figure 2.4 shows that for piping systems with the same pipe and fluid parameters but
different pipe end support configurations, have different frequencies of vibration at the
same fluid flow velocity. Therefore demonstrating the significance of the support

configuration in analysis of the flow induced vibrations.

2.6 Vibration instabilities in pipelines

The stability of a system is determined by the behaviour of the vibration amplitude.
When the magnitude of vibration is constant a system is said to be undergoing stable
vibrations whereas when the magnitude of vibration is growing with time the system
will be undergoing unstable vibrations [14]. This implies that, while any vibration is
generally undesirable for any structure, unstable vibrations are the most undesirable

because they lead to large deformations and eventually failure.

The stability of piping systems with internal fluid flow has been a major point of study.
Research has shown that flow induced vibrations in piping systems are stable within a
finite range of flow velocity [4,5]. The fluid flow velocity where the pipe becomes
unstable is known as the critical flow velocity. Two types of instabilities have been
observed in flow induced vibrations namely divergence and flutter [6]. Divergence
which is an instability whereby the vibration amplitude increases without oscillations as
shown in Figure 2.5. On the other hand, in flutter instability the amplitude increases

with oscillations as shown in Figure 2.5
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Figure 2.5 :Divergence and Flutter Instabilities [14]

A pipe with clamped ends first loses stability by divergence and then with sufficient
increase in fluid flow velocity it will then transition to flutter[6]. Figure 2.6 showing the

map of the instabilities plotted against a dimensionless fluid velocity parameter, u and

the ratio of mass of fluid to total system mass, 3, demonstrates the foregoing. The
natural frequencies of the pipe system are used to determine its state of stability. the
pipe first becomes unstable when the first mode natural frequency becomes zero [5].
It has also been observed that after this point the natural frequency becomes complex
[6]. Therefore the fluid flow velocity which results in the first natural frequency

becoming zero is the critical velocity at which the pipe becomes unstable.
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Figure 2.6 : Map of Instabilities for clamped pipes [6]

In a theoretical analysis of the physical interpretation of instabilities in flow induced
vibrations, Paidoussis [6] concluded that the stability depends on the relative
magnitude of the centrifugal forces and the flexural restoring forces. The centrifugal
forces increase with fluid velocity. When the centrifugal forces become large enough
to overcome the flexural restoring force divergence instability then take place[6]. This
is significant because it provides a physical interpretation of the mechanism by which

the transition from stable state to unstable state occurs.



2.7 Analysis of flow induced vibrations in piping

Various aspects of flow induced vibrations in piping systems have been studied and
analysed using four classes of methods. These classes are experimental methods,
analytical methods, modelling using multipurpose software packages and modelling
using custom numerical methods. This section provides a summary of how these

approaches been implemented and some of the key findings made.

2.7.1 Experimental approach

Experimental investigations were used in the early days of flow induced vibrations
research to validate the findings which had been reached from theoretical analysis.
Experimental work by Long [15] and Dodds [16] established that pipes do transition
from a stable state to divergent vibration at some critical velocity and that severe
vibrations can lead to permanent deformation of the pipe. In recent years experimental
analysis of flow induced vibrations has typically been employed when the underlying
mechanism of vibration cannot be established or when there is no access to numerical
modelling tools [5] .When the underlying mechanisms are not known it is not possible
to develop a mathematical model. Hence physical experimentation becomes the
default option. An example of an experimental setup is shown in Figure 2.7 from a
study by Khot et al [17] where the vibration data was collected using an accelerometer

and the frequency response obtained using a Fast Fourier Transfer Analyser.

=
Ty
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Rubber -
i -
w )
Laf®
y ‘ | 4,
:
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FFT Analyzer

Figure 2.7 :Experimental setup for flow induced vibrations [17]

There are two particularly significant challenges with experimental analysis of flow
induced vibrations. The first is that it the vibrations can become violent [6] such that
beyond certain fluid velocities the error in measurements can be very large. Secondly,

it has been reported that material and geometric imperfections of the particular test
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pipe sections can cause the premature instability [6] which may lead to misleading

conclusions about the general vibration behaviour of a whole class of pipe systems.

2.7.2 Analytical approximation approach

In one of the earliest studies on flow induced vibrations, Housner [7] adopted an
analytical approach where the equation of motion for flow induced vibrations was
compared with that of a vibrating beam, to derive an expression for the natural
frequency of a pipe with fluid flow from the already known natural frequency of a
vibrating beam. In a recent study, the analytical approach was used by Udeotok [10]
to find the natural frequencies and the amplitude of vibration for simply supported and
clamped pipe systems. The approach involved making simplifying assumptions to
obtain simpler mathematical equations for the flow induced vibrations. These simpler
equations were then solved analytically. An evident limitation of the analytical approach
from these studies [7,10] is that only the first mode natural frequency could be found,
whereas in practical applications a knowledge of the other higher modes may be
required especially when the pipe system is connected to high-speed rotating

equipment whose frequencies may excite the higher modes of vibration.

2.7.3 Commercial multipurpose packages

One of the approaches used in flow induced vibration studies[17,18] is the use of
commercial multipurpose software packages. In this approach the fluid domain is
solved by a fluid dynamics solver and the structural domain is solved by a structural
mechanics solver [5]. In an investigation of the frequency and amplitude of vibration
for a simply supported pipe, Khot et al [17] utilised ANSYS®© to first solve the fluid
domain and obtain the dynamic pressure. The pressure filed results obtained were
then used as an input in the structural analysis of the pipe. In contrast, to the manual
transfer of data between fluid and structural solver as done in the study by Khot et al
[17], some commercial multipurpose packages have an inbuilt coupling between the

fluid and structure solvers [5] as shown in Table 2.1

Table 2.1 : Examples of software packages used for fluid structure interaction problems [5]

Name Fluid Structure Coupling
STAR-CD + NASTRAN FVM FEM File

LS-DYNA FEM FEM Mutual boundary
ADINA + ADINA-F FEM FEM Ibid.

CFD-ACE + FEMSTRESS FVM FEM Ibid.

FINAS FEM FEM Ibid.

*FVM: Finite volume method. FEM: Finite element method.
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The major disadvantage with the use of the commercial multipurpose packages for
flow induced vibrations in piping is that the fluid solvers perform a calculation for the
whole fluid domain whereas for this problem only the fluid forces acting on the structure
at the interface of the pipe with the fluid are needed [6]. The calculation of forces
throughout the fluid domain may be necessary and worth the cost when complex
structural geometries are involved, however pipelines have simple geometries. Hence

the high computational cost may not be worth the simplicity of the domain.

2.7.4 Custom numerical methods

Unlike the multipurpose solvers, the custom numerical solvers are developed
specifically for the problem of flow induced vibrations. This is the approach whereby
the flow induced vibrations are modelled using differential equations and then solved
using numerical techniques. The literature shows this to be the most commonly used

approach.

The finite element method (FEM) had been used in many studies [11,13,19-22] to
investigate flow induced vibrations. A study by Mohammed et al [19] used the method
to investigate the effect of having an additional spring support within the span of a
simply supported pipe. in the study it was observed that the natural frequency
increases nonlinearly the spring constant and that for the same spring constant the
frequency varies with the location of the location of the spring along the span of the
pipe. These nonlinear behaviours were also observed by Sugiyama et al [23] in their
experimental study of the effect of spring supports on cantilevered pipes. This shows
the finite element methods ability to deal with nonlinearities and could be one of the

reasons why it has been used more widely.

Grant [20] also implemented the finite element analysis to find the vibration frequencies
and subsequently the critical velocity for a uniform thickness pipe and a tapered pipe
with reducing thickness. The dimensions of the tapered pipe were chosen such that
the two cases had equal mass of pipe material. Interestingly, the results showed that
the tapered pipe had a higher critical velocity, hence better stability, than the pipe with
uniform thickness. This finding may be particularly useful for shape optimisation in

some piping applications.

In a study by Lee and Park [8] the spectral element method (SEM) was used to model
flow induced vibrations in piping caused by unsteady fluid flow. Another study by Lee
and Oh [24] also used the spectral element method to investigate vibrations caused by
steady fluid flow. In both studies [8,24] it was noted that one of the major differences

between the spectral element method and the finite element method is that in the in
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finite element method the pipe must be discretised into many elements whereas with
the spectral element method there is no need to discretise the pipe no matter its length
.This may mean that SEM has less computational cost. The forementioned difference
in the discretisation requirements is not conclusive evidence that SEM has less
computational requirements because the SEM also depends on the number of spectral
elements used. In both the Lee and Park [8] and the Lee and Oh [24] studies, there
was no investigation on the effect of the number of spectral elements on the resolution

and computational cost.

The SEM was also used in study by Lee et al [25] to investigate the effect of nonlinear
behaviour of the pipe material. The vibration behaviour of viscoelastic material, a
viscosity coefficient, n = 250 kg/m*s, was compared to that of purely elastic material,
that is with no viscous effects, n =0 kg/m*s. Figure 2.8 shows the time response of the

vibration amplitude obtained from this study.
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Figure 2.8 : Vibration response comparison of purely elastic and viscoelastic pipe [25]
The results presented in Figure 2.8 show that the viscoelasticity had an effect of
damping the amplitude of vibration as time progressed, whereas there was negligible
difference in the frequency of vibration between the two material models.
Consequently, the critical flow velocity was also the same. This suggests that the
damping effects of the viscoelasticity do not play a significant role on the limits of
stability of a pipe with internal fluid flow since the stability is determined by the

frequency.

The Galerkin method was used by Yi min et al [12] to investigate the effect of the
boundary conditions on the natural frequency. The expressions for the first natural
frequency derived in this study, show the order in which the natural frequency

decreases. The natural frequency is highest when both ends are fixed, followed by
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when one end is fixed and the other simply supported, then by the case when both end
are simply supported and lastly, it is lowest for the cantilevered pipe. This ordering is
consistent with the results obtained from another study [13] where the finite element
method was used to calculate the natural frequencies for the same set of boundary

conditions.

The finite differences method was used in a study by Gorman et al [26] to find the
amplitude of vibration, hydrodynamic pressure, and flow velocities for a simply
supported pipe with pulsating fluid flow. The study did not outline how the natural
frequencies and critical velocities can be found using the finite difference method. The
use of the finite difference method to find the natural frequencies and critical velocities

was not found in the currently available literature.

2.8 Discussion and conclusion

The fundamental physics and mathematical representations of flow induced vibrations
have been reviewed. The unstable vibration of pipes occurs when a specific critical
velocity is exceed. This critical velocity is mutually influenced by various physical and
geometric properties of the pipe and the fluid. It is therefore important to consider how

these properties can be modelled when investigating flow induced vibrations.

Although the mathematical model for flow induced vibrations has mainly been used in
its full form, there is evidence to suggest that the mathematical model can be simplified
by neglecting the Coriolis force term without a significant compromise on the accuracy
of the model. This is significant because, this eliminates the only mixed derivate terms
and could mean that a wider range of methods can used to create computational
models. At the same time it may be an efficient means of reducing computational cost

for the commonly used methods

Direct and customised numerical modelling is the most efficient way of investigating
flow induced vibrations in piping systems with steady fluid flow. In the literature this
approach is more common than the experimental approach , analytical approach and
use of multipurpose software packages. Amongst the methods used for direct
numerical modelling of flow induced vibrations, the finite element method has been
the most widely used. Although various methods have been developed implementing
different numerical techniques, little attention has been given to the finite differences

method.
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3 Finite Difference Modelling of Flow Induced Vibrations

3.1 Introduction

This chapter describes the computational modelling of flow induced vibrations of a
straight pipe with internal steady fluid flow using the finite difference method. A
mathematical model is selected based on findings from the literature review. The finite
difference method is then used to model the system so as to obtain the natural

frequencies of vibration, the critical velocity and the vibration amplitude.

3.2 Mathematical Model

The simplified mathematical model, with the Coriolis force term neglected was selected
because the model has been used to produce solutions with an error of less than 3%
as highlighted in the literature review (Chapter 2). The elimination of the mixed
derivative, Coriolis force term also reduces the modelling and computational effort. The

equation of motion for this model is given below

oty 2 9%
El 5 +mV? =+ (my + mp)

0x2

ZZTZ =0 (3.1)
The boundary conditions are obtained from the nature of end supports. The case
investigated was that of the pipe with fixed ends as shown in Figure 3.1. This means
that at each pipe support the displacement of the pipe, y(x, t) is always zero. This also

implies that at this point the rate of change of vibration amplitude at this point is also

Zero.
Pipe Clamp Y Pipe Clamp
:::::1 = | —
i L |
y(0,t) =0 y(L,t) =0
dy(0,t) dy(L,t)
dx 0 dx 0

Figure 3.1 : Pipe with clamped ends showing the boundary conditions imposed by the clamps

3.3 Discretisation and Solution Approach

The finite difference method was used to represent the continuous pipe system as a
discrete system. The uniform discretisation approach was used for the time and spatial
domains as shown in Figure 3.2. The discrete domains constituted of a finite number
of equidistant nodes. The finite difference approximations were then applied at these

discrete nodes.
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Pipe Clamp Pipe Clamp

Figure 3.2 : Uniform spatial discretisation of the pipe system using nodes

The truncated Taylor series based second order centred finite difference
approximations were utilized. The general expressions for the finite difference

approximations to the second and fourth derivatives of a function, f (h) with respect to

a variable, h , with a uniform discretisation in h, are provided below

dzf fn—l_zfn+fn+1

dh? = Ah?Z (32
d4f _ fn—z_4fn—1+6fn_4fn+1+fn+2

= (3.3)
dh* Ah*

Where f, is the approximate value of function f at node n and Ah is the node spacing.

3.4 Computation of Natural Frequency

Since the equation of motion varies in both space and time, the method of separation
of variables was used, to obtain an equation in space from which the natural frequency
was then computed using the finite difference method. This approach has been used
successfully in the vibration analysis of other continuous systems such as solid
beams[14].

Using the standard approach to separate the variables, the solution y(x,t), was
assumed to be a product of two functions, one function dependent only on spatial

position, x and the other dependent only on the time, t such that

y(x,t) =Y()T(¢) (3.4)
The second and fourth derivatives in space and the second derivative in time were
then obtained as

%y _ d%y 0y

0%y
axz deT (3.9) ox*

d’T
9e2 = WY (3.7)

d*y
== T (3.6

The derivative expressions, 3.5, 3.6 and 3.7 were substituted into equation 3.1 and the
resulting equation further simplified as follows
EI—T +mgV? —T + (my +m,) X —Y=0

d?y
T(E1SE +mv?L2) = —(my +m, )Y &
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1

(mp+mp)Y @) = rai 9

d*y 2 d?y 1d2T
(E1ﬁ+me _) T dt?

The left hand side of equation 3.3 depends only on x and the right hand side depends
only on t, therefore, their common value can only be a constant.

4
—— (E15 5+ my?

dZY 1 62]
mf+m Y dx* )
(4

i) = Tz constant = A4 (3.9)

Two separate ordinary differential equations were then obtained from Equation 3.9,

one involving x and Y (x) and the other t and T(t). The two equations obtained are

1 dty 2 d2y _
(my+my)v (B1Sm +mpv2 ) = 2 (3.10)
1d?T
“raz =4 (3.11)

A rearrangement of Equation 3.4 gives the following equation
EI \d*y = (mgV?\ d?y _
(o) i+ G ) s —Ar =0 (3.12)
Where m,; = my + m,,
A uniform discretisation of the spatial domain was then applied. The finite difference

approximations of the derivatives at the N node points of the discretised system were

then applied to Equation 3.12 to obtain the following

2
El Yi,—4Y;_1+6Y;—4Y; 1+Yi4o + me Yio1—-2Yi+Yi4q _ /’{Y — 0
Ax* Ax? t

(3.13)

Mtot Mtot

2
Leta = —2 zand b = Uil > and simplifying the equation yields

MyorAx MeorAx

a¥i_, —4aY;_; + 6aY; —4aYy + a¥i, + bY; g — 2bY; + DY —AY; =0

aY;_, + (b —4a)Y;_y + (6a—2b — )Y, — (b — 4a)Y;; +a¥i,, =0  (3.14)
Letting ¢; = a, C, =b—4a, (3 = 6a—2b, C, =b —4a and C; = a. Equation 3.14 can

then be written as
C1Yi2 +CYi 1 +(C; = DY+ ChYiy1 + GV =0 (3.15)

Equation 3.15 was applied to the node points /=2 to i=N-1 to obtain a set of linear

equations

=2 C1Y0 + CzY]_ + (C3 - A)YZ + C4Y3 + C5Y4_ =0
=3 Clyl + CZYZ + (C3 - A)Yg + C4Y4_ + C5Y5 =0
i=4 C1Y2 + C2Y3 + (C3 - A)Yzl_ + C4Y5 + C5Y6 =0
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i=N-3 CiYy_s +Co¥y_y + (C3—N)Yy_3+ C¥y_2 + Cs¥y_1 =0
i=N-2 Ci¥noa +CYy_3+ (C3—D)Yy_, + Yy +CYy =0
i=N-1 CiYys +C¥y_y + (C3—D)Yy_1 + Yy +CYyyy =0
The boundary conditions for the clamped-clamped pipe were then applied. The

boundary conditions are as follows

dy; Y, =Y,

—=0 ——=0 > Y=Y (3.17)
ay Y -Yn-
d_: = 0 - % = 0 - YN+1 == YN—l (318)

Equations 3.16, 3.17 and 3.18 ,obtained from the boundary conditions, were used to

substitute for Yy, Y;, Yy,.1 @and Yy such that the set of linear equations became

i=2 (Ci + C3 — VY, + CyY;3 + CsY, =0
i=3 CoYy + (C3 — Y5 + Cu¥y + CsY =0
i=4 C,Y, + CoYs + (C3 — VY, + Y5 + CsYy =0
i=N-3 Ci¥nos + Co¥y_a + (C3 —N)Yy_3 + C ¥y + Cs¥yy =0
i=N-2 Ci¥noa +C¥y s+ (C3— DYy, +CYyy =0
i=N-1 Ci¥yn_3 + C¥y_p + (C3+C5s —N)Yy_; =0

The foregoing set of equations were then expressed compactly in matrix vector form

to give the following expression

(C; +C3— A Cy Cs 0 0 1r1Ys
C, C;—A C, Cs 0 : Ys
Cy C, C;—1 C, Cs 0 : Ys
0 - . : :
: : =0
0 C1 c, C3—2 C, Cs Yyv_3
: 0 C1 C, C;—A (o Yn_o
0 0 Cy C, C3+Cs— Al LYy_4]

The matrix on the above equation is a sparse pentadiagonal square matrix of size (N —
2) x (N — 2) which can be expressed in the form M — Al where I is the identity

matrix and M is an (N — 2) x (N — 2) matrix given by
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C,+C; C Cs 0 v oer e 0
C,6 C C, Cg 0 - :
C,¢ C C C Cs O
M=| :
N 0
0 C, C, C; C, Cs
: . 0 ¢, C, C; C,
0 o e e 0 C; Cp CyA4Col

From this it can be observed that the constant A is the eigenvalue which is equal to w?,
where w is the natural frequency. The natural frequencies were found by solving the

eigen value problem, |[M — AI| = 0.

w,; = ﬁ (3.19)

Where w; is the i" mode natural frequency.

A MATLAB program was developed to build the matrix M , solve for its eigen values
and calculate the 1t and 2" natural frequencies. The MATLAB program is provided in

Appendix A.

3.5 Computation of the Critical Velocity

As outline in Chapter 2, the critical velocity is the fluid flow velocity at which the pipe
loses stability. This point is marked by the 15t mode real natural frequency disappearing
and a development of complex natural frequencies. The critical flow velocity was
computed by finding the fluid flow velocity for which the first natural frequency is zero

and without any complex parts.

To optimise the search a 3 stage step reducing search algorithm was used. Starting at
fluid velocity of zero the natural frequency is calculated, then the natural velocity is
calculated at steps of 10m/s until a non real natural frequency was obtained. The fluid
velocity where the last real natural frequency was obtained was used as the starting
point for the second stage of the search. In the second stage of the search, similarly,
the natural frequency was calculated at steps of 1m/s until a complex natural frequency
was obtained. The velocity where the last real natural frequency was obtained was
passed on to the final stage of the search. The final stage search was similar to the
first two but with a step size of 0.01m/s. The last fluid flow velocity to give a real natural
frequency was taken as the critical velocity. Since the last stage search was performed

using steps of 0.01m/s, the critical velocity was calculated to a precision of 0.01m/s.
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The search algorithm was implemented using MATLAB. The MATLAB program has
been provided in Appendix B.

3.6 Computation of Pipe Displacement and Amplitude of Vibration

In the formulation, the uniform discretisation approach was used for the time and
spatial domains. The time response of the displacement of the pipe from equilibrium
position was obtained by applying the centred finite difference approximations in time

and space to Equation 3.1 and setting up a time stepping algorithm as outlined below.

Firstly, Equation 3.1 was rearranged and the finite difference approximations applied

as shown below

92 EI (3* mgV? (92
=L (- (R (3.20)
at2 Mot dx* Mot dx2
j+1 JJ-1 j j J Jj Jj 2 (] Jyad
Yi T2yity; — _ EI (Yipo~4Yiy, 76V —4Yi 1Y, _ MV (Vig “2Vi+Yi g (3.21)
At2 Mot Ax* Mot Ax? ’

Where yij is the finite difference approximation of the displacement of pipe at spatial
node i and time grid node j. The equation was further simplified to obtain the time

stepping equation for the solution as follows
yiJH -2y + yi]_l = —AW, — 4l 6y — 4yl +y1,) - BOa — 29 + L)

v/ = —4y! ,+ (4A—B)y]  + (2B — 64+ 2)y/+(4A - B)y)., — Ay, — ¥/ 7" (3.22)

2 27,2
EIAt mV2AL
and B =~

mtotAx4' mtotsz

Where 4 =

The time stepping algorithmic equation 3.22 requires initial values to start the
computations. In order to initialise the computation, approximations of the
displacement at the first two spatial nodes at the start of the computation (j=1), y# and

y2 were calculated

y?=—Ayl,+ (4A-B)yr, + (2B — 6A+ 2)y}+(4A - B)y}., — Ayt, —y? (3.23)

2_ 40
dy(x,0) — YiTVi N yiO — in — 2At

dy(x,0)
dt 2At dt

-y =y = 20tg(x;) (3.24)

Where g(x;) = % . Substituting 3.24 into equation 3.23

y2=—Ayl,+ (4A—B)yl, + (2B — 6A+ 2)y}+(4A — B)y}, — Ay}, — y# + 2Atg(x;)

1
yi ={-Ayi; + (44 = B)yl; + (2B — 6A + 2)y} +(4A — B)yj11 — Ayiso} + Atg(x;)
(3.25)

The first spatial node, i = 1 is at clamped support, therefore the boundary conditions apply
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yi=0
Equation 3.25 was then applied at the second node, i = 2 to obtain
1
v =5{—Ays + (44— B)yi + (2B — 64 + 2)y;+(44 — B)ys — Ay, } + Atg(x;) (3.26)
The boundary conditions were then used to evaluate y3

dyi _ Yo—¥i _ 1 _ 1
=02 —==0->y =Yy (3.27)

By substituting Equation 3.27 into Equation 3.26 the approximation for y? was then

obtained as
1
v: =5 {~Ayz + (44— B)yl + (2B — 6A + 2)y; +(4A = B)y3 — Ayi} + Atg(x)

v} = {44 — B)yl + (2B — 7A+ 2)y}+(4A— B)y} — Ay}} + Atg(x))  (3.28)

Assuming first mode vibration which is symmetric about the centre of the pipe and
using a similar analysis, an expression for the approximate solution at second from last

node, yZ_, was also obtained

1
Vi1 =51 AVN,—3 + (4A =By, o + (2B = 7TA+ 2)yy, 1 + (44 = B)yy, — Ayi} +
Atg(xy,-1) (3.29)
The expression for g(x;) was derived from an analytical approximation of the
displacement derived by Udoetok [10] . The first derivative of the expression with

respect to time gave the expression.

dy(x,0 16u x2L?-2x3L+x*

yo(l ) = w X max( )
t L4 |(38aE1 _8msV?
Mmeotl* meotLl?

Where u,,,, is the maximum vibration velocity along the span of the pipe and w is the

(3.30)

frequency. The vibration frequency was computed using the FDM method described in
Section 3.4.

Having obtained the initial values, time stepping through the rest of the domain could
then be done to obtain the full solution. The computational algorithm was implemented
in MATLAB. The MATLAB program is provided as Appendix C.

3.6.1 Stability of the displacement solution
The stability of the time stepping displacement computation program was investigated
by empirical analysis. This was done by varying the combinations time step size and

grid spacing and observing the stability of the solution. The variables which were
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monitored in the analysis where the coefficients of the time stepping equation 3.22.
The stability criteria was established from these experiments. It was found the solution
became unstable when the coefficient of the yl.j_1 and yl.j+1 was less than 1. Therefore
it was concluded that in order to obtain a stable solution of the pipe displacement the
time step must be small enough to satisfy the following condition

4EI msV?2
Meotal(Bx)* (Ax)?

(At)? ( ) <1 (3.31)

This condition was then implemented in the MATLAB program for computing the
displacement as an algorithm for determining the step size such that for any given
uniform spatial discretization, the minimum number of time steps required to ensure
stability of the solution is determined and used for the computation. Hence the stability

of solution was assured in all computations of the displacement and amplitude.

3.7 Verification of finite difference model
To verify that the finite difference model was implemented correctly, a grid convergence

test and order of accuracy analysis were performed.

3.7.1 Grid Convergence

The grid convergence test was done by computing the natural frequency for a system
with the following parameters taken from a study by Dangal and Ghimire [13]: Span
length, L= 3.048; Young’s Modulus, E= 207GPa; Moment of Inertia, | = 8.73E-09; total
mass per metre, Myt = 1.386 kg/m; mass of fluid per metre m; = 0.38kg/m; V = 50m/s.
The results of the test are shown in Figure 3.3

Grid Convergence Study
82

L o e o &
v v v v v v v ) 4

e
) 4

Natural Frequency (rad/s)
~N ~N ~ N ~N ]
o N H (<)) (-] o

)]
]

0 10 20 30 40 50 60 70
Number of Nodes Along Pipe

Figure 3.3 : Spatial Grid Convergence Study
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The results show that as the number of nodes along the pipe section is increased, that
is the node spacing is decreased, the solution converges without any observable
oscillations or divergence. As shown in Figure 3.3 , the solution started to converge
with 50 nodes. Further refinement of the discretisation resulted in very marginal

changes.

3.7.2 Order of Accuracy

The order of accuracy was calculated by considering a sets of three node spacings
defined as fine, medium and course meshes. A node spacing reduction ratio of 2 was
used. For each of the three meshes, the natural frequency was calculated and the

order of accuracy calculated using the following formular

( @ fine~Pmedium )

ium—@
p — wmedl;;rlnr course (3. 32)
Where
Wfine = fine mesh solution p = order of accuracy
Wmedium = Medium mesh solution r = node spacing reduction ratio

Weourse = COUrse mesh solution

Table 3.1 : Results of the order of accuracy study

NoofNodes 1w, | Gmediom | @oourse p
10-20-40 77.484 80.604 81.328 2.109
20-40-80 80.604 81.328 81.500 2.071
40-80-160 81.328 81.500 81.542 2.039

80-160-320 81.500 81.542 81.552 2.024

Table 3.1 shows the results of the analysis. It was observed that the order of accuracy
converges to a value of 2. This is the theoretical order of accuracy for second order

finite difference approximations.

3.8 Conclusion

The finite difference method has been implemented to develop computational models
for the flow induced vibrations in straight piping with clamped ends. The model
verification results from the grid convergence test confirmed that the model satisfies
the convergence criteria and the calculated order of accuracy converges to the
theoretical value. This evidence that the computational algorithms and their
implementation in the MATLAB programs are correct. Therefore it can be concluded

that the finite difference model developed was successfully verified.
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4 Validation of the Finite Difference Model and Parametric
Studies

4.1 Introduction

In this chapter the validation process performed to check the accuracy and reliability
of the finite difference model developed in Chapter 3 is presented and discussed. The
validation of a computational model is performed to gain confidence that the model is
a valid representation of the physics of the problem such that it can be then used to
make predictions [27]. The chapter also presents the parametric studies carried out
using the validated model, so as to establish the relationships between the pipe-fluid

system parameter and the vibration characteristics.

4.2 Finite Difference Model Validation

The solution of the critical velocity and by extension the natural frequency of the finite
difference model was validated using two methods. Firstly the results from the FDM
model were compared with results from finite element analysis (FEA) studies done by
Dangal and Ghimire [13]. Secondly, the dimensionless velocity parameter was
calculated from the FDM model and compared with the theoretical values of the

dimensionless parameters.

4.2.1 System Parameters

Three cases with different pipe materials were considered in the validation study. To
enable comparison the same pipe and fluid parameters were used as in the study by
Dangal and Ghimire [13]. The three materials considered were steel, aluminium and

Chlorinated polyvinyl chloride (CPVC). Table 4.1 shows the system parameters.

Table 4.1 : Parameters of steel, aluminium and CPVC pipe systems conveying water

Case 1 Case 2 Case 3
Pipe Material Steel Aluminium CPVC
Support span length 3.048m 3.048m 3.048m
Young’s Modulus 207 GPa 68.9 GPa 29 GPa
Pipe Material Density 8000 kg/m? 2699 kg/m? 1550 kg/m3
Pipe Outer Diameter 25.40 mm 25.40 mm 25.40 mm
Pipe thickness 1.65 mm 1.65 mm 1.65 mm
Fluid Density 1000 kg/m? 1000 kg/m? 1000 kg/m?
Mass of fluid per unit length | 0.38 kg/m 0.38 kg/m 0.38 kg/m
Total mass per unit length 1.386 kg/m 0.715 kg/m 0.574 kg/m

23




4.2.2 Validation of Natural Frequency and Critical Velocity

The critical velocities for the above pipe-fluid systems cases were computed using the
FDM model. Table 4.2 shows the results of these computations. The results were
compared with the results from the Dangal and Ghimire study where the finite element

method was used.

Table 4.2 : Critical Velocities of the Steel, Aluminium and CPVC pipe systems

Case Critical Velocity (m/s) Error

FEA [13] FDM
Steel Pipe 141.43 142.05 0.76 %
Aluminium Pipe 81.60 81.95 0.43 %
CPVC Pipe 16.74 16.81 0.42 %

The table shows that the FDM model results differ from the FEA results by less than
1%. This shows that the FDM model has an acceptable accuracy in predicting the
natural frequency and critical velocity since the results are very close to those obtained
using the finite element method which has been the most widely used method for this

problem.

The dimensionless critical velocity, u. allows the comparison of results obtained from
the analysis of cases with different pipe and fluid parameters. The dimensionless

critical velocity is given by

m
u, = (E—If) X L X Vit (4.1)
where mg = mass of fluid/metre L = support span length
E = Young’s Modulus V.-it = critical velocity

I = Moment of inertia of pipe

The theoretical dimensionless critical velocity which marks the limit of stability for pipes
with clamped ends is u, = 2m [6]. The dimensionless critical velocity was calculated
for each of the three cases using the critical velocities obtained from the FDM model
and the results were compared with the theoretical value. The results of this analysis

are shown in Table 4.3
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Table 4.3 : Dimensionless critical velocities of the steel, aluminium and CPVC pipes

Dimensionless critical velocity, u,
Case } Error
Theoretical u, FDM u,
Steel Pipe 6.2831 6.2800 - 0.05%
Aluminium Pipe 6.2831 6.2798 - 0.05%
CPVC Pipe 6.2831 6.2788 -0.07%
Average 6.2831 6.2795 - 0.06%

The results presented in Table 4.3 show that the FDM model underestimates the
dimensionless critical velocity by 0.06%. In most practical applications this is a
insignificant magnitude of error and shows that the FDM model has high accuracy in
predicting the critical flow velocity. The result is also comparable to the performance of

the transfer matrix method [28] where a result of u, = 6.283 was obtained.

4.2.3 Validation of displacement and amplitude solution

The finite difference solution for the peak displacements was compared to the
analytical approximation derived by Udoetok [10]. Case 1 (Steel Pipe Case) from Table
4.1 was used and a fluid velocity of 70m/s was used. The results for the peak

displacement along the pipe section are shown in Figure 4.1

0.2 ‘

Finite Difference

018 - Analytical Approx. | |

0.16 - -
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o
T
|

0.04 - I
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

Figure 4.1 :Comparison of the FDM Model Peak Displacement Solution with the Analytical
Approximation

The results show that the finite difference solution has very good agreement with the
analytical approximation. The greatest difference was observed at the midspan point
of the pipe where the finite difference solution gave an midspan vibration amplitude

that was 4.6% greater than that of the analytical solution as shown in Figure 4.1.

25



4.2.4 Validation conclusion

It has been demonstrated that the FDM Model produced very accurate results for the
critical velocity with errors less than 1 % for three different pipe materials covering a
wide range of Young’'s Modulus values (2.9 GPa to 207GPa) when compared with the
theoretical dimensionless parameters and widely validated finite element method
results. Therefore it can be concluded that the FDM model for predicting the critical

velocity and the natural frequencies was successfully validated.

The FDM solution of the pipe displacements and amplitude of vibration was also shown
to be accurate, with high degree of agreement an analytical approximation model. The
variance at the mid span point x/L=0.5, which is the point where the highest stresses
are expected to occur under first mode vibration, was 4.6%. It was therefore concluded

that the FDM model prediction of the amplitude of vibration is valid.

4.3 Parametric Studies

4.3.1 Effect of Fluid Velocity on Peak Vibration Amplitude

The effects of the fluid flow velocity on the peak vibration amplitude and the natural
frequency of the system were studied by computing the natural frequencies and peak
vibration amplitude over a range of fluid velocities. Figure 4.2 shows the results of the
study. The first observation from the study is that as the fluid velocity is increased the
natural frequency decreases with an increasing rate of decay, eventually reaching
zero. This finding was expected because the fluid introduces are a negative stiffness
that increases with the flow velocity and this is expected to decrease the stability

decrease the stability, which is manifested by a decline in the natural frequency.
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Figure 4.2 : Variation of Peak vibration amplitude and natural frequencies (normalised against
the natural frequency when V=10m/s) with fluid flow velocity
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Figure 4.2 also shows that there was no significant change, less than 0.2mm, in the
amplitude of vibration between fluid flow of 10m/s and 135m/s. However, as the critical
fluid flow velocity of 142.1 m/s was approached there was a sudden amplification in
the peak vibration amplitude such that between 135 m/s and 141.9m/s the amplitude
increased by a factor of 26 from 0.6mm to 10.7mm. This means severe vibrations are
not only experienced when the critical velocity is exceeded but even when the fluid
velocity is close to the critical velocity. These severe vibrations increase the likelihood

of pipeline failure.

4.3.2 Effect of Flexural Rigidity on Critical Velocity

The flexural rigidity, El, was varied by changing the Young’'s modulus while maintaining
the dimensions of the pipe. Effectively this was simulating the change of rigidity by
changing the material of the pipe. Simulations were performed with different values of

El ranging from 90 Nm? to 1800 Nm2.The results obtained are shown in Figure 4.3
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Figure 4.3 :Effect of Flexural rigidity variation on the critical velocity
Figure 4.3 shows that the critical velocity of the pipe system increases with the rigidity
of the pipe. The rate of increase in critical velocity caused by increasing the flexural
rigidity by 1% ranged from 0.41% to 0.50%. As outline in Chapter 2 that the pipe
becomes unstable when the fluid velocity dependent centrifugal forces become large
enough to overcome the flexural restoring forces. The results of the simulation have
shown that as the flexural rigidity is increased, thus increasing the flexural restoring
forces, higher fluid velocity is required to make the pipe unstable. Therefore the results

are in agreement with theory.
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4.3.3 Effect of Mass Ratio on Critical Velocity

The mass ration was varied by changing the mass of the fluid per unit length while
maintaining the mass of the pipe per unit length. This was simulating the change in
fluid to pipe mass ratio by changing the density of the fluid. Simulations were performed
with different values of mass ration ranging from 0.05 to 0.5. A mass ratio of 0.05
means that the fluid is only 5% of the total mass of the system and similarly a mass
ratio of 0.5 means that the fluid mass is 50% of the total mass of the system. Figure

4.4 shows the results obtained from this study.
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Figure 4.4 : Effect of varying the Mass Ratio (Fluid Mass: Total Mass) on the Critical Velocity

The results show that the critical velocity of decreases as the mass ratio increases.
This means that as the mass of the fluid approaches the mass of the pipe, the pipe
becomes less stable. This shows that the mass of the fluid has a destabilizing effect

on the pipe.

4.3.4 Metamodel for the critical velocity, flexural rigidity and mass ratio

A surrogate model was developed to provide a representation of the effect of both the
Flexural rigidity and the mass ratio on the critical velocity. Design of experiments was
used to generate 40 sets of flexural rigidity and mass ratio values to effectively sample
the flexural rigidity design range of 100 to 2000 Pa m* and mass ratio design range of
0.05 to 0.50. The critical velocities for these sets of design points were then computed.
The results of the simulation were then used to generate a metamodel using a MATLAB
program provided by the project supervisor, Prof Harvey Thompson. Figure 4.5 shows
the response surface. The simulation results used to generate the metamodel are

provided in Appendix E.
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Figure 4.5 : Surrogate Model Representing the critical velocity response in the flexural rigidity
and mass ratio (mass of fluid/total system mass) design space

The model shows that the critical velocity is lowest and pipe is least stable when the
mass ratio is large and the flexural rigidity is small. A large mass ratio means the
relative mass of the fluid is large hence the destabilising centrifugal forces are also
relatively high, thereby resulting in a low critical velocity. The model gives a good
representation of how the two design variables simultaneously affect the critical

velocity.

4.3.5 Effect of pipe clamp spacing on Critical Velocity

The effect of the pipe clamp spacing on the critical velocity was studied for two different
pipe materials, steel and aluminium, with two different fluids, water and oil. Four cases
were studied 1) Steel pipe with water 2) Steel Pipe with Oil 3) Aluminium Pipe with
water and 4) Aluminium pipe with oil. The pipe material and fluid properties are given
in Table 4.4.

Table 4.4 : Pipe and Fluid Parameters for the pipe clamp spacing study

Steel Young’s Modulus 207 GPA
Density 8000 kg/m?

Aluminium Young’s Modulus 68.9 GPA
Density 2700 kg/m?®
Water Density 1000 kg/m?
Qil Density 800 kg/m?®
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The critical velocity was computed for different pipe clamp spacing length starting from
1metre to 6metres, which corresponded to 39 times and 236 times the outer diameter

of the pipe respectively. The results for this analysis are shown in Figure 4.6
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Figure 4.6 : Effect of clamp (support) spacing on the critical velocity for four different pipe
material and fluid type combinations

Figure 4.6 shows that the critical velocity value decreases with an increase in the
support spacing. This was expected because reducing the pipe spacing means adding
more supports to the system, hence it is expected that with more supports the pipes
becomes more stable and thus have a higher critical velocity. This finding agrees with

the results of the study by Ugochukwu et al[21].

Figure 4.6 also shows that at each supporting spacing the highest critical velocity is
obtained with steel-oil pipe system, followed by the steel-water system, then the
aluminium-oil system and lastly the aluminium water system. It can be observed that
for both materials the denser fluid gave a lower critical velocity. By considering the
mathematical model, it can be observed that the fluid density is directly proportional to

2y

i 2
the centrifugal force term, m;V*—-=.

As a result, with a larger fluid density the

centrifugal forces become large enough to overcome the flexural restoring forces at a
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lower fluid velocity than with a smaller fluid density. Therefore, the results are

consistent with theory.

The results also show that as the support span length increases the difference in the
critical velocity for the four cases becomes less marked. At a span length of 1m the
difference between the highest and lowest critical velocities of the 4 cases is 233m/s
whereas at a span length of 6m the difference is 39m/s. This implies that as the span
length increases the pipe material density, pipe material Young’s modulus and fluid
density become less significant to the stability of the system. Therefore, in a piping
system with relatively large support span length, it may not be an effective approach
to attempt to improve the stability limit by changing the pipe material. The solution will
depend on a case-by-case basis as there are other factors to be considered such as

the pipe and support material costs.

4.3.6 Conclusion
This project set out to investigate the relationship between the physical properties of

the system and the critical velocity and vibration characteristics.

It has been established that the fluid flow velocity does not have a large influence on
the vibration amplitude when it is not close to the critical point. An inflection of this
behaviour occurs close to the critical flow velocity where small increases in the flow
velocity start to have a large impact on the amplitude of vibration. The investigation
also confirmed that as fluid flow velocity increases the fundamental frequency of the

system decreases until it vanishes.

The findings have also clearly indicated that the ratio of fluid mass to total system mass
has an inverse influence on the critical velocity. On the other hand the flexural rigidity

has a direct relationship with the critical velocity.

The investigations have also shown that the pipe support spacing has an inverse
relationship with the critical velocity. An interesting observation from the study of the
influence of pipe supports on two different metals, was that for the same fluid, the
lighter metal (aluminium) requires smaller supports spacing and hence more supports
than the heavier metal (steel). On the other hand if the system weight is used as criteria
for determining the number of supports the opposite conclusion will be reached as the
heavier metal will need more supports. This shows that in the design of piping systems
a wholistic approach needs to be taken which also takes into account the systems

susceptibility to flow induced vibrations.
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5 Conclusion

This chapter outlines the achievements realised from the project. A discussion of some
of the key findings is also done, including the limitations. Finally a conclusion on the

project is made and recommendations for future work provided.

5.1 Achievements

e Aresearch methodology gap was identified from the literature review

e An accurate computational model was developed using the finite difference
approach, for the computation of the natural frequency and subsequently the
critical velocity of a straight pipe conveying steady fluid flow. This is a novel
approach to the problem which has not been reported in the available literature.

e The model for calculation of the vibration amplitude was also developed using
the finite different approach

o The relationship between the fluid flow velocity and the natural frequencies and
amplitude of vibration was established through parametric studies

o The effects of the flexural rigidity, ratio of fluid mass and to total mass and
spacing of clamped supports on the critical velocities were also established. A
surrogate model was developed for determining the critical velocities for a

flexural rigidity and mass ratio design space

5.2 Discussion

The implementation of the finite difference method in this project was made possible
by adopting a mathematical model for the flow induced vibrations where the mixed
derivative Coriolis force term was neglected. This allowed the separation of variables
to be performed and consequently the finite difference method to be used to calculate
the natural frequency and the critical velocity. In most of the studies reported in
literature, the equation with the mixed derivative Coriolis force term is used. This could
explain why the finite differences method, although simpler to implement, had not been
used to find the natural frequencies and critical velocity. Surprisingly, the results
obtained in this project have shown that when the Coriolis force term is neglected and

the finite difference method the critical velocity to a negligible magnitude of error.

One of the key findings was that as the flow velocity approaches the critical point there
is a substantial increase in the amplitude of vibration. This implies that that there is a
proportionate increase in the cyclic stresses experienced by the pipe. From theory of
fatigue life, the effect of this would be to reduce the number of cycles that the pipe can

endure before it undergoes fatigue failure. Therefore, during the operation of a pipeline
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an appropriate margin from the actual critical velocity needs to be chosen to mitigate

fatigue failure and maximise the life of the pipe.

One of the limitations of the finite difference model is that it likely to produce inaccurate
results for piping systems with a short support span length, because as the span is
reduced the slenderness of the system may be decreased to an extent that the
slenderness condition is violated and the mathematical model becomes invalid. The
model also assumes that the pipe will only behave in a purely elastic manner. However
for weaker material such as plastics, large vibrations which cause plastic deformation
can occur as shown in experimental studies reported in the literature. Therefore, the

results need to be applied to plastic materials with due consideration.

In the design spaces explored the critical velocities in some cases were found to very
high exceeding 300m/s. This was the case when the fluid to total mass ratio is very
small. One of the conditions which can cause low mass ratio is when the fluid conveyed
is a gas. Now when gases travel at such high velocities they become compressible.
This then violates the assumption made in the derivations of the equations of motion
that the fluid is incompressible. Therefore, care must be taken to confirm the
compressibility of the fluid at the computed critical velocity before it is accepted as
valid. This can be done by calculating the Mach number for the specific fluid and

ensuring that it is incompressibility limit is not exceeded.

5.3 Conclusions

The finite difference method is applicable to modelling and analysis of flow induced
vibration problems. Although its application is only possible in the absence of the mixed
derivative Coriolis force term, it still yields accurate results which are comparable to

established methods and are consistent with theory.

To reduce vibration induced failures in clamped piping systems, the stability of a fluid
conveying pipe system can be improved by any of the following system modifications
1) maintaining a margin of safety from the critical velocity 2) increasing the flexural
rigidity, which can be achieved by using a pipe with a higher Young’'s Modulus, 3)
decreasing the fluid mass to pipe mass ratio which can be achieved by using a denser

pipe or lighter fluid and 4) decreasing the spacing between clamps.

5.4 Future work
Further investigation into the inclusion of non linear material models such as
viscoelastic models the with the finite difference model which has been developed is

needed so as to broaden the scope of problems on which it can be applied.
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APPENDIX A

MATLAB program Computing Natural

Frequencies

% Program for finding the 1st and 2nd natural frequencies for flow
% induced vibrations in piping using finite difference method for
% the pipe with fixed ends i.e. (clamped-clamped).

clear all;

%% Problem parameters

E=207E9; %
L=3.048; %
I = 8.73E-09; %
mtot = 1.386; %
mf = 0.38; %
V = 50} %

%% Discretisation
Nx=60; %
deltax=L/(Nx-1);%

Young's Modulus of Pipe [Pa]

Pipe clamp spacing [m]

Moment of Inertia of Pipe [m"4]

Total mass of pipe and fluid per unit length [kg/m]
Mass of fluid per unit length [kg/m]

Fluid Velocity [m/s]

of the pipe
Number of spatial grid points (i=1 at x=0; i=Nx at x=L)
Spatial grid spacing

%% Defining the constants for the set of linear finite difference equations

a

(E*I)/(mtot*deltax”4);

b = (mf*v~2)/(mtot*deltax”2);

Cl = a;

C2 = b-4*a;
C3 = 6*a-2*b;
C4 = b-4*3;
C5 = a;

%% Creation of FDM Matrix M
n = Nx-2; %Defines size of matrix

M = zeros(n);

M(1,1)= C1+C3;

M(1,2)= C4;
M(1,3)= C5;
M(2,1)= C2;
M(2,2)= C3;
M(2,3)= C4;
M(2,4)= C5;

for k =3:n-2
M(k,k-2)=C1;
M(k,k-1)=C2;
M(k,k)=C3;
M(k,k+1)=C4;
M(k,k+2)=C5;
end

M(n-1,n-3)= C1;
M(n-1,n-2)= C2;
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M(n-1,n-1)= C3;
M(n-1,n)= C4;

M(n,n-2)= C1;
M(n,n-1)= C2;
M(n,n)= C3+C5;

%% Calculating the set of natural frequencies from the eigen values of M

W = sqrt(eig(M)); %Computes the vector of natural frequencies from the
%vector of eigen values

W_real = real(W); %Takes the real parts of the natural frequency

w_naturall
w_natural2

W_real(1) %Extracts the 1st Natural Frequency
W_real(2) %Extracts the 2nd Natural Frequency

%Displaying Results in Command Window

X1 = ['1lst Natural Frequency = ',num2str(w_naturall),' rad/s.'];
disp(X1)

X2 = ['2st Natural Frequency = ',num2str(w_natural2),' rad/s.'];
disp(X2)
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APPENDIX B : MATLAB program Computing Critical Velocity

Program for finding the Critical Velocity for flow
induced vibrations in piping using finite difference method for
the pipe with fixed ends i.e. (clamped-clamped).

3R 3R X

Program utilises a 3 stage search step reducing root finding algorithm
to efficiently find the fluid velocity where the natural frequency where
the natural frequency becomes zero and without complex parts.

3R 3R X

clear all;
%% Problem parameters

E=207E9;
L=3.048;

I = 8.73E-09;
mtot = 1.386;
mf = 0.38;

Young's Modulus of Pipe [Pa]

Pipe clamp spacing [m]

Moment of Inertia of Pipe [m"4]

Total mass of pipe and fluid per unit length [kg/m]
Mass of fluid per unit length [kg/m]

3% 3R 3R 3¢ ¥

%% Discretisation of the pipe
Nx=60; % Number of spatial grid points (i=1 at x=0; i=Nx at x=L)
deltax=L/(Nx-1);% Spatial grid spacing

%% 1ST STAGE SEARCH

% Calculates the Natural Frequency at Fluid Velocity Intervals of 10m/s

% At every step checks whether the natural frequencies are still real

% Search stops when the vector of natural frequencies has a complex

% component and the last velocity with a real natural frequency is computed
% used in the next stage of search

vV = 1;

W(1) = 1;

while W == real(W)
% Defining the constants for the finite difference equations

a = (E*I)/(mtot*deltax”4);
b = (mf*v~2)/(mtot*deltax”2);

Cl = a;

C2 = b-4*a;

C3 = 6*a-2*b;

C4 = b-4*3;

C5 = a;

% Creation of FDM Matrix M
n = Nx-2;

M = zeros(n);

M(1,1)= C1+C3;

M(1,2)= C4;
M(1,3)= C5;
M(2,1)= C2;
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M(2,2)= C3;
M(2,3)= C4;
M(2,4)= C5;

for k =3:n-2
M(k,k-2)=C1;
M(k,k-1)=C2;
M(k,k)=C3;
M(k,k+1)=C4;
M(k,k+2)=C5;
end

M(n-1,n-3)= C1;
M(n-1,n-2)= C2;
M(n-1,n-1)= C3;
M(n-1,n)= C4;

M(n,n-2)= C1;
M(n,n-1)= C2;
M(n,n)= C3+C5;

Calculating the set of natural frequencies from the eigen values of M
sqrt(eig(M));

=V + 10;

end

< = X
I

V =V - 20; % stores the velocity where the last real natural
% frequency was obtained

W(1) = 1; %Reinitialises the 1st natural frequency for the next
% stage of search

%% 2ND STAGE SEARCH
% Similar to stage 1 search but search steps reduced to 1m/s

while W == real(W)

% Defining the constants for the finite difference equations

a = (E*I)/(mtot*deltax”4);

b = (mf*v~2)/(mtot*deltax”2);
Cl = a;

C2 = b-4*a;

C3 = 6*a-2*b;

C4 = b-4*3;

C5 = a;

% Creation of FDM Matrix M
n = Nx-2;

M = zeros(n);

M(1,1)= C1+C3;

M(1,2)= C4;
M(1,3)= C5;
M(2,1)= C2;
M(2,2)= C3;
M(2,3)= C4;
M(2,4)= C5;
for k =3:n-2
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M(k,k-2)=C1;

M(k,k-1)=C2;

M(k,k)=C3;

M(k,k+1)=C4;

M(k,k+2)=C5;
end

M(n-1,n-3)= C1;
M(n-1,n-2)= C2;
M(n-1,n-1)= C3;
M(n-1,n)= C4;
M(n,n-2)= C1;
M(n,n-1)= C2;
M(n,n)= C3+C5;

Calculating the set of natural frequencies from the eigen values of M

sqrt(eig(M));
vV +1;

< =
I

end

V =V - 2; % stores the velocity where the last real natural
% frequency was obtained

W(1) = 1; %Reinitialises the 1st natural frequency for the next
% stage of search

%% 3RD STAGE SEARCH
% Similar to stage 2 search but search steps reduced to 0.01m/s

while W == real(W)

% Defining the constants for the finite difference equations
a = (E*I)/(mtot*deltax”4);

b = (mf*v~2)/(mtot*deltax”2);
Cl = a;

C2 = b-4%*3;

C3 = 6*a-2*b;

C4 = b-4*a;

C5 = a;

%% Creation of FDM Matrix M
n = Nx-2;

M = zeros(n);

M(1,1)= C1+C3;

M(1,2)= C4;
M(1,3)= C5;
M(2,1)= C2;
M(2,2)= C3;
M(2,3)= C4;
M(2,4)= C5;

for k =3:n-2
M(k,k-2)=C1;
M(k,k-1)=C2;
M(k,k)=C3;
M(k,k+1)=C4;
M(k,k+2)=C5;
end
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M(n-1,n-3)= C1;
M(n-1,n-2)= C2;
M(n-1,n-1)= C3;
M(n-1,n)= C4;
M(n,n-2)= C1;
M(n,n-1)= C2;
M(n,n)= C3+C5;

Calculating the set of natural frequencies from the eigen values of M

sqrt(eig(M));
V + 0.01;

< = X
Il

end
V_crit =V - 0.02; %Computes the final Critical Velocity
%Displaying Results in Command Window

X = ['Critical Velocity = ',num2str(V_crit),' m/s."'];
disp(X)
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APPENDIX C

: MATLAB program Computing Displacements

and Amplitude

3R 3R X

3R 3R ¥ ¥

clear all;

Solves d"2y/dt”2
@ <= x <=L, subject to boundary conditions for the clamped-clamped
Case which are y(0,t)=y(L,t)=0; dy/dx(0,t)=dy/dx(L,t)=0;

and also subject to the initial condition dy/dt(x,0)=f(x)

Program for solving the Flow Induced Vibrations equation for the
peak displacement along the pipe using finite difference method for
the pipe with fixed ends i.e. (clamped-clamped).

= -(EI/mtot)d"dy/dx 4 - (mf*VA2)dr4y/dx 4 for

%% Problem parameters

E=207E9; % Young's Modulus of Pipe [Pa]

L=3.048; % Pipe clamp spacing [m]

I = 8.73E-09; % Moment of Inertia of Pipe [m*4]

mtot = 1.386; % Total mass of pipe and fluid per unit length [kg/m]

mf = 0.38; % Mass of fluid per unit length [kg/m]

V = 50; % Fluid Velocity [m/s]

u = 0.012; % Peak vibration velocity [m/s] NB: When analysing a
% pipeline in operation the value must be measured with
% vibrometer

%% Discretisation of the pipe

Nx=60; % Number of spatial grid points (i=1 at x=0; i=Nx at x=L)

deltax=L/(Nx-1); %

%% Computation of

Spatial grid spacing

free vibration frequency

% Defining the constants for the set of linear FD equations
a = (E*I)/(mtot*deltax”4);
b = (mf*v~2)/(mtot*deltax”2);

Cl = a;

C2 = b-4*a;
C3 = 6*a-2*b;
C4 = b-4*a;
C5 = a;

% Creation of FDM
= Nx-2;
zeros(n);

=S
I}

M(1,1)= C1+C3;

M(1,2)= C4;
M(1,3)= C5;
M(2,1)= C2;
M(2,2)= C3;
M(2,3)= C4;
M(2,4)= C5;

for k =3:n-2

Matrix M
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M(k,k-2)=C1;

M(k,k-1)=C2;

M(k,k)=C3;

M(k,k+1)=C4;

M(k,k+2)=C5;
end

M(n-1,n-3)= C1;
M(n-1,n-2)= C2;
M(n-1,n-1)= C3;
M(n-1,n)= C4;
M(n,n-2)= C1;
M(n,n-1)= C2;
M(n,n)= C3+C5;

Calculating the natural frequency from the eigen values of M
= sqrt(eig(M));

eal = real(W);

= W_real(l);

S

%
W
W_
W

%% Calculating the simulation time
% Peak displacement occurs at T/4 where T is the period of vibration
end_time = 0.25*2*pi/w;

%% Calculate no. of time steps required to meet the stability criteria
Nt=round((Nx*end_time*sqrt (6*E*I*Nx"2-2*mf*VA2*L~2))/...
(L "2*sgrt(1.5*mtot))+0.5);

deltat=end_time/(Nt-1);

Defining the constants to be used for time stepping algorithm
that computes the displacements

= (E*I/mtot)*(deltat”2/deltax”4);

= ((mf*v~2)/mtot)*(deltat”2/deltax”2);

3R R

c o

y=zeros(Nx,Nt); % Creates Storage of the solution

% Creating the grid for the initial conditions
x=zeros(Nx,1);

t=zeros(Nt,1);

f=zeros(Nx,1); % Initial condition y(x,0)
g=zeros(Nx,1);

%% Computation of Displacements using FD algorithms

for i=1:Nx
x(i)=(L*(i-1))/(Nx-1);
f(i) = o;
y(i,1) = f(i);

%Implementing equation for the initial conditions

A = ((384*E*I)/(mtot*L"4))-((8*mf*V~r2)/(mtot*L 2));

g(i) = ((16*u)/(Lr*sqrt(A)) ) ¥ (x(1)"2*L 2-2*%x(1)"3*L+x(1)74) *w;
end

% Assigning values at the boundary nodes where y=0 for all t
time=0.0;
for j=1:Nt

t(j)=time;
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y(l,j)=0;

y(Nx,j)=0;

time=time+deltat;
end

% Approximating y at the end of the first time step (j=2)

% for i=2, From boundary conditions y(0,3j) = y(2,3)

i=2;

bracket = (4*a-b)*y(i-1,1)+(2-6*a+2*b)*y(i,1)...
+(4*a-b)*y(i+1,1)-a*y(i+2,1);

y(i,2)=0.5*bracket+deltat*g(i);

%Computing y for the nodes i=3 to Nx-2
for i=3:Nx-2
bracket = -a*y(i-2,1)+(4*a-b)*y(i-1,1)+...
(2-6*a+2*b)*y(i,1)+(4*a-b)*y(i+1,1)-a*y(i+2,1);
y(i,2)=0.5*bracket+deltat*g(i);
end

% Approximating y at node i=Nx-1,

% Similarly from boundary condition y(Nx+1,j) = y(Nx-1,7)

i=Nx-1;

bracket = -a*y(i-2,1)+(4*a-b)*y(i-1,1)+(2-7*a+2*b)*y(i,1)...
+(4*a-b)*y(i+1,1);

y(i,2)=0.5*bracket+deltat*g(i);

% Integrating in time using explicit FD time stepping formula
% j=1 corresponds to the initial conditions at t=0 where y =0
for j=2:Nt-1

% Computing y at i=2, i=Nx-1 based on boundary conditions

y(2,3+1) = (4*a-b)*y(1,])+(2-6*a+2*b)*y(2,])...
+(4*a-b)*y(3,])-a*y(4,])-y(2,]j-1);

y(Nx-1,7+1) = -a*y(Nx-3,j)+(4*a-b)*y(Nx-2,7)+...
(2-6*a+2*b)*y(Nx-1,j)+(4*a-b)*y(Nx,j)-y(Nx-1,j-1);

for 1=3:Nx-2
bracket = -a*y(i-2,j)+(4*a-b)*y(i-1,j)+...
(2-6*a+2*b)*y(i,j)+(4*a-b)*y(i+1,j)-a*y(i+2,3);
y(i,j+1) = bracket - y(i,j-1);
end
end

%% Results

%Plotting of results

for n=Nt

plot(x/L, 1000*y(:,n), 'b', LineWidth=1.2); hold on;
legend('Finite Difference Solution');

x1lim([x(1)/L, x(end)/L]);

xlabel('x/L", "FontWeight', "'bold");

ylabel('Peak Displacement (mm)', 'FontWeight', 'bold');
grid on;

drawnow;

end

%Calculating the amplitude of vibration. Highest peak displacement
% is the amplitude of vibration.Occurs at the midspan of the pipe
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y_max = 1000*max(max(y));

%Displaying Amplitude and Frequency in Command Window

X1 = ['Vibration Peak Amplitude = ',num2str(y_max),' mm.'];
disp(X1)

X2 = ['Natural Frequency = ',num2str(w),"' rad/s.'];
disp(X2)
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APPENDIX D : Stability analysis of the Finite Difference model

The table below shows the results of the empirical investigation of the stability criterion

No l(\)lgggstial NoSc;L;)I'Lme Value of y{fﬂ coefficient Model Stability
50 9 1.6939 Unstable
90 30 1.4858 Unstable
50 10 1.3384 Unstable
100 40 1.2637 Unstable
90 35 1.0810 Unstable
100 44 1.0395 Unstable
101 45 1.0339 Unstable
150 100 1.0172 Unstable
200 179 1.0049 Unstable
200 180 0.9937 Stable
101 46 0.9885 Stable
90 37 0.9642 Stable
90 40 0.8216 Stable
80 36 0.6291 Stable
90 50 0.5204 Stable
70 36 0.3626 Stable
50 20 0.3003 Stable
90 100 0.1275 Stable
50 30 0.1289 Stable

4EI(AD2  mVE(an)”
mtotal(Ax)4 (Ax)z

Coefficient of yij+1 =

The model was stable only when the coefficient was less than one. Therefore it was

concluded that the stability condition must be

4EI(At)? mgV2(At)?
Meotal(Ax)* (Ax)?

<1
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APPENDIX E : Simulation Results used to create surrogate

model
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mf .

x1 X2 I E mp mf | mtot El /miot Vcrit
0.872(0.000(8.73E-09|2.01E+11{0.985(0.052(1.037| 1756.40 | 0.050 | 379.34
0.154(0.590(8.73E-09|4.50E+10(0.985(0.454 (1.439| 392.32 | 0.315 60.60
0.231(0.641(8.73E-09|6.17E+10(0.985(0.504 (1.489| 538.46 | 0.338 67.37
0.615(0.359(8.73E-09|1.45E+11(0.985(0.264(1.250( 1269.22 | 0.212 | 142.83
0.795|0.615|8.73E-09(1.85E+11|0.985|0.479(1.464 | 1610.25 | 0.327 | 119.56
0.487|0.077|8.73E-09(1.18E+11|0.985|0.091|1.076 | 1025.64 | 0.085 | 218.74
0.462|0.282|8.73E-09(1.12E+11|0.985|0.212(1.197| 976.93 | 0.177 | 139.99
0.103(0.744(8.73E-09|3.38E+10(0.985(0.616 (1.601| 294.86 | 0.385 45.10
0.256(0.949(8.73E-09|6.73E+10(0.985(0.898(1.884 | 587.18 | 0.477 52.70
0.641|0.769|8.73E-09(1.51E+11|0.985|0.646 (1.632| 1317.96 | 0.396 93.07
0.564(0.179(8.73E-09|1.34E+11(0.985(0.148(1.134( 1171.79 | 0.131 | 183.26
0.846(0.718(8.73E-09|1.96E+11(0.985(0.586(1.572| 1707.69 | 0.373 | 111.24
0.667(0.256(8.73E-09|1.57E+11(0.985(0.195(1.181| 1366.67 | 0.165 | 172.45
0.282(0.333(8.73E-09|7.29E+10(0.985(0.246(1.232| 635.90 | 0.200 | 104.73
0.897(0.231(8.73E-09|2.07E+11{0.985(0.179(1.164| 1805.14 | 0.154 | 206.91
0.821(0.923(8.73E-09|1.90E+11(0.985|0.858(1.843| 1658.97 | 0.465 90.65
0.333(0.846 8.73E-09|8.40E+10(0.985(0.746 (1.731| 733.33 | 0.431 64.64
0.205(0.513(8.73E-09|5.61E+10(0.985(0.385(1.370| 489.75 | 0.281 73.55
0.308(0.154(8.73E-09|7.85E+10(0.985(0.133(1.119| 684.61 | 0.119 | 147.67
0.692(0.487(8.73E-09|1.62E+11(0.985(0.363(1.348| 1415.39 | 0.269 | 128.71
0.513(0.872(8.73E-09|1.23E+11(0.985|0.781(1.767 | 1074.36 | 0.442 76.43
0.744(0.821(8.73E-09|1.73E+11(0.985(0.711(1.697 | 1512.82 | 0.419 95.06
0.974(0.436 (8.73E-09|2.24E+11(0.985(0.322(1.307| 1951.28 | 0.246 | 160.52
0.410|0.974|8.73E-09(1.01E+11)0.985|0.941(1.926| 879.49 | 0.488 63.02
0.179|0.128|8.73E-09(5.05E+10|0.985|0.119(1.104| 441.03 | 0.108 | 125.53
0.026(0.051(8.73E-09|1.70E+10(0.985(0.078|1.063| 148.72 | 0.073 90.19
0.359|0.538|8.73E-09(8.96E+10/0.985|0.407(1.392| 782.04 | 0.292 90.36
1.000|0.795(8.73E-09(2.29E+11|0.985(0.678|1.663| 2000.00 | 0.408 | 111.93
0.385(0.410(8.73E-09|9.52E+10(0.985(0.302(1.287| 830.78 | 0.235 | 108.10
0.128|0.385|8.73E-09(3.94E+10|0.985|0.283(1.268| 343.60 | 0.223 71.83
0.000(0.564 (8.73E-09|1.15E+10(0.985(0.430(1.415| 100.00 | 0.304 31.43
0.436(0.692(8.73E-09|1.06E+11(0.985|0.558(1.543| 928.21 | 0.362 84.07
0.923(0.667 (8.73E-09|2.12E+11(0.985(0.531|1.516| 1853.85 | 0.350 | 121.84
0.590(0.026 8.73E-09|1.40E+11(0.985(0.065(1.050( 1220.51 | 0.062 | 283.30
0.538(0.462(8.73E-09|1.29E+11(0.985(0.342(1.327| 1123.07 | 0.258 | 118.11
0.769(0.308(8.73E-09|1.79E+11(0.985(0.229(1.214| 1561.54 | 0.188 | 170.28
0.051(1.000(8.73E-09|2.26E+10(0.985(0.985(1.971| 197.43 | 0.500 29.18
0.077(0.205(8.73E-09|2.82E+10(0.985(0.163(1.149| 246.15 | 0.142 79.98
0.949(0.897 (8.73E-09|2.18E+11(0.985(0.819(1.804 | 1902.57 | 0.454 99.36
0.718(0.103(8.73E-09|1.68E+11{0.985(0.105(1.090| 1464.11 | 0.096 | 243.61

x1 and x2 are the Design of Experiment factors to ensure effective exploration of the

design space
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| — moment of inertia (m*)

E — Young’s Modulus (Pa)

mp — mass of pipe /metre (kg/m)

mf — mass of fluid /metre (kg/m)

mtot — mass of pipe and fluid /metre (kg/m)
El — Flexural rigidity (Pa m*)

Vcrit — Critical Velocity (m/s)
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